16—17学年下学期七年级优等生学科竞赛数学试题(附答案)

合集下载

16—17学年下学期七年级第三次段考数学试题(附答案)

16—17学年下学期七年级第三次段考数学试题(附答案)

2016—2017学年度七年级阶段检测(三)数 学 试 卷(考试时间:120 分钟 满分:150分)一、 选择题(本大题共10小题,每小题4分,满分为40分) 1、16的平方根是( )A .2B . ±2C .4D .±4 2、(2016淮安)估计17+的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 3、(2015·威海)下列运算正确的是( )A. 2226)3(n m mn -=-B. 4444624x x x x =++C. xy xy xy -=-÷)(2)(D.22)(b a b a b a -=---)(4、在3.140.12,227,5π,0.2020020002 ). A .3个 B .4个 C .5个 D .6个5、有一个数值转换器,流程如下,当输入的x 为256时,输出的y 是( )A 、2B 、3C 、22D 、4 6、若x >y ,则下列式子中错误的是( )A .x -3>y -3 B. x 3>y3C .x +3>y +3D . -3x >-3y7、(2016·滨州)对于不等式组下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是﹣3,﹣2,﹣1D .此不等式组的解集是﹣<x ≤28、某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块9、世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为( ) A .7.6×10﹣9 B .7.6×10﹣8 C .7.6×109 D .7.6×10810、(2015·永州)定义[x ]为不超过x 的最大整数,如[3.6]=3, [0.6]=0, [-3.6]=-4。

数学竞赛试题初一及答案

数学竞赛试题初一及答案

数学竞赛试题初一及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个非零实数,且a+b=5,那么a-b的最大值是多少?A. 5B. 4C. 3D. 23. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 44. 下列哪个选项是4的倍数?A. 7B. 8C. 9D. 105. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共10分)6. 一个数的绝对值是它与____的距离。

7. 圆的周长公式是C=__。

8. 如果一个数的立方等于它本身,那么这个数可能是____。

9. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是____。

10. 一个数的倒数是1/这个数,那么1的倒数是____。

三、简答题(每题5分,共15分)11. 解释什么是有理数,并给出两个有理数的例子。

12. 什么是质数?请列出前5个质数。

13. 描述如何使用勾股定理来计算直角三角形的斜边长度。

四、计算题(每题10分,共20分)14. 计算下列表达式的值:(2+3)×(2-3)。

15. 解下列方程:2x + 5 = 13。

五、解答题(每题15分,共30分)16. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。

17. 一个班级有40名学生,其中1/4是男生,1/3是女生,剩余的是教师。

求男生、女生和教师的人数。

答案:一、选择题1. B2. A3. A4. B5. A二、填空题6. 07. 2πr(或πd,d为直径)8. 0, ±19. 5 10. 1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2和3。

12. 质数是大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。

2016--2017学年度下期末七年级数学试题及答案

2016--2017学年度下期末七年级数学试题及答案

2016~2017学年度第二学期期末考试七年级数学试卷一.选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1.64的算术平方根是( ) A .8 B .-8 C .4 D .-4 2.在平面直角坐标系中,点P (-3,-4)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列调查中,适宜采用全面调查方式的是( )A .调查春节联欢晚会在武汉市的收视率B .调查某中学七年级三班学生视力情况C .调查某批次汽车的抗撞击能力D .了解一批手机电池的使用寿命 4.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A .x >2 B .x ≤4 C .2≤x <4 D .2<x ≤45.如图,若CD ∥AB ,则下列说法错误的是( ) A .∠3=∠A B .∠1=∠2 C .∠4=∠5 D .∠C +∠ABC =180°6.点A (﹣1,4)关于y 轴对称的点的坐标为( ) A .(1,4) B .(﹣1,﹣4) C .(1,﹣4) D .(4,﹣1) 7.若x >y ,则下列式子中错误的是( ) A .31+x >31+y B . x -3>y -3 C .3x >3yD .-3x >-3y 8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”若设有鸡x 只,有兔y 只,则可列方程组正确的是( ) A .⎩⎨⎧=+=+942235y x y xB .⎩⎨⎧=+=+942435y x y xC .⎩⎨⎧=+=+944235y x y xD .⎩⎨⎧=+=+94235y x y x9.下列说法:① 3.14159是无理数;② -3是-27的立方根;③ 10在两个连续整数a 和b 之间,那么a +b =7;④如果点P (3-2n ,1)到两坐标轴的距离相等,则n =1;其中正确说法的个数为( )A .1个B .2个C .3个D .4个 10.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,则12+m的值为( )A .5或50B .49C .4或49D . 5二.填空题(共6小题,每小题3分,共18分) 11.若x +2有意义,则x 的取值范围是 .12.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,∠COB =145°, 则∠DOE =__________13.如图,将王波某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .33%43%4%长途话费短信费本地话费月基本费14.一艘轮船从长江上游的A 地匀速驶到下游的B 地用了10h , 从B 地匀速返回A 地用了不到12h ,这段江水流速为3km /h ,轮船在静水里的往返速度vkm /h 不变,则v 满足的条件是 . 15.如图, AB ∥CD ,直线EF 与直线AB ,CD 分别交于点E ,F , ∠BEF <150°,点P 为直线EF 左侧平面上一点,且 ∠BEP =150°,∠EPF =50°,则∠DFP 的度数是 .16.在等式c bx ax y ++=2中,当x =-1时,y =0;当x =2时,y =3;当x =5时,y =60;则a +b +c 的值分别为_______.三.解答题(共8小题,共72分) 17.(本题10分)解方程组:(1)⎩⎨⎧=--=1376y x y x (2)⎪⎪⎩⎪⎪⎨⎧-=-=+312612174332y x y x18.(本题8分)解不等式332-x ≤153+-x ,并在数轴上表示其解集.19.(本题8分)某校为了调查学生书写汉字能力,从八年级400名学生中随机抽选50名学生参加测试,这50名学生同时听写50个常用汉字,每正确听写出一个汉字得1分.根据测试成绩绘制频数分布图表. 频数分布表 频数分布直方图请结合图表完成下列各题:(1)表中a 的值为 ;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为合格,请你估计该校八年级汉字书写合格的人数为 .Cx20.(本题7分)养牛场原有15头大牛和5头小牛,每天约用饲料325kg ;两周后,养牛场决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需多少饲料?21.(本题8分)如图,线段CD 是线段AB (1)若点A 与点C 、点B 与点D 是对应点. 在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示)(2)若点A 与点D 、点B 与点C 、是对应点,在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示) (3)连接BD ,AC ,直接写出四边形ABDC 的面积为22. (本题9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,经调查:购买一套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m 、n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,有哪几种购买方案?为了节约资金,请你为公司设计一种最省钱的购买方案.图2 x y M C B A 12345–1–2–3–4–512345–1o x y123456–1–2123456–1–2o 23.(本题10分)如图1,将线段AB 平移至CD ,使点A 与点D 对应,点B 与点C 对应,连AD 、BC (1) 填空:AB 与CD 的位置关系为__________,BC 与AD 的位置关系为__________; (2) 点G 、E 都在直线DC 上,∠AGE =∠GAE ,AF 平分∠DAE 交直线CD 于F . ①如图2,若G 、E 为射线DC 上的点,∠F AG =30°,求∠B 的度数;②如图3,若G 、E 为射线CD 上的点,∠F AG =α,求∠C 的度数.24.(本题12分)如图,点A 的坐标为(4,3),点B 的坐标为(1,2),点M 的坐标为(m ,n ).三角形ABM 的面积为3.(1)三角形ABM 的面积为3.当m=4时,直接写出点M 的坐标 ; (2)若三角形ABM 的面积不超过3.当m=3时,求n 的取值范围;(3)三角形ABM 的面积为3.当1≤m ≤4时,直接写出m 与n 的数量关系 .图3 图1y 123456–1–2123456–1–2o 备用图硚口2016—2017学年度下学期期末考试七年级数学答案11.x ≥-2 12.55° 13.72° 14.v >33 15.100°或160° 16.-4. 17.(1)解:把①代入②得:6y -7-y =13 y =4 ……3分把y =4代入①得:x =17 ………………………………………4分 ∴原方程组的解是⎩⎨⎧==417y x ………………………………………5分(2)解:原方程组可化为: ⎩⎨⎧-=-=+231798y x y x ………7分∴原方程组的解是⎩⎨⎧==11y x ………10分18.解:去分母得: 5(2x -3)≤3(x -3)+15 ………………2分去括号得: 10x -15 ≤3x -9+15 ………………3分 移项得: 10x -3x ≤15-9+15 ………………4分 合并同类项得:7x ≤21 ………………5分 系数化为1得:x ≤ 3 ………………6分………………8分19.(1) a=12 …………………………………………………2分 (2)16,12 (图略)作出一个正确的条形给2分 ………………… 6分 (3)304人 …………… …… …………… ……………………8分 20.(1)解:设每头大牛1天需饲料x kg ,每头小牛1天需饲料y kg . ………1分 依题意得:⎩⎨⎧=+++=+550)515()1015(325515y x y x ……2分解方程组得:⎩⎨⎧==520y x …………3分答: 每头大牛1天需饲料20 kg ,每头小牛1天需饲料5 kg . …………4分(2) 解:设大牛购进a 头,小牛购进b 头. ………. . …………………………5分 根据题意可列方程: 20a +5b =110b =22-4a ………. . ………………………7分∵根据题意a 与 b 为非负整数,∴b ≥0 ∴22-4a ≤0 ∴a ≤5.5∴a 最大取5 ………. . …………………………8分 答: 大牛最多还能购进5头. ………. . …………………………9分 21.(1)(m -5,n -5);…2分 (2)(-m ,-n );……4分 (3)10 .………8分 22.(1)解:根据题意可列方程组:{nm n m =-=+6103,解方程组得:{71==m n ……………3分答:m 的值为7,n 的值为1. …………………………4分 (2) 解:设购买甲型设备x 套,购买乙型设备)10(x -套, ……………5分根据题意列不等式组:{26)10(71020)10(100120≤-+≥-+x x x x , ……………6分解不等式组得:381≤≤x∵x 为整数,∴x 为1或2 ……………7分所以购买方案有:方案1、甲型设备1套,乙型设备9套;方案2、甲型设备2套,乙型设备8套.……8分所需费用:方案1、7+9=16万元,方案2、14+8=22万元, 方案1最省钱.………………9分 23.(1)AB ∥ CD, BC ∥ AD ………………………………………………………2分 (2)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………3分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠EAF +∠GAE )=∠EAD +∠BAE =∠BAD ……………………5分 又∵∠F AG =30° ∴∠BAD =60°又∵BC ∥ AD ∴∠B+∠BAD =180° ∴∠B =120°………………6分 (3)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………7分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠GAE —∠EAF )=∠BAE —∠EAD =∠BAD又∵∠F AG =α ∴∠BAD =2α …………………………………9分 ∵BC ∥ AD ∴∠B+∠BAD =180° ∵AB ∥ CD ∴∠B+∠C =180° ∴ ∠C =∠BAD =2α …………10分24.(1) (4,5)或(4,1) ………………………………………………………2分(2)作AD ⊥x 轴于D ,作BC ⊥x 轴于C ,作ME ⊥x 轴于E 交AB 于F ,设F 点坐标为(3,a ) 则点E 为(3,0)、点D 为(4,0),∴BC =2, EF =a , AD =3,CE =2,DE =1,CD =3,又∵FEDA BCEF S S S 梯形梯形梯形+=ABCD ∴ )38,3(,38)32(321)3(121)2(221F a a a =+⨯⨯=+⨯++⨯……………6分作AP ⊥MF 于P ,作BQ ⊥MF 于Q ,23)(213≤≤+≤+=∆∆∆MF MF AP BQ S S S MFA MFB MAB …………7分∵点M 的坐标为(3,n ), 点F 的坐标为(3,38) ∴238≤-n , ∴n -38≤2且-(n -38)≤2,三点共线,(舍去),,时,当M B A 38=n∴当32≤n ≤314且n ≠38时,三角形ABM 的面积不超过3 ………………………………9分(3)当1≤m ≤4时,直接写出m 与n 的数量关系为:3n -m =11或3n -m =-1. …………12分。

2016-2017第二学期三科联赛七年级数学试题

2016-2017第二学期三科联赛七年级数学试题

2016~2017学年第二学期“语数英”三科联赛七年级数学试题(时间60分钟,满分100分)一.选择题(每小题只有一个正确选项,把正确选项填写到表格中.共8小题,每小题4分,合计32分)1.如图,AB ∥CD ,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为( ) A .∠1+∠2﹣∠3 B .∠1+∠3﹣∠2 C .180°+∠3﹣∠1﹣∠2 D .∠2+∠3﹣∠1﹣180°2.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是和﹣1,则点C 所对应的实数是( )A .1+B .2+C .2﹣1D .2+13.的算术平方根是( )A .11B .±11C .D .±4.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),…,则点A 2013的坐标为( ) A .(504,﹣503) B .(504,504) C .(﹣504,504)D .(﹣504,﹣504)5.已知关于x 的不等式组的整数解共有5个,则a 的取值范围是( )A .﹣5<a <﹣4B .﹣5≤a ≤﹣4C .﹣5<a ≤﹣4D .﹣5≤a <﹣46.为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼坐上标记,然后放回池塘去,经过一段时间,待有有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现有5条有标记,那么你估计池塘里有多少条鱼( )A .500条B .1000条C .1500条D .2000条7.如图,是一块在电脑屏幕上出现的矩形色块图,由6个颜色不同的正方形组成,最小的一个正方形边长为1,则这个矩形色块图的面积为( ) A .101 B .121 C .143D .1448.若2x +5y +4z=0,3x +y ﹣7z=0,则x +y ﹣z 的值等于( )A .0B .1C .2D .不能求出二.填空题(共6小题,每小题5分,合计30分)9.如图,∠A=70°,O 是AB 上一点,直线OD 与AB 所夹的 ∠BOD=78°,要使OD ∥AC ,直线OD 绕点O 按逆时针方向 至少旋转 .10.如图,将周长为12的△ABC 沿BC 方向向右平移后得到△DEF ,若四边形ABFD 的周长为16,则平移的距离是 .11.已知a=,b=,则a 与b 之间的大小关系是 .12.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为 .13.方程组的解x 、y 的和为6,则k 的值是 .14.一次生活常识竞赛一共有25道题,答对一题得4分,不答得0分,答错一题扣2分,小明有2题没答,竞赛成绩至少有80分,则小明最多答错了 道题. 三.解答题(共5小题,合计38分)15.如图,在△ABC 中,EF ∥CD ,∠1=∠2,BC 与DG 平行吗?请说明理由.(6分)班级 考号 姓名密 封 线16.解不等式组.并把不等式组的解集在数轴上表示出来.(6分)17.如图,已知,在平面直角坐标系中,S△ABC=24,OA=OB,BC=12.(7分)(1)求出△ABC三个顶点的坐标.(2)在y轴上存在点D,使得S△ACD=S△ABC,求出D点的坐标.18.学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(6分)(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?19.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16t;如果进行精加工,每天可加工6t,但两种加式方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成,你认为选择哪种方案获利最多,为什么?(13分)。

中学16—17学年下学期七年级学科竞赛数学试题(2)(附答案)

中学16—17学年下学期七年级学科竞赛数学试题(2)(附答案)

初一数学竞赛试题一.选择题(共12小题)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x52.在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.3.将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个4.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个5.已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2 B.∠1=∠3 C.∠1<∠2 D.∠2>∠36.古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.20=6+14 B.25=9+16 C.36=16+20 D.49=21+287.为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个8.观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32004的末位数字是()A.3 B.9 C.7 D.19.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R10.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.2111.已知2x6y2和﹣是同类项,那么2m+n的值是()A.2 B.4 C.6 D.512.下列去括号错误的共有()①a+b+c=ab+c;②a﹣(b+c﹣d)=a﹣b﹣c+d;③a+2(b﹣c)=a+2b﹣c ④a2﹣[(﹣a+b)]=a2﹣a+b.A.1个B.2个C.3个D.4个二.填空题(共6小题)13.如图,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置,根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是时分.14.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为;第n个单项式为.15.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.16.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=度.17.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.18.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.三.解答题(共6小题)19.已知关于x,y的方程组和的解相同,求(2a﹣b)2的值.20.解方程组.21.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.22.先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.23.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF的度数.24.“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.参考答案与试题解析一.选择题(共12小题)1.(2016•呼伦贝尔)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.(2013•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.【分析】设买了甲种药材x斤,乙种药材y斤,根据甲种药材比乙种药材多买了2斤,两种药材共花费280元,可列出方程.【解答】解:设买了甲种药材x斤,乙种药材y斤,由题意得:.故选A.【点评】本题考查了有实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.3.(2013春•太原月考)将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个【分析】由平行线的性质与互余的关系,即可求得:∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;又由等量代换,求得∠1+∠3=90°.【解答】解:如图,根据题意得:AB∥CD,∠FEG=90°,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;故(1),(2),(3),(4)正确;∴∠1+∠3=90°.故(5)正确.∴其中正确的共有5个.故选A.【点评】此题考查了平行线的性质.注意掌握:两直线平行,同位角相等与两直线平行,同旁内角互补以及两直线平行,内错角相等定理的应用.4.(2008•西宁)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个【分析】根据角的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β=180°代入即可解出此题.【解答】解:∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;(∠α+∠β)+∠β=×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β=(∠α+∠β)=×180°=90°,所以④正确.综上可知,①②④均正确.故选B.【点评】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.5.(2013秋•嘉峪关校级期末)已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2 B.∠1=∠3 C.∠1<∠2 D.∠2>∠3【分析】根据1°=60′把∠1=17°18′化成度数再进行解答即可.【解答】解:∵1°=60′,∴18′=()°=0.3°,∴∠1=17°18′=17.3°,∴B正确.故选B.【点评】此题比较简单,解答此题的关键是熟知1°=60′.6.(2014秋•青岛期末)古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.20=6+14 B.25=9+16 C.36=16+20 D.49=21+28【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【解答】解:根据规律:正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),只有D、49=21+28符合,故选D.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.7.为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:本题中的总体是指这批日光灯管的全体的使用寿命,样本容量是30,所以①④不正确.个体是指每只日光灯管的使用寿命,样本是指从中抽取的30只日光灯管的使用寿命,所以②和③正确.故选B【点评】本题考查的是确定总体、个体、样本.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”8.(2012•湛江模拟)观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32004的末位数字是()A.3 B.9 C.7 D.1【分析】根据给出的规律,3n的个位数字4个循环一次,用2005去除以4,看余数是几,再确定个位数字.【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…,∴34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32004=3501×4的个位数字与与34的个位数字相同,应为1.故选D.【点评】本题考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9.(2007•佛山)如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选A.【点评】主要考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.10.(2011•自贡)李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.21【分析】此题可根据表面积的计算分层计算得出红色部分的面积再相加.【解答】解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5;第二层露出的表面积为:1×1×6×4﹣1×1×13=11;第,三层露出的表面积为:1×1×6×9﹣1×1×37=17.所以红色部分的面积为:5+11+17=33.故选B.【点评】此题考查的知识点是几何体的表面积,关键是在计算表面积时减去不露的或重叠的面积.11.(2016秋•乌拉特前旗期末)已知2x6y2和﹣是同类项,那么2m+n的值是()A.2 B.4 C.6 D.5【分析】依据同类项的蒂尼可知3m=6,n=2,从而得到m=2,然后代入计算即可.【解答】解:∵2x6y2和﹣是同类项,∴3m=6,n=2.∴m=2.将m=2,n=2代入得:原式=2×2+2=6.故选:C.【点评】本题主要考查的是同类项的定义,由同类项的定义得到3m=6,n=2是解题的关键.12.(2013秋•滨海县校级期中)下列去括号错误的共有()①a+b+c=ab+c;②a﹣(b+c﹣d)=a﹣b﹣c+d;③a+2(b﹣c)=a+2b﹣c ④a2﹣[(﹣a+b)]=a2﹣a+b.A.1个B.2个C.3个D.4个【分析】根据去括号法则,括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号,对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:①a+b+c=a+b+c,故本选项错误;②a﹣(b+c﹣d)=a﹣b﹣c+d,故本选项正确;③a+2(b﹣c)=a+2b﹣2c,故本选项错误;④a2﹣[(﹣a+b)]=a2+a﹣b,故本选项错误.综上,①③④错误,共3个.故选C.【点评】本题考查了去括号与添括号的知识,注意去括号法则的熟练掌握.二.填空题(共6小题)13.(2008•资阳)如图,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置,根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是9时12分.【分析】方法一:结合图形,利用钟表表盘的特征解答.注意要先确定12点或6点的整点位置,才能解答.方法二:根据时针一小时走5个小格,分针一小时走60小格,可知时针绕1格,分针绕了12格,分针逆时针数12小格即为12点的位置,然后读出时间即可.【解答】解:方法一:本题没有确定12点或6点的整点位置,需要先确定,才能解题,由图知:时针转动了1小格,又每一小格所对角的度数为6°,即时针转动了6°,由分针每转动1°,时针转动()°,知,分针转动了6°÷=72°,又由每一大格所对角的度数为30°,故分针转了两大格,两小格,从而确定12点位置,由此知时针所指的位置在9时过一小格,故可知所显示的时刻是9时,分针转动了72°÷6°=12小格,每小格一分,故分针显示为12分.∴该钟面所显示的时刻是9时12分;方法二:由图可知,时针过1个大格线,走过×60=12分钟,所以,分针逆时针数12小格即为12点的位置,所以,该钟面所显示的时刻是9时12分.【点评】本题考查的是钟表表盘与角度相关的特征.钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动()°,逆过来同理.14.(2011•铜仁地区)观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为64a7;第n个单项式为(﹣2)n﹣1a n..【分析】本题须先通过观察已知条件,找出这列单项式的规律即可求出结果.【解答】解:根据观察可得第7个单项式为64a7第n个单项式为(﹣2)n﹣1a n.故答案为:64a7,(﹣2)n﹣1a n.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.15.(2016秋•郾城区期末)如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.16.(2011•曲靖)珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=20度.【分析】由已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,又由CF∥DE,所以∠CDE=∠DCF.【解答】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.【点评】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.17.(2015•滨州)某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.【分析】可设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,根据等量关系:①一共210名工人;②小袖的个数:衣身的个数:衣领的个数=2:1:1;依此列出方程组求解即可.【解答】解:设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,依题意有,解得.故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.故答案为:120.【点评】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.(1)把求等式中常数的问题可转化为解三元一次方程组为以后待定系数法求二次函数解析式奠定基础.(2)通过设二元与三元的对比,体验三元一次方程组在解决多个未知数问题中优越性.18.(2016春•耒阳市校级期末)若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是﹣2或﹣3.【分析】根据二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1.【解答】解:若方程组是关于x,y的二元一次方程组,则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.故答案为:﹣2或﹣3.【点评】本题主要考查了二元一次方程组的定义,利用它的定义即可求出代数式的解.三.解答题(共6小题)19.(2017春•杭州月考)已知关于x,y的方程组和的解相同,求(2a ﹣b)2的值.【分析】将两方程组中的第一个方程联立求出x与y的值,将第二个方程联立,把x与y 的值代入求出a与b的值,进而求出所求式子的值.【解答】解:由题意得:,解得:,代入,解得:,则(2a﹣b)2=[2×﹣(﹣)]2=4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组两方程成立的未知数的值.也考查了解二元一次方程组以及代数式求值.20.(2017•津市市校级模拟)解方程组.【分析】根据代入消元法,可得答案.【解答】解:方程组化简,得,把②代入①,得﹣2x+3(﹣8+2x)=4,解得x=7,把x=7代入②,得y=﹣8+2×7=6,方程组的解是.【点评】本题考查了解方程组,利用代入消元法是解题关键.21.(2012•凤阳县校级模拟)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【点评】本题主要考查了平行线的判定与性质,注意平行线的性质和判定定理的综合运用.22.(2014秋•金昌期中)先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)把A与B代入2A﹣B中去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:(1)原式=﹣x2+5x+4﹣5x+4﹣2x2=﹣3x2+8,当x=﹣2时,原式=﹣12+8=﹣4;(2)∵A=x2+5x,B=3x2+2x﹣6,∴2A﹣B=2x2+10x﹣3x2﹣2x+6=﹣x2+8x+6,当x=﹣3时,原式=﹣9﹣24+6=﹣27.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(2014春•东昌府区期中)(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF的度数.【分析】(1)根据邻补角的和等于180°求出∠1的度数,然后求出∠3,再根据对顶角相等解答;(2)利用角平分线及比例式求出角的关系,利用平角是180°,求出∠BOE=∠DOE=30°,OF平分∠COE得到∠EOF=75°,求出∠BOF=45°,根据邻补角的和等于180°求出∠AOF【解答】解:(1)如图,∵∠2=155°,∴∠1=180°﹣∠2=180°﹣155°=25°,∴∠3=2∠1=2×25°=50°,∵∠3=∠4,(对顶角相等)∴∠4=50°,(2)∵∠AOD:∠BOE=4:1,∴∠AOD=4∠BOE,∵OE平分∠BOD,∴∠D0E=∠EOB,∴∠AOD+∠DOE+∠BOE=180°,∴6∠BOE=180°,∴∠BOE=∠DOE=30°,∴∠COE=180°﹣30°=150°,∵OF平分∠COE,∴∠EOF=75°,∴∠BOF=∠EOF﹣∠BOE=75°﹣30°=45°,∠AOF=180°﹣45°=135°.【点评】本题考查了邻补角的定义,对顶角相等的性质,角平分线的定义,准确识图并熟记性质与概念是解题的关键.24.(2016春•六合区校级期中)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【分析】(1)设一个保温壶售价为x元,一个水杯售价为y元,根据买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元,列出方程组,求解即可.(2)根据题意先分别计算出在“重百”超市购买所需费用和在“沃尔玛”超市购买所需费用,然后进行比较即可得出答案.【解答】解:(1)设一个保温壶售价为x元,一个水杯售价为y元.由题意,得:.解得:.答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【点评】此题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。

阚疃金石中学2016—2017年学年度第二学期七年级数学竞赛试卷及答案

阚疃金石中学2016—2017年学年度第二学期七年级数学竞赛试卷及答案

阚疃金石中学2016—2017年学年度第二学期七年级数学竞赛试卷一、选择题:(40分)1、下列不正确的是…………………………………………………………………………( ) A 4是16的平方根; B32是94的平方根;C 2)5(-的平方根是-5; D 0的算术平方根是0 2、下列说法正确的是………………………………………………………………………( ) A 无限小数都是无理数;B 无理数是带根号的数:C 无理数是无限不循环的小数,D 分数就是无理数。

3、与数轴上的点一一对应的数是…………………………………………………………( )A 全体有理数;B 全体整数;C 全体无理数,D 全体实数。

4、若m >n 下面正确的是…………………………………………………………………( ) A m -7<n -7 B 3m < 3n ;C ―5m >―5n D 9m >9n5、若不等式ax ≥8的解集是x ≤ -2 那么a 的值是……………………………………( ) A 16 B -16 C -4 D 46、计算:()3y -·4y 的结果是…………………………………………………… ……( ) A 12y B -12y C 7y D 7y - 7、计算:()()20162016201715.132-⨯⨯⎪⎭⎫ ⎝⎛的结果是………………………………………( )A32 B 32- C 23 D 23- 8、计算:y x y x 335832÷=…………………………………………………………………( ) A 224y x B y x 24 C 24xy D 4xy 9、分解因式:-4m 2 +8mn = ( )(m -2n ) …………………………………… …( )A 4mB -4mC 4mnD -4mn10 计算:xx213- 结果是…………………………………………………………………( ) A 27 B x 25 C 25x D -x2二、填空题:(20分)11、在9,12,13,16,17五个数中,介于3和4之间的无理数是 。

16—17学年下学期七年级期末考试数学试题(附答案)

16—17学年下学期七年级期末考试数学试题(附答案)

2016-2017学年度下学期期末数学质量检测试卷七年级数学(考试时间120分钟,满分120分)一、选择题(本大题共8个小题每小题4分,共32分)1. 将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)2.下列调查中,适宜采用全面调查(普查)方式的是( )A.调查市场上老酸奶的质量情况B.调查马龙县中学生每周体育锻炼的时间C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了危禁物品3.已知21yχ⎧=⎨=⎩是二元一次方程81m nyn myχχ⎧+=⎨-=⎩的解,则2m-n的算术平方根为( )A.±2 B.2 C D.44.已知下列各数:3.14,0.1010010001,0.0123有( )A.1个B.2个C. 3个D.4个5.如果点P(2 x +6,x -4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为( )A.B.C.D.6.如图1,已知AB∥CD,E是AB上一点,ED平分∠BEC交CD于点D,∠BEC=100°,则∠D的度数是( )A.50°B.100°C.80°D.60°7的平方根是( )A.±3 B.3 C.±9 D.9 8.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次为A1,A2,A3,A4,A5,…,则顶点A55的坐标是( )A.(13,13)B.(-13,-13)C.(-14,-14)D.(14,14)二、填空题(本大题共6个小题;每小题3分,共18分)9.在方程4x-2y=7中,如果用含x的式子表示y,则y=.10.已知点P的坐标为(5,a),且点P在一、三象限角平分线上,则a=.11.把命题“对顶角相等”改写成“如果……那么……”的形式.12.关于x、y的二元一次方程组3234y ay aχχ⎧+=+⎨+=-⎩的解满足x+y>2,则a的取值范围为.13.若(x-1)2=4则x=.14.如图,一个含有30°角的直角三角板的两个顶点放在一个长方形的对边上,若∠1=25°,则∠2=.三、解答题(本大题共9个小题;共70分.)15.(616.(7分)解方程组43624y y χχ⎧+=⎨+=⎩17.(7分) 并把它们的解集在数轴上表示出来。

2016-2017七年级三科联赛数学试卷

2016-2017七年级三科联赛数学试卷

2016-2017第二学期七年级三科联赛数学试卷一选择题(每小题4分,共40分)1. 面积为2的正方形边长是 ( )A.整数B.分数C.有理数D.无理数2.已知a >b ,则下列不等式一定成立的是 ( )A.a+4<b+4B.2a <2bC.-2a <-2bD.a-b <0 3. 的平方根是 ( )A. B.9 C.3 D.4.下列运算正确的是 ( )A.( 3x 2y )3 = -9x 6y 3B.(a+b)(a+b)=a 2+b 2C.4x 3y 2(2xy 21-)=-2x 4y 4D.(x 2)3=x 5 5.=+++80081-60061400413003120021 ( ) A. 60061 B.70071- C. 80089 D.900910- 6.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根。

其中正确的有 ( )A.0个B.1个C.2个D.3个7.不等式组⎩⎨⎧≥+<01x 04-x 2的解集在数轴上表示正确的( )8.a ,b 满足ab=1,记M=b 11a 11+++ ,N=b1b a 1a +++.则M ,N 的关系为( )A.M >NB.M=NC.M <ND.不确定9.已知x ,y ,z 满足z x 5z -y 3x 2+==,则z 2y y -x 5+的值为( ) A.1 B.21C. 31-D.3110.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想获得至少20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A.40%B.33.4%C.33.3%D.30%二、填空题(每小题5,分共20分) 11.10在两个连续整数a 和b 之间,a <10<b ,那么a+b 的值是 .12.-0.000000259用科学记数法表示为 。

13.观察下面的式子:a 1=32-12,a 2=52-32,a 3=72-52,a 4=92-72,…请用含n 的式子表示a n (n 为大于0的自然数):a n = .14.已知实数a 、b 、c 满足a+b=ab=c ,有下列结论:①若c ≠0,则1b 1a 1=+;②若a=3,则b+c=9;③若a=b=c ,则abc=0;④若a 、b 、c 中只有两个数相等,则a+b+c=8.其中正确的是 (把所有正确结论的序号都选上).三、解答题(本大题8小题,共90分)15.(本题10分)计算(1)01-3-49-2-)()(+ (2)32236])2([-x 3--x -x -)()(16. (本题8分)解不等式(组),并把解集在数轴上表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

育才竞赛数学试卷(勾股定理)
一、综合题
1、国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:
①打9.8折销售;
②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.
请问哪种方案更优惠?
2、(1)问题发现:如图1,△ACB
和△DCE 均为等边三角形,当△DCE 旋转至点A ,D ,E 在同一直线上,连接BE ,易证△BCE ≌△ACD .则
①∠BEC =______°;②线段AD 、BE 之间的数量关系是______.
(2)拓展研究:
如图2,△ACB 和△DCE 均为等腰三角形,且∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,若AE =15,DE =7,求AB 的长度.
(3)探究发现:
如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP =8,求BD的长.
3、【问题发现】
如图1,△ACB和△DCE均为等边三角形,若B,D,E在同一直线上,连接AE.(1)请你在图中找出一个与△AEC全等的三角形:;
(2)∠AEB的度数为;CE,AE,BE的数量关系为.
【拓展探究】
如图2,△ACB是等腰直角三角形,∠AEB=90°,连接CE,过点C作CD⊥CE,交BE于点D,试探究CE,AE,BE的数量关系,并说明理由.
【解决问题】
如图3,在正方形ABCD中,
CD=5,点P为正方形ABCD外一点,∠APC=90°,且AP=6,试求点P到CD的距离.
二、作图题
4、图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.
具体要求如下:
三、计算题
5、如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C 是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE
(1)求证:四边形OGCH是平行四边形。

(2)当点C 在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度。

(3)求证:是定值。

四、选择题
6、为了弘扬雷锋精神,某中学准备在校园内建造一座高2m的雷锋人体雕像,向全体师生征集设计方案。

小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。

如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高
度(精确到0.01m ,参考数据:≈1.414,≈1.732,≈2.236)是()
A.0.62m B.0.76m C.1.24m D.1.62m
7、如图所示,AB=BC=CD=DE=1,AB⊥BC、AC⊥CD,AD⊥DE,则AE等于()
A.1 B .C .D.2
8、园丁住宅小区有一块草坪如图所示.已知AB=3m,BC=4m,CD=12m,DA=13m,且AB⊥BC,这块草坪的面积是( )
A.24m2B.36m2C.48m2D.72m2
)
9、已知如图,在△ABC中,AB=AC=10,BD⊥AC于D,CD=2,则BD的长为(
10、2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形。

若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a3+b4的值为()
A.35 B.43 C.89 D.
97
五、填空题
11、在等腰Rt△ABC中。

AC=BC,以斜边AB为一边作等边△ABD.使点C、D在AB的
同侧,再以CD为一边作等边△CDE,使得C、E在AD 的异侧,若AE=1,则CD的长为。

12、如图所有四边形都是正方形,所有三角形都是直角三角形,其中最大的正方形边长为7cm,则正方形A、B、C、D的面积和为________
13、如图所示,一个圆柱体高20cm,底面半径为5cm,在圆柱体下底面的A点处有一只蚂蚁,想吃到与A点相对的上底面B处的一只已被粘住的苍蝇,这只蚂蚁从A点出发沿着圆柱形的侧面爬到B点,则最短路程是。

(结果保留整数)
14、两人从同一地点同时出发,一人以20米/分的速度向北直行,一人以30米/分的速度向东直行,10分钟后他们之间的距离是。

15、如图,连接正五边形ABCDE的各条对角线围成一个新的五边形MNPQR.图中有很多顶角为36 º的等腰三角形,我们把这种三角形称为“黄金三角形”,黄金三角形的底与腰之
比为.若AB=,则MN= .
参考答案一、综合题
1、解:(1)∵双曲线过A(3,),
∴k=20.
把B(-5,a)代入,得
a=-4.
∴点B的坐标是(-5,-4).
设直线AB的解析式为,
将A(3,)、B(-5,-4)代入,得
解得:.
∴直线AB的解析式为:
(2)四边形CBED是菱形.理由如下:
点D的坐标是(3,0),点C的坐标是(-2,0).∵BE∥x轴,
∴点E的坐标是(0,-4).
而CD=5,BE=5,且BE∥CD.
∴四边形CBED是平行四边形.(6分)
在Rt△OED中,,
∴,
∴ED=CD.
∴四边形CBED是菱形.
2、.解:(1)①120°……………………2分,②AD=BE……………………………4分
(2)
(3)如下图所示
由(2)知△BEC≌△APC,
∴BE=AP=5,∠BEC=∠APC=150°,
∵∠APD=30°,AP=5,CP=4,DP=8,∠APD=30°,∠EPC=60°,
∴∠BED=∠BEC-∠PEC=90°,∠DPC=120°
又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上
∴DE=DP+PE=8+4=12,BE=5,
∴∴BD的长为13
3、【考点】LO:四边形综合题.
【分析】【问题发现】(1)根据等边三角形的性质、全等三角形的判定定理证明△AEC≌△BDC;
(2)根据△AEC≌△BDC,得到∠AEC=∠CDB=120°,计算即可;
【拓展探究】证明△AEC≌△BDC,得到△ECD是等腰直角三角形,根据等腰直角三角形的性质计算;
【解决问题】分点P在AD上方、点P在AB的左侧两种情况,根据相似三角形的性质计算.【解答】解:【问题发现】(1)△AEC≌△BDC,
证明:∵△ACB和△DCE均为等边三角形,
∴∠ECD=∠ACB=60°,
∴∠ECA=∠DCB,
在△AEC和△BDC中,

∴△AEC≌△BDC,
故答案为:△BDC;
(2)∠CDB=180°﹣∠CDE=120°,
∵△AEC≌△BDC,
∴∠AEC=∠CDB=120°,AE=BD,
∴∠AEB=60°,
BE=DE+BD=CE+AE;
故答案为:60°;CE+AE=BE;
【拓展探究】∵CD⊥CE,∠ACB=90°,
∴∠ECA=∠DCB,
∵∠AEB=90°,∠ACB=90°,
∴A、E、C、B四点共圆,
∴∠EAC=∠DBC,
在△AEC和△BDC中,

∴△AEC≌△BDC,
∴AE=BD,CE=CD,
∴△ECD是等腰直角三角形,
∴ED=CE,
∴BE=DE+BD=CE+AE;
【解决问题】当点P在AD上方时,连接AC、PD,作PH⊥CD交AD的延长线于H,
∵AD=5,
∴AC=10,
则PC==8,
由拓展探究可知,PD==,
∵PH∥AD,
∴∠DPH=∠ADP,
∴∠DPH=∠ACP,
∴PH=PD×=;
当点P在AB的左侧时,同理PH=.
二、作图题
4、如图(a)、图(b)、图(c)
三、计算题
5、证明:(1)连结OC交DE于M,由矩形得OM=CG,EM=DM 因为DG=HE所以EM-EH=DM-DG得HM=DG
(2)DG不变,在矩形ODCE中,DE=OC=3,所以DG=1
(3)设CD=x,则CE=,由得CG=
所以所以HG=3-1-
所以3CH2=
所以
四、选择题
6、C
7、D
8、B
9、C
10、B
五、填空题
11、
12、49cm2
13、25
14、100米
15、。

相关文档
最新文档