相交线与平行线的基本概念
相交线与平行线笔记整理

相交线与平行线笔记整理
相交线与平行线是几何学中的重要概念,下面是有关相交线和平行线的笔记整理:
一、相交线:
1. 定义:在平面上,如果两条直线有一个公共的交点,则称这两条直线为相交线。
2. 特性:
- 两条相交线的交点只有一个。
- 两条相交线的两个交线角互为补角。
- 如果两条相交线的交线角互为补角,则这两条直线相交。
二、平行线:
1. 定义:在平面上,如果两条直线没有交点,且方向相同或者重合,则称这两条直线为平行线。
2. 特性:
- 平行线不相交,也没有公共的交点。
- 平行线的交线角为零度。
- 平行线的交线角是对应角,即对应于同一边的内角互为补角。
三、判定平行线的方法:
1. 对称判定法:如果两条直线作为一条直线的平分线,且分出的同侧角相等,则这两条直线平行。
2. 次对称法:如果两条直线与另外一条直线作为一对同位角,且同位角相等,则这两条直线平行。
3. 逆定理法:如果两条直线垂直于同一条直线,则这两条直线
平行。
4. 夹角法:如果两条直线与另外一条直线的夹角相等,则这两条直线平行。
5. 给定角的补角法:如果两条直线与另外一条直线的同侧内角互为补角,则这两条直线平行。
四、平行线性质:
1. 平行线的任意一对内错线互为消角。
2. 平行线的任意一对内错线互为内错角。
3. 平行线与切线的夹角等于对应弧所对的圆心角。
4. 平行线所夹平行线上的交线角相等。
以上是有关相交线与平行线的笔记整理,希望对你有所帮助。
平行线和相交线

平行线和相交线平行线和相交线在几何学中是重要的概念,它们具有不同的性质和特点。
本文将介绍平行线和相交线的基本概念,以及它们在几何学中的应用和相关定理。
一、平行线的概念和性质平行线是指在同一个平面上永远不会相交的两条直线。
在几何学中,我们通常使用符号"//"来表示两条平行线。
平行线具有以下性质:1. 平行线的对应角相等:当两条平行线被一条截线所交,所形成的对应角是相等的。
这个性质可以用来证明两条线平行的方法之一。
2. 平行线的任意两点之间的距离相等:平行线上的任意两点之间的距离都是相等的。
这个性质在实际中得到广泛应用,例如在建筑设计中测量平行的墙壁之间的距离。
3. 平行线的斜率相等:如果两条直线的斜率相等,则它们是平行线。
这个性质可以用来判断两条线是否平行的另一种方法。
二、相交线的概念和性质相交线是指在同一个平面上交叉的两条直线。
相交线具有以下性质:1. 相交线的对应角相等:当两条相交线被一条截线所交,所形成的对应角是相等的。
这个性质可以用来证明两条线是否相交。
2. 相交线的垂直角互补:当两条相交线形成直角时,它们被称为垂直线。
垂直线之间的对应角是互补的,即它们的和为90度。
3. 相交线的交点:相交线的交点是两条线的唯一公共点。
这个交点在几何学中具有重要的地位,它可以被用来确定形状、测量长度等。
三、平行线和相交线的应用和定理平行线和相交线在几何学中有许多重要的应用和相关定理,其中一些包括:1. 直线平行定理:如果一条直线与两条平行线相交,那么它将分别与这两条平行线的对应角相等。
2. 平行线的传递性:如果两条直线分别与第三条直线平行,那么这两条直线也是平行的。
3. 平行线与垂直线的关系:如果两条直线相交,并且其中一条直线与第三条直线垂直,那么另一条直线也与第三条直线垂直。
这些定理和性质在解决几何问题时起着重要的作用,它们被广泛运用于建筑、设计、测量等领域。
总结:平行线和相交线是几何学中重要的概念。
七年级下册数学平行线与相交线

第一讲 两条直线的位置关系知识点一 :相交线、平行线的概念(1)相交线平行定义:若两条直线只有一个公共点,我们称这两条直线为相交线 (2)平行线定义:在同一平面内,不相交的两条直线叫做平行线(3)两套直线的位置关系:在同一平面内,两条直线的位置关系有相交和平行两种 (4)两条直线是指不重合的两条直线注意:1、两条直线在同一平面内2、我们有时说两条射线或线段平行,实际上是指它们所在的直线平行 知识点二:关于对顶角的定义和性质定义 对顶角:像这样直线AB 与直线CD 相交于O ,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.注意:对顶角的判断条件:⎪⎩⎪⎨⎧无公共边有公共顶点两条直线相交另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个。
性质 同角或等角的对顶角相等。
一般题型 下列说法中,正确的是( ). A .有公共顶点,并且相等的角是对顶角 B .如果两个角不相等,那么它们一定不是对顶角 C .如果两个角相等,那么这两个角是对顶角 D .互补的两个角不可能是对顶角 练习 1、如图2-1,共有________对对顶角.图2-1知识点三: 互为余角、互为补角的概念及其性质定义:互为余角:如果两个角的和是直角,则这两个角互为余角. 互为补角:如果两个角的和是平角,则这两个角互为补角 钝角没有余角注意: 互为余角、互为补角只与角的度数有关,与角的位置无关. 性质 同角或等角的余角相等,同角或等角的补角相等一般例题 ⑴∵1∠和2∠互余,∴=∠+∠21_____(或2_____1∠-=∠) ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠)练习1、若∠α=50º,则它的余角是 ,它的补角是 。
若∠β=110º,则它的补角是 ,它的补角的余角是 。
2若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。
相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。
2. 能够识别和判断直线之间的相交与平行关系。
3. 掌握平行线的性质及推论。
教学内容:1. 相交线的定义及特点。
2. 平行线的定义及特点。
3. 平行线的性质及推论。
教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。
2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。
3. 引导学生通过观察和思考,总结出平行线的性质及推论。
作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。
2. 请学生总结平行线的性质及推论,并加以证明。
第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。
2. 能够运用相交线的性质解决实际问题。
教学内容:1. 相交线的性质。
2. 相交线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。
2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。
作业布置:1. 请学生运用相交线的性质,解决一些实际问题。
2. 请学生总结相交线的判定方法,并加以证明。
第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的性质。
2. 平行线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。
2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。
作业布置:1. 请学生运用平行线的性质,解决一些实际问题。
2. 请学生总结平行线的判定方法,并加以证明。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的应用方法。
2. 实际问题解决。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。
2. 提供一些实际问题,让学生运用平行线的性质解决。
初中数学-平行线与相交线

F A D
O B E
练习3:下列命题是真命题的有( C, E, G ) A、相等的角是对顶角; B、不是对顶角的角不相等; C、对顶角必相等; D、有公共顶点的角是对顶角; E 、邻补角的和一定是180°; F、互补的两个角一定是邻补角; G、两条直线相交,只要其中一个角的大小确 定了,那么另外三个角的大小就确定了。
随堂 练习
3、垂直与垂线
(1)概念:两条直线相交形成一个直角时称两 条直线垂直,其中一条直线是另一条的垂线, 交点叫垂足。 (2)垂线的性质:在同一平面内,经过一点有 且只有一条直线与已知直线垂直。
(3)点到直线的距离:
连接直线外一点与直线上各点的所有线段中, 垂线段最短。简称:垂线段最短。
直线外一点到此直线的垂线段的长度叫做点到 直线的距离。
例题3:如图,在宽18米、长32米的长方形草地ABCD的中 间有一条宽2米的曲折的小路,你能否算出草地的面积?
A D
解:小路边沿的两条曲线,因小 路宽度的一致,形状、长度是完 全一样的,故可以将其中的一条 经过平移与另一条重合。 利用平移,两条曲线重合,将 中间的小路“挤”没了!小路 两边的草地重新“拼接”成一 个新的长方形,此长方形只是 比原长方形一边短了2米。
3 4 O' O 1 2 A B
祝大家学习愉快!
A D F C
B E
∴ EF// BC。 (平行于同一条直线的两条直线互相平行)
例题2:如图,EF⊥AB,CD⊥AB,∠EFB=∠GDC, A 求证:∠AGD=∠ACB。
证明: ∵ EF⊥AB,CD⊥AB (已知) ∴ AD∥BC ∴ ∠EFB= ∠DCB (两直线平行,同位角相等) ∵ ∠EFB=∠GDC (已知) ∴ ∠DCB=∠GDC (等量代换)
平行线与相交线的平行四边形性质

平行线与相交线的平行四边形性质平行四边形是几何学中的一种特殊四边形,其特点是有两对相对平行的边。
本文将探讨平行线与相交线的平行四边形性质。
1. 平行线的定义与性质平行线是指在同一个平面内永远不相交的直线。
根据平行线的性质,可以得出以下结论:- 平行线具有相同的斜率。
若两条直线的斜率相等,则这两条直线是平行的。
- 平行线的对应角相等。
两条平行线被一条横截线交叉时,所形成的对应角相等。
2. 相交线的定义与性质相交线是指在同一个平面内相交的两条直线。
根据相交线的性质,可以得出以下结论:- 相交线的对应角互补。
两条相交线被一条横截线交叉时,所形成的对应角的和为180度。
- 相交线的垂直角相等。
两条相交线所形成的垂直角相等。
3. 平行线与相交线的平行四边形性质在平行线与相交线的结合下,可以推导出平行四边形的一些性质,如下所述:- 平行线的平行四边形对角线互相等长。
当一个平行四边形的两对相对边平行时,其对角线互相等长。
- 平行线的平行四边形对边互相平行。
当一个平行四边形的两对相对边平行时,其对边也是平行的。
- 平行线的平行四边形对角线互相平分。
当一个平行四边形的两对相对边平行时,其对角线互相平分对角线。
由上述性质可得出结论:平行线与相交线所形成的平行四边形是一个特殊的四边形,具有独特的性质。
4. 应用示例示例一:已知直线AB与CD平行,直线AD与BC平行。
通过推理可得出结论:四边形ABCD是一个平行四边形。
进一步地,根据平行四边形的性质,可以得到该平行四边形的对角线互相平分,对边互相平行,对角线互相等长等结论。
示例二:已知直线EF与GH平行,直线EG与FH相交。
通过推理可得出结论:四边形EFGH是一个平行四边形。
进一步地,根据平行四边形的性质,可以得到该平行四边形的对角线互相平分,对边互相平行,对角线互相等长等结论。
通过以上示例,可以看出平行线与相交线的平行四边形具有一些共同的性质,这些性质在几何学中应用广泛。
平行线与相交线的性质

平行线与相交线的性质平行线和相交线是几何学中的基本概念,它们在我们的日常生活中随处可见。
了解平行线和相交线的性质对于我们理解几何学的基本原理和应用是至关重要的。
本文将探讨平行线和相交线的性质,以及它们在实际生活中的应用。
一、平行线的性质平行线是指在同一个平面上,永远不会相交的线。
平行线的性质包括以下几点:1. 平行线具有相同的斜率:在平面直角坐标系中,如果两条线的斜率相等,那么它们是平行线。
这是因为斜率代表了线的倾斜程度,如果两条线的倾斜程度相同,它们就不可能相交。
2. 平行线的对应角相等:当平行线与一条横穿它们的直线相交时,对应角是相等的。
对应角是指位于平行线的同一侧,与横穿线相交的两个角。
这个性质可以通过证明两组对应角的和等于180度来得到。
3. 平行线的内角和是180度:当两条平行线被一条横穿线相交时,内角和是180度。
这是因为内角和等于对应角的和,而对应角是相等的。
二、相交线的性质相交线是指在同一个平面上,交于一点的两条线。
相交线的性质包括以下几点:1. 相交线的交点是唯一的:当两条线相交时,它们交于一个唯一的点。
这个性质可以通过反证法来证明,假设两条线交于两个不同的点,然后推导出矛盾。
2. 相交线的对应角相等:当两条相交线被一条横穿线相交时,对应角是相等的。
对应角是指位于相交线的同一侧,与横穿线相交的两个角。
这个性质可以通过证明两组对应角的和等于180度来得到。
3. 相交线的垂直角相等:当两条相交线互相垂直时,它们的垂直角是相等的。
垂直角是指相交线之间的角,其度数为90度。
这个性质可以通过证明两组垂直角的和等于180度来得到。
三、平行线和相交线的应用平行线和相交线的性质在实际生活中有许多应用。
以下是一些例子:1. 建筑设计:在建筑设计中,平行线和相交线的性质被广泛应用。
建筑师使用平行线来设计平行的墙壁和天花板,以增加空间的感觉。
他们还使用相交线来确定建筑物的结构和布局。
2. 道路交通:在道路交通中,平行线和相交线的性质被用来设计交叉口和标记道路。
《相交线与平行线》的所有概念、公理和定理

《相交线与平行线》的所有概念、公理和定理Concepts, Axioms, and Theorems of "Intersecting Lines and Parallel Lines"In the study of Euclidean geometry, the concepts, axioms, and theorems related to intersecting lines and parallel lines play a crucial role. These concepts help us understand the properties and relationships between lines in a plane. Let's explore these ideas in detail.1. Line: In geometry, a line is an infinite straight path with no width or thickness. It extends indefinitely in both directions. A line can be defined by any two distinct points on it.1. 线:在几何学中,线是一个没有宽度和厚度的无限直线路径。
它在两个方向上无限延伸。
线可以由其上的任意两个不同点来定义。
2. Intersecting Lines: Two lines are said to intersect if they have exactly one point in common. This point ofintersection is the solution when their equations are simultaneously satisfied.2. 相交线:如果两条线有且只有一个公共点,则称它们相交。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
87
654321a
b c b c
a
1234567822
211121 D.
C.
B.A.
相交线与平行线
一、知识提要
1. 有一条公共边,另一边互为反向延长线,具有这样关系的两个角互为邻补角;
有公共顶点,另两条边互为反向延长线,具有这样位置关系的两个角互为对顶角;
与为90度的两个角互为余角,与为180度的两个角互为补角; 余角与补角都就是大小角、同位角、内错角、同旁内角就是位置角、 2. 定理①对顶角相等;②同角或等角的余角相等;③同角或等角的补角相等、 3. 平行的两个定理
① 经过直线外一点,有且只有一条直线与这条直线平行; ② 如果两条直线都与第三条直线平行,那么这两条直线也平行、
简记为:如果b //a ,c //a ,那么b //c 、
4. 垂直的两个定理
① 平面内,过一点有且只有一条直线与已知直线垂直; ② 连接直线外一点与直线上各点的所有线段中,垂线段最短、 5. 认识同位角、内错角、同旁内角、
二、精讲精练
1. 如图,∠1与∠2就是对顶角的就是( )
2. 下列说法正确的个数就是( )
①若∠1与∠2就是对顶角,则∠1=∠2; ②若∠1与∠2就是邻补角,则∠1=∠2;
③若∠1与∠2不就是对顶角,则∠1≠∠2;
④若∠1与∠2不就是邻补角,则∠1+∠2≠180°、 A .0个 B .1个 C .2个 D .3个 3. 下列说法中正确的个数为( )
①在同一平面内不相交的两条直线叫做平行线 ②经过一点有且只有一条直线与已知直线垂直 ③经过一点有且只有一条直线与已知直线平行 ④平行同一直线的两直线平行
A .1个
B .2个
C .3个
D .4个 4. 下列推理正确的就是( )
A .因a ⊥b ,b ⊥c ,故a //c
B .因a ⊥b ,b //c ,故a //c
C .因a //b ,b ⊥c ,故a //c
C
B 图7
12
7534
6图6O
D
C B A
D .因a ⊥b ,b //c ,故a ⊥c
5. 如果直线a //b ,b //c ,那么a //c ,这个推理的根据就是( )
A 、等量代换
B 、平行线定义
C 、平行于同一直线的两直线平行
D 、经过直线外一点,有且只有一条直线与这条直线平行
6. 直线a 外有一定点A ,A 到a 的距离就是5cm ,P 就是直线a 上的任意一点,则( ) A .AP >5cm B .AP ≥5cm C .AP =5cm D .AP <5cm
7. 平面上两条直线的位置关系只有两种,即 与 、
8. 如图1,直线AB 、CD 相交于O ,对顶角有 对,
9. 5相等的角有 个,就
10. 是 ,同旁内角就是 、
11. 如图4,直线DE 与∠O 的两边相交,则∠O 的同位角就是 ;∠8
的内错角就是 ;∠1的同旁内角就是 . 12. 如图5,直线AB 、CD 、EF 相交于点O ,∠AOE 的对顶角就是 ,∠COF
,∠EOD =130°,则∠13. 40°,则∠BOD = ;
AOC ,则∠BOD
14. 判断正误:如图7, ①∠1与∠4就是同位角;( )②∠1与∠5就是同位角; ( ) ③∠2与∠7就是内错角;( )④∠1与∠4就是同旁内角、 ( )
内错角与同旁内角.
C 点,在渠岸AB 的什么地方开沟,才能使沟最
1. ,那么2∠A 就是( )
A .直角
B .锐角
C .钝角 D.以上三种都有可能
图2
876
543
21F E D C
B A
图1
E
B
A D 2
1
【板块二】平行与垂直
2. 下列推理中,错误的就是( )
A 、在m 、n 、p 三个量中,如果m =n ,n =p ,那么m =p
B 、在∠A 、∠B 、∠
C 、∠
D 四个角中,若∠A =∠B , ∠C =∠D ,∠A =∠D ,则∠B =∠C
C 、a 、b 、c 就是同一平面内的三条直线,如果a //b ,b //c ,那么a //c
D 、a 、b 、c 就是同一平面内的三条直线,如果a ⊥b ,b ⊥c ,那么a ⊥c
3. 计划把河水引到水池A 中,先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开
的渠道最短,这样设计的依据就是( )
A .过直线外一点,有且只有一条直线与已知直线垂直
B .两点之间,线段最短
C .垂线段最短
D .两点确定一条直线 【板块三】三线八角
4. 如图1,下列结论中正确的个数就是( )
① ∠1与∠B 就是同位角;②∠2与∠B 就是同位角; ③∠2与∠C 就是内错角;④∠1与∠C 就是内错角、 A .1个 B .2个 C .3个 D .4个
5. 如图2,直线AB 、CD 与直线EF 相交,∠5与( )就是同位角,与( )就是内
错角,与( )就是同旁内角、
A .∠1、∠3、∠8
B .∠1、∠4、∠6
C .∠2、∠4、∠3
D .∠1、∠3、∠2
四、课后作业 1. 下列说法中正确的就是( )
A .在同一平面内,两条不平行的线段必相交
B .在同一平面内,不相交的两条线段就是平行线
C .两条射线或线段平行就是指它们所在的直线平行
D .一条直线有可能同时与两条相交直线平行 2. 下列推理正确的就是( )
A .因a ∥b ,b ∥c ,故c ∥d
B .因a ∥b ,b ∥d ,故c ∥d
C .因a ∥b ,a ∥c ,故b ∥c
D .因a ∥b ,c ∥d ,故a ∥c
3. 已知同一平面内的直线l 1,l 2,l 3,如果l 1⊥l 2,l 2⊥l 3,那么l 1与l 3的位置关系就是
( )
A .平行
B .相交
C .垂直
D .无法判断
4. 如图所示,∠AOB 就是平角,且∠AOC =3∠BOC ,则∠BOC 的度数为( )
A .30°
C
C
B
E
F
D
A
D.
C.
21
2
1
76
5
43
2
1
图2
B
D C O
A
B .45°
C .60°
D .65°
5. 如图,∠AOC 与∠BOD 都就是直角,如果∠AOB =140°则∠DOC 的度数就是
( )
A .30°
B .40°
C .50°
D .60°
6. 已知OA ⊥OC ,且∠AOB :∠AOC =2:3,则∠BOC 的度数就是( )
A .30°
B .150°
C .30°或150°
D .不能确定
7. 下面四个图形中,∠1与∠2就是对顶角的图形的就是( )
8. 分别就是 ; 同旁内角有 对,
分别就是 .
9. 如图,在标有角号的7个角中, 共有 对同位角, ____ __对内错角,
_____ _对同旁内角.
10. 如图所示,在长方形ABED 中,分别指出互相平行的线段与互相垂直的线段(各
举三组)
11. 如图所示,已知∠AOB =90°,∠AOC =∠DOC ,∠BOD =2
1
∠AOB ,您能求出∠
AOC 的度数不?
c b
a 87
65432
1
D C
B
O
A。