【清华】实验2_双液系的气液平衡相图_2006011835
《物理化学实验报告》双液系的气液平衡相图

双液系的气液平衡相图2011年9月5日实验,2011年9月12日提交报告助教:柳清1 引言相图(phase diagram)是用图形表示多相系统的物理化学状态随温度、压力、组分含量等的变化的图1。
对于多相平衡系统,相律(phase rule)是其热力学基础。
本实验研究的是环己烷-乙醇(C6H12-C2H5OH)双液系的气液平衡状态。
根据相律,f+Φ = C+2其中相数Φ为2,独立自由组分数C为1,则系统自由度数f为1。
如果固定外压p不变,条件自由度数f′为0。
因此,在外压p不变时,温度T和组分含量x唯一确定了双液系气液平衡系统的状态。
用气液平衡时的温度T和组分含量x分别作为纵横坐标,同时测定气相和液相的组成,可以绘制双液系的气液平衡T-x相图。
不同组成的双液系具有不同形式的气液平衡T-x相图。
理想液体混合物或者接近理想液体混合物的双液系,混合物的沸点介于两纯物质沸点之间,如图1(a)。
各组分蒸气压对拉乌尔定律产生很大的正偏差时,混合溶液体系会具有最低恒沸点,如图1(b)。
反之,混合溶液体系会具有最高恒沸点,如图1(c)。
(a) (b) (c)图1 不同双液系的气液平衡T-x相图形式本实验选用具有最低恒沸点的环己烷-乙醇(C6H12-C2H5OH)双液系。
用沸点仪可以测定不同组成的双液系的恒压沸点T。
沸点仪是测定常量溶液沸点的工具。
沸腾时的溶液从喷嘴喷出,温度计测定的恰是该处蒸气和液相平衡的温度。
气相部分经过冷凝器冷凝后储存在小泡中,以备取样。
考虑到温度计的精度,需要对1/10℃温度计进行露茎校正。
由于温度计暴露于体系之外的部分所处温度与实测区域不同,二者膨胀系数略有差别。
为了补偿这部分损失,通过辅助温度计读出环境温度后,按下式校正:t = t0+1.57×10-4×n×(t0-t s)式中t0为温度计读数,n为温度计露茎在体系外的刻度数目,t s为辅助温度计读数。
t 为校正后的温度。
物化实验报告:双液相的气液平衡相图

双液系的气液平衡相图姓名:李天奇学号:2012012415 班级:生23同组实验者姓名:高艳君实验日期:2015.01.03 提交报告日期:2015.01.08指导老师姓名:麻英1 引言1.1 实验目的(1)用沸点仪测定常压下环己烷-乙醇的气液平衡相图。
(2)熟悉并掌握阿贝折射仪的使用方法。
1.2 实验原理[1](1)对两种挥发性液体的混合物,若二组分蒸汽压不同,则其平衡时液相与气相的组成也不同。
压力恒定,二组分系统气液平衡时,表示液态混合物沸点与平衡时气液两组分关系的相图称沸点和组成(T-x图)。
根据各组分蒸汽压与拉乌尔定律的关系,沸点和组成图有三种如下图。
图1:三种沸点组成图[2]对于环己烷-乙醇二组分液相系统,由于其各组分蒸气压对拉乌尔定律有很大的负偏差,有最低恒沸点,故其T-x图应类似(c)图。
(2)本实验先测出已知组成的溶液的折射率,做出对应的工作曲线,再利用沸点仪测定一系列组成不同的溶液的沸点,并利用阿贝折射仪测量其对应气相、液相的折射率,并在工作曲线上查找对应样品折射率的组成。
2 实验操作2.1 实验药品、仪器型号及测试装置示意图实验药品:乙醇(分析纯),环己烷(分析纯),环己烷质量分数分别为10%、30%、69.5%、90%、96%的环己烷-乙醇标准溶液实验仪器:沸点仪,调压仪,阿贝折射仪,恒温槽,温度测定装置,滴管,洗耳球实验装置示意图如下:图2:主要装置——沸点仪示意图[3]2.2 实验条件(实验温度、湿度、压力等)实验温度:℃实验湿度:%实验压力:kPa2.3 实验操作步骤及方法要点(1)取五个已标号的洁净小锥形瓶,分别称量空瓶质量并记录。
向五个小瓶中分别加入 1 mL、2 mL、3 mL、4 mL、5 mL环己烷和5 mL、4 mL、3 mL、2 mL、1 mL无水乙醇,分别称量加入环己烷后的质量与再加入乙醇后的总质量并记录。
(2)用阿贝折射仪分别测定五个小锥形瓶内溶液及纯净的环己烷和无水乙醇的折射率并记录。
实验二 双液系的气—液平衡相图

实验二双液系的气—液平衡相图1. 目的要求(1) 绘制在p0下环己烷-乙醇双液系的气-液平衡相图,了解相图和相律的基本概念。
(2) 掌握测定双组分液体沸点的方法。
(3) 掌握用折光率确定二元液体组成的方法。
2. 基本原理任意两个在常温时为液态的物质混合起来组成的体系称为双液系。
两种溶液若能按任意比例进行溶解,称为完全互溶双液系;若只能在一定比例范围内溶解,称为部分互溶双液系。
环己烷-乙醇二元体系就是完全互溶双液系。
双液系蒸馏时的气相组成和液相组成并不相同。
通常用几何作图的方法将双液系的沸点对其气相和液相的组成作图,所得图形叫双液系的沸点(T)组成(x)图,即T—x图。
它表明了在沸点时的液相组成和与之平衡的气相组成之间的关系。
图2.2.1 双液系的T-x图双液系的T—x图有三种情况:(1)理想溶液的T—x图(图2.2.1a),它表示混合液的沸点介于A、B二纯组分沸点之间。
这类双液系可用分馏法从溶液中分离出两个纯组分。
(2)有最低恒沸点体系的T—x图(图2.2.1b)和有最高恒沸点体系的T—x图(图2.2.1c)。
这类体系的T—x图上有一个最低和一个最高点,在此点相互平衡的液相和气相具有相同的组成,分别叫做最低恒沸点和最高恒沸点。
对于这类的双液系,用分馏法不能从溶液中分离出两个纯组分。
本实验选择一个具有最低恒沸点的环己烷—乙醇体系。
在101.325kPa下测定一系列不同组成的混合溶液的沸点及在沸点时呈平衡的气液两相的组成,绘制T—x图,并从相图中确定恒沸点的温度和组成。
测定沸点的装置叫沸点测定仪(图2.2.2)。
这是一个带回流冷凝管的长颈圆底烧瓶。
冷凝管底部有一半球形小室,用以收集冷凝下来的气相样品。
电流通过浸入溶液中的电阻丝。
这样可以减少溶液沸腾时的过热现象,防止暴沸。
测定时,温度计水银球要一半在液面下,一半在气相中,以便准确测出平衡温度。
而折光率的测定又只需少量样品,溶液组成分析:由于环己烷和乙醇的折光率相差较大,4.实验步骤(1) 纯液体折光率的测定:分别测定乙醇和环己烷的折光率,重复2次~3次。
双液系气液平衡相图-物理化学实验

一、实验目的1、绘制在标准大气压下乙酸乙酯-乙醇双液系的气液平衡相图;2、掌握测定双组分液体的沸点及正常沸点的方法;3、掌握用折射率确定二元液体组成的方法二、实验仪器FDY沸点测定仪1只;丙酮(分析纯);玻璃水银温度计(50~100℃,分度值0.1℃)1支;玻璃漏斗(直径5cm)1只;称量瓶(高型)10只;调压变压器(0.5kV·A)1只;长滴管10条;阿贝折射仪(棱镜恒温)1只;带橡皮塞试管(5cm3)20只;烧杯(50 cm3、250 cm3)各一只;乙酸乙酯(分析纯);重蒸馏水;无水乙醇(分析纯);冰。
三、实验原理1、完全互溶双液系的沸点-组成(T-x)(1) 理想的双液系:溶液沸点介于两纯物质沸点之间;(2) 具有恒沸点的双液系:①各组分对拉乌尔定律发生负偏差,其溶液有最高沸点;②各组分对拉乌尔定律发生正偏差,其溶液有最低沸点。
双液系的T-x图如下图所示:(a)为理性的双液系;(b)为各组分对拉乌尔定律发生正偏差,溶液有最低沸点;(c)为各组分对拉乌尔定律发生负偏差,溶液有最高沸点。
实验报告内容:一实验目的二实验仪器三实验原理四实验步骤五、实验数据和数据处理六实验结果七.分析讨论八.思考题2、沸点测定仪本实验所用沸点仪是一只带回流冷凝管的长颈圆底烧。
冷凝管底部有一半球形小室,用以收集冷凝下来的气相样品。
电热丝直接加热液体以减少溶液沸腾时的过热现象及防止瓶暴沸。
小玻璃管有利于降低周围环境对温度计读数可能造成的波动。
3.组成分析本实验选用的乙酸乙酯和乙醇两者折射率相差颇大,而折射率测定又只需要少量样品,所以可用折射率-组成工作曲线来测得平衡体系的两相组成。
4、相图的绘制为了绘制二元双液系的T-x图,需在气液相达平衡后,同时测定气相组成、液相组成和溶液沸点。
实验装置图如图所示:四、实验步骤(1) 安装沸点仪并接通冷凝水;(2) 将乙醇加入沸点仪内,加热至缓慢沸腾(3) 记录乙醇的沸点(4) 测定乙醇的折射率(5) 加入不同摩尔分数的乙酸乙酯-乙醇溶液(6) 记录沸点(7) 吸取气相冷凝液、液相冷凝液测定折射率(8) 将溶液倒入回收瓶(9) 绘制曲线五、实验数据和数据处理室温:25℃大气压:100kPa M无水乙醇=46.07g/mol、M乙酸乙酯=88.11g/mol ρ无水乙醇=0.79g·mol-1ρ乙酸乙酯=0.902g·mol-1无水乙醇体积(ml) 乙酸乙酯体积(ml) 乙酸乙酯浓度(mol%)折射率n90 10 0.063 1.36380 20 0.131 1.36470 30 0.206 1.36560 40 0.287 1.36650 50 0.377 1.36740 60 0.476 1.36830 70 0.585 1.36920 80 0.707 1.37010 90 0.845 1.371 根据乙酸乙酯浓度与折射率,作图如下:添加直线拟合线及拟合方程,由拟合方程式可知:x=(y-1.3626)/0.0104室温:25℃大气压:100kPa混合体系沸点气相冷凝液折射率n 液相冷凝液折射率n 气相组成液相组成78 -- --0 076.8 1.3635 1.3626 0.0865 0.000076.2 1.3642 1.3629 0.1538 0.028875.5 1.3648 1.3632 0.2115 0.057774.7 1.3655 1.3635 0.2788 0.086574 1.3663 1.3642 0.3558 0.153873.3 1.3668 1.3651 0.4038 0.240472.6 1.3673 1.3659 0.4519 0.317372 1.368 1.3672 0.5192 0.442372.7 1.3695 1.3701 0.6635 0.721273.4 1.3697 1.3703 0.6827 0.740474.8 1.3703 1.3709 0.7404 0.798175.5 1.3708 1.3712 0.7885 0.826976.2 1.3713 1.3715 0.8365 0.855876.7 1.3716 1.3717 0.8654 0.875077 -- -- 1 1 查询数据可知:无水乙醇沸点:78℃乙酸乙酯沸点:77℃;由图可知在液相组成时,混合体系沸点76.8℃对应的值为0.0000;此数值属于误差,应当剔除。
双液系的气-液平衡相图的绘制实验报告

实验四 双液系的气-液平衡相图的绘制一、目的要求1.用沸点仪测定大气压下乙醇—环己烷或异丙醇-环己烷双液系气-液平衡时气相与液相组成及平衡温度,绘制温度—组成图,确定恒沸混合物的组成及恒沸点的温度。
2.了解物化实验中光学方法的基本原理,学会阿贝折光仪的使用。
3.进一步理解分馏原理。
二、实验原理两种在常温时为液态的物质混合起来而组成的二组分体系称为双液系。
两种液体若能按任意比例互相溶解,称为完全互溶的双液系;若只能在一定比例范围内互相溶解,则称部分互双液系。
双液系的气液平衡相图t x -图可分为三类。
如图4.1。
图 4.1 二元系统t x -图这些图的纵轴是温度(沸点),横轴是代表液体B 的摩尔分数B x 。
在t x -图中有两条曲线:上面的曲线是气相线,表示在不同溶液的沸点时与溶液成平衡时的气相组成,下面的曲线表示液相线,代表平衡时液相的组成。
例如图4.1(a)中对应于温度t 1的气相点为y 1,液相点为1l ,这时的气相组成y 1点的横轴读数是g B x ,液相组成点1l 点的横轴读数为lB x 。
如果在恒压下将溶液蒸馏,当气液两相达平衡时,记下此时的沸点,并分别测定气相(馏出物)与液相(蒸馏液)的组成,就能绘出此t x -图。
y 1l 1t 1g Bx l Bx AB t/℃(a )气液t/℃AB B x →(b )t/ ℃气液ABB (c )图4.1(b)上有个最低点,图4.1(c)上有个最高点,这些点称为恒沸点,其相应的溶液称为恒沸混合物,在此点蒸馏所得气相与液相组成相同。
三、仪器和药品1.仪器玻璃沸点仪一套;阿贝折光仪一台;WLS 系列可调式恒流电源一台;SWJ 型精密数字温度计一台;SYC 超级恒温槽一台。
2.药品无水乙醇(AR )或异丙醇(AR );环己烷(AR )。
四、实验步骤(一)、步骤1.按图4.2连好沸点仪,数字贝克曼温度计,感温杆勿与电热丝相碰。
2.接通冷凝水,用超级恒温槽完成冷凝循环。
双液系的气-液平衡相图

双液系的气-液平衡相图一、实验目的1. 掌握采用阿贝折光率仪确定二元液体组成的方法;2. 掌握测定双组份液体的沸点及正常沸点的方法;3. 绘制在恒压下环己烷-乙醇双液系的气-液平衡相图。
二、实验原理两种液态的物质混合而成的二组分体系称为双液系。
它可以分为完全互溶和部分互溶的双液系。
体系的沸点不仅与外压有关,而且与双液系的组成有关。
在恒压下做温度T对组成x的关系图即为T-x图。
由相律可知,对于双液系在恒压下气-液两相共存区域中,自由度为1。
当温度一定时,气-液两相的相对组成也就有了确定值。
根据杠杆原理,两相的相对量也确定了。
因此实验测定一系列不同组成的双液系溶液的气-液相平衡时的沸点及此时气相和液相的组成,即可得T-x图。
因此双液系气-液平衡相图实验主体上包括一系列混合体系的沸点测定和气-液相组成分析两个主要内容。
体系的沸点可用沸点仪测定的,其构造如图7.2所示。
采用电热丝直接加热溶液,以防止过热现象,同时该沸点仪用平衡蒸馏法分离气液两相,具有可便于取样分析及避免分馏等优点。
体系的气液相组成的分析是相图绘制的另一核心,可以根据待测体系的理化性质寻找多种合适的分析方法。
以完全互溶双液系环己烷-乙醇体系为例。
由于环己烷和乙醇两者的折光率相差较大,因此本实验可采用测定溶液折光率方法来确定两组分的组成,用阿贝折光仪测定两组分组成的折光率,可以测出折光率对组成的工作曲线,根据测得液体样品的折光率,从工作曲线上可查得两相的组成。
三、仪器与药品FDY双液系沸点测定仪,阿贝折光仪,超级恒温槽,长滴管,烧杯(50 ml,250 ml),具塞锥形瓶(10ml),刻度移液管(5ml)丙酮(AR级);环己烷(AR级);乙醇(AR级)图7-1 FDY双液系沸点测定仪前面板示意图图7-1是沸点仪加热控制器的前面板示意图,各功能键的说明如下:1、电源开关2、加热电源调节——调节所需的加热电源。
3、温度显示窗口——显示所测温度值。
双液系的气-液平衡相图

双液系的⽓-液平衡相图双液系的⽓-液平衡相图⼀、实验⽬的1. 掌握采⽤阿贝折光率仪确定⼆元液体组成的⽅法;2. 掌握测定双组份液体的沸点及正常沸点的⽅法;3. 绘制在恒压下环⼰烷-⼄醇双液系的⽓-液平衡相图。
⼆、实验原理两种液态的物质混合⽽成的⼆组分体系称为双液系。
它可以分为完全互溶和部分互溶的双液系。
体系的沸点不仅与外压有关,⽽且与双液系的组成有关。
在恒压下做温度T对组成x的关系图即为T-x图。
由相律可知,对于双液系在恒压下⽓-液两相共存区域中,⾃由度为1。
当温度⼀定时,⽓-液两相的相对组成也就有了确定值。
根据杠杆原理,两相的相对量也确定了。
因此实验测定⼀系列不同组成的双液系溶液的⽓-液相平衡时的沸点及此时⽓相和液相的组成,即可得T-x图。
因此双液系⽓-液平衡相图实验主体上包括⼀系列混合体系的沸点测定和⽓-液相组成分析两个主要内容。
体系的沸点可⽤沸点仪测定的,其构造如图7.2所⽰。
采⽤电热丝直接加热溶液,以防⽌过热现象,同时该沸点仪⽤平衡蒸馏法分离⽓液两相,具有可便于取样分析及避免分馏等优点。
体系的⽓液相组成的分析是相图绘制的另⼀核⼼,可以根据待测体系的理化性质寻找多种合适的分析⽅法。
以完全互溶双液系环⼰烷-⼄醇体系为例。
由于环⼰烷和⼄醇两者的折光率相差较⼤,因此本实验可采⽤测定溶液折光率⽅法来确定两组分的组成,⽤阿贝折光仪测定两组分组成的折光率,可以测出折光率对组成的⼯作曲线,根据测得液体样品的折光率,从⼯作曲线上可查得两相的组成。
三、仪器与药品FDY双液系沸点测定仪,阿贝折光仪,超级恒温槽,长滴管,烧杯(50 ml,250 ml),具塞锥形瓶(10ml),刻度移液管(5ml)丙酮(AR级);环⼰烷(AR级);⼄醇(AR级)图7-1 FDY双液系沸点测定仪前⾯板⽰意图图7-1是沸点仪加热控制器的前⾯板⽰意图,各功能键的说明如下:1、电源开关2、加热电源调节——调节所需的加热电源。
3、温度显⽰窗⼝——显⽰所测温度值。
双液系的气液平衡相图实验报告

双液系的气液平衡相图实验报告实验报告题目:双液系的气液平衡相图实验报告摘要本实验通过构建双液系的气液平衡相图,研究了不同温度下甲醇和水的相互溶解性及气液平衡条件。
实验结果表明,在不同温度下,甲醇与水的相互溶解性呈现出明显的变化,而气液两相互相应的平衡条件也随之调整。
通过实验分析,我们可以更好地理解气液体系的相互作用规律,为进一步研究更加复杂的气液相互作用提供了帮助。
关键词:双液系;气液平衡;相图;甲醇;水引言气液相互作用是物理化学领域中的重要研究方向之一,对于理解和预测一系列工业和自然界现象都具有重要作用。
而气液平衡相图则是描述气液相互作用的重要工具,通过该图谱,我们可以直观地了解不同气体与液体在不同条件下的溶解性和相互作用规律,为进一步研究气液相互作用提供了帮助。
本实验旨在通过构建双液系的气液平衡相图,研究不同温度下甲醇和水的相互溶解性和气液平衡条件。
实验部分1.材料与仪器材料:甲醇、水;仪器:压力计、温度计、热水浴、磁力搅拌器、圆底烧瓶。
2.实验步骤(1)取一定量的甲醇和水,按一定比例混合,制备出不同质量分数的甲醇-水混合物;(2)将混合物置入圆底烧瓶中,在磁力搅拌器的作用下充分搅拌;(3)将圆底烧瓶放置于热水浴中,通过控制水浴的温度,固定实验温度;(4)在压力计的指导下,对甲醇-水混合物进行气液相平衡测量,记录平衡压力,并计算得出相应的气液分压比;(5)测量完成后,将实验结果作图,构建出气液平衡相图。
3.结果与分析在实验中,我们固定温度为25℃,制备出了不同质量分数的甲醇-水混合物,然后通过压力计测量出不同混合物下的气液相平衡条件,得到相应的气液分压比。
最终,我们将实验结果汇总并作图,得到如下气液平衡相图:(注:图中X1和X2为甲醇在混合液中的质量分数,P为混合液的平衡气相和液相的压力,分别为纵轴和横轴)通过对该图的分析,我们发现在不同温度下,甲醇与水的相互溶解性呈现出显著变化,而在不同混合液组成下,气液两相也呈现出明显的平衡条件变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
``实验2 双液系的气液平衡相图唐盛昌2006011835 分6同组实验者:徐培实验日期:2008-10-9,提交报告日期:2008-10-23带实验助教:尚培华1 引言(简明的实验目的/原理)实验目的:1.用沸点仪测定在常压下环已烷—乙醇的气液平衡相图。
2.掌握阿贝折射仪的使用方法。
实验原理:将两种挥发性液体混合,若该二组分的蒸气压不同,则溶液的组成与其平衡气相的组成不同。
在压力保持一定,二组分系统气液达到平衡时,表示液态混合物的沸点与平衡时组成关系的相图,称为沸点和组成(T-x)图。
沸点和组成(T-x)的关系有下列三种:(1)理想液体混合物或接近理想液体混合物的双液系,其液体混合物的沸点介于两纯物质沸点之间见图5—1(a);(2)各组分蒸气压对拉乌尔定律产生很大的负偏差,其溶液有最高恒沸点见图5—1(b);(3)各组分蒸气压对拉乌尔定律产生很大的正偏差,其溶液有最低恒沸点见图5—1(c)。
第(2)、(3)两类溶液在最高或最低恒沸点时的气液两相组成相同,加热蒸发的结果只使气相总量增加,气液相组成及溶液沸点保持不变,这时的温度称恒沸点,相应的组成称恒沸组成。
第一类混合物可用一般精馏法分离出这两种纯物质,第(2)、(3)类混合物用一般精馏方法只能分离出一种纯物质和另一种恒沸混合物。
图1 沸点组成图为了测定二元液系的T-x图,需在气液达到平衡后,同时测定溶液的沸点、气相和液相组成。
本实验是测定具有最低恒沸点的环己烷—乙醇双液系的T-x图。
方法是用沸点仪(图2)直接测定一系列不同组成之溶液的气液平衡温度(即沸点),并收集少量馏出液(即气相冷凝液)及吸取少量溶液(即液相),分别用阿贝折射仅测定其折射率。
为了求出相应的组成,必须先测定已知组成的溶液的折射率,作出折射率对组成的工作曲线,在此曲线上即可查得对应于样品折射率的组成。
2 实验操作2.1 实验药品、仪器型号及测试装置示意图实验药品和仪器:沸点仪、调压器、阿贝折射仪、超级恒温槽、1/10℃温度计、酒精温度计、滴管、放大镜。
环己烷、无水乙醇(分析纯)、各种浓度的环已烷—乙醇混合溶液。
测试装置示意图:图2所示是一种带有电阻丝加热的沸点仪。
沸腾的溶液由喷嘴喷向温度计,因此可以测得蒸气与液相平衡的温度。
气相经冷凝后贮存在小泡内。
图2 沸点仪2.2 实验条件(实验温度、湿度、压力等)实验温度:17.9°C 大气压:101.77kPa 湿度:52%2.3 实验操作步骤及方法要点操作步骤:1.测定溶液的折射率打开超级恒温器,使阿贝折射仪的工作温度维持在20°C ,以保证前后测定的温度相同。
用阿贝折射仪测定纯环己烷、无水乙醇以及由环已烷—乙醇组成的标准溶液的折射率。
2.测定液相和气相组成1 水冷却入口2 气相冷凝液贮存小泡3 温度计4 喷嘴5 电炉丝6 调压器分别测定质量百分数为10%、30%、69.5%、92%、97.5、100%的环已烷—乙醇溶液在沸点下的液相和气相的组成。
测定方法如下:接通电源,通冷却水,调节调压器电压在20V左右,加热溶液至沸腾。
待其温度计上所指示的温度保持恒定后,读下该温度值,读下器外度数及辅助温度计的读数,同时停止加热,并立即在小泡中取气相冷凝液,迅速测定其折射率,冷却液相,然后用滴管将溶液搅均后取少量液相测定其折射率。
每次测量折射率后,要将折射仪的棱镜打开,用洗耳球轻吹镜面,晾干,以备下次测定用。
注意事项:1.加热电阻丝的电压不得超过40V。
2.一定要使体系达到气液平衡即温度稳定后才能取样分析。
3.取样后的滴管不能倒置。
4.取气相冷凝液的同时,停止加热。
待被测液相溶液冷却后测其折射率。
5.使用阿贝折射仪时,棱镜行不能触及硬物(特别是滴管)。
棱镜上加入被测溶液后立即关闭镜头。
实验中必须使用同一台阿贝折射仪。
6.实验过程中必须在沸点仪的冷凝管中通入冷却水,使气相全部冷凝。
3 结果与讨论3.1 原始实验数据表1 环己烷-乙醇标准溶液组成与对应的折射率环己烷浓度(%)0 13.5 28.5 48.6 69.2 83.6 100 折射率 1.3615 1.3701 1.3780 1.3892 1.4040 1.4149 1.4265表2 环已烷-乙醇双液系气液两相平衡时温度及气相液相折射率变化环己烷浓度(%)平衡沸点t*(°C)器外度数n(°C)辅助温度计读数st(°C)气相折射率液相折射率0 78.1 29.1 22.0 1.3613 1.361110 71.3 21.3 19.6 1.3859 1.367830 66.2 18.2 19.8 1.4000 1.379069.5 64.4 13.7 21.4 1.4045 1.403890 65.3 23.9 22.0 1.4056 1.417596 67.7 19.7 23.0 1.4092 1.4240100 80.5 31.0 23.0 1.4265 1.4263*注:测定平衡沸点时使用的是十分之一温度计,但是读数时没有估读到下一位,对精度造成了影响。
但是考虑本次实验的精度要求,精度的减小不大。
3.2计算的数据、结果3.2.1 双液系组成-折射率工作曲线的绘制:根据标准溶液测得结果,进行数学上三次样条插值计算,得到下面的工作曲线:图3 双液系组成-折射率工作曲线3.2.2 水银-玻璃温度计的露茎校正:根据公式)('s t t Kn t t -+=进行校正。
式中:'t 是校正后的沸点;t 是气液平衡时温度计的读数;s t 是露出体系外水银的平均温度;n 是器外度数;K 是水银对玻璃的相对膨胀系数,实验中,000157.0=K 。
3.2.3 利用工作曲线根据测得的折射率分别求取气相液相的组成。
表3 环已烷-乙醇双液系气液两相修正后平衡时温度及气相液相折射率-组成变化 环己烷浓度 (%)修正后平衡沸点't * (°C )气相折射率 气相组成 (%) 液相折射率 液相组成 (%) 0 78.4 1.3613 0.0 1.3611 0.0 10 71.5 1.3859 43.2 1.3678 9.5 30 66.3 1.4000 63.9 1.3790 30.6 69.564.51.404569.91.403869.190 65.5 1.4056 71.3 1.4175 87.1 96 67.8 1.4092 76.0 1.4240 96.4 10080.81.4265100.01.4263100.0*注:由于测定温度时没有估读的原因,根据有效数字运算规则,仍然取小数点后一位。
3.2.4 环己烷-乙醇体系的沸点-组成图根据表3得到的数据,绘制环己烷-乙醇双液系气液平衡相图图4 环己烷-乙醇双液系气液平衡相图 (测定前后大气压平均值为101.77kPa )3.2.5 最低恒沸点及相应的恒沸物的组成在沸点组成图中找出最低恒沸点,为64.4 °C 。
恒沸物的组成:环己烷质量浓度为69.6%。
3.3讨论分析环己烷-乙醇体系的相关物性文献值[3]:物质 沸点 (°C ) 环己烷80.74乙醇78.5恒沸点:64.6°C,横沸组成,环己烷70%,乙醇30% 。
测定压力101.325kPa。
总体说来,实验结果与文献值比较相符,结果比较可信,分析其误差来源,主要有以下几个方面:1.恒沸点和恒沸组成会随着压力而变化。
本实验中压力和标准压力十分接近,所以测定的结果与文献值也能较好吻合。
2.阿贝折射仪的误差,不可避免地带来误差。
3.实验操作者操作阿贝折射仪带来的误差。
加样时的挥发、操作者各人不同习惯,都会产生误差。
4.从曲线上查组成比时带来的误差,由于使用的是插值数据,所以无法完全跟实际相符,也会产生误差;5.温度计在读数过程中产生的误差,消除温度计的露出误差时,需要估读无刻度处的值,也会造成误差。
而且实验中没有正确使用好十分之一温度计,人为错误使得误差增加,这一点以后实验需要更加注意。
4 结论环己烷-乙醇体系是非理想溶液,各组分的蒸汽压对Raoult定律产生很大的正偏差,即环己烷-乙醇间的分子间作用力小于各自纯溶液的分子间作用力,该溶液具有最低恒沸点。
在实验条件下(测定前后大气压平均值为101.77kPa),恒沸点为64.4 °C。
恒沸物的组成:环己烷质量浓度为69.6%。
5 参考文献1.朱文涛编著物理化学清华大学出版社2.清华大学化学系物理化学实验编写组. 物理化学实验。
北京:清华大学出版社.19913.Robert C.Wcast Handbook of Chemistry and Physics. 58th ed. Ohio: CRC Press.6 附录-思考题1.使用阿贝折射仪时要注意些什么问题?如何正确使用才能测准数据?阿贝折射仪是一种精密的光学仪器,使用时应注意以下几点:(1)使用时要注意保护棱镜,清洗时只能用擦镜纸而不能用滤纸等。
加试样时不能将滴管口触及镜面。
对于酸碱等腐蚀性液体不得使用阿贝折射仪。
(2)每次测定时,试样不可加得太多,一般只需加2~3滴即可。
(3)要注意保持仪器清洁,保护刻度盘。
每次实验完毕,要在镜面上加几滴丙酮,并用擦镜纸擦干。
最后用两层擦镜纸夹在两棱镜镜面之间,以免镜面损坏。
(4)读数时,有时在目镜中观察不到清晰的明暗分界线,而是畸形的,这是由于棱镜间未充满液体;若出现弧形光环,则可能是由于光线未经过棱镜而直接照射到聚光透镜上。
(5)若待测试样折射率不在1.3~1.7范围内,则阿贝折射仪不能测定,也看不到明暗分界线。
使用阿贝折射仪时要注意及时的观察数据,因为待测液易挥发,折射一种的液体减少的很快,这样,所测结果随着时间的推移会越来越不准确,这样可以在涂抹待测液时适当的多加一点。
并且要涂抹均匀,这样可以使明暗分界线清晰,提高判断准度。
测定前,必须将沸点仪洗净并充分干燥。
用滴定管时勿使管尖碰撞镜面。
而在环己烷含量较高的几组中,数据变化不大,所以可能会造成较大的误差,应该根据估计值反复测量(本次实验局碰到了这种情况,致使开始的工作曲线不能满足要求),直至接近合理。
2.收集气相冷凝液的小泡D的体积太大,对测量有何影响?收集气相的小泡D体积太大,会使冷凝液聚集过多,里面不全是平衡时气相凝结组成,由于含有平衡之前的组成,会使测量冷凝液组分时产生误差。
3.平衡时,气液两相温度应该不应该一样?实际是否一样?怎样防止温度的差异?理论上应该一样,但是在实际操作中,由于气相距离热源较远等因素影响传热,气液两项温度有一定的差异。
为了降低温度的差异,连接冷凝管和圆底烧瓶之间的连管不能过短或位置过低,并且可以在仪器外包裹一层保温物质。