组合数学 12集合的排列与组合-课件·PPT

合集下载

组合数学中的排列与组合计数法

组合数学中的排列与组合计数法

组合数学中的排列与组合计数法在我们的日常生活和各种科学领域中,排列与组合计数法是一个非常重要的概念。

它帮助我们解决许多与数量计算、可能性分析相关的问题。

想象一下,在安排座位、挑选礼物、组织比赛等场景中,我们都在不知不觉地运用着排列与组合的知识。

首先,让我们来理解一下什么是排列。

简单来说,排列就是从给定的元素集合中选取一定数量的元素,并按照一定的顺序进行排列。

举个例子,如果我们有三个字母A、B、C,那么从中选取两个进行排列,就有 AB、BA、AC、CA、BC、CB 这六种情况。

这里的顺序是重要的,AB 和 BA 被视为不同的排列。

计算排列的数量可以使用排列数公式。

如果从 n 个不同元素中取出m 个元素进行排列,排列数记作 A(n, m) ,其计算公式为:A(n, m) =n! /(n m)!。

这里的“!”表示阶乘,例如 5! = 5 × 4 × 3 × 2 × 1 。

接下来,我们看看组合。

组合与排列不同的是,组合只关注选取的元素,而不考虑它们的顺序。

比如还是从 A、B、C 三个字母中选取两个字母的组合,就只有 AB、AC、BC 这三种情况。

因为在组合中,AB 和 BA 被视为同一种情况。

组合数记作 C(n, m) ,其计算公式为:C(n, m) = n! / m! ×(n m)!。

排列和组合在实际问题中的应用非常广泛。

比如在抽奖活动中,如果有 100 个人参加,要从中抽取 5 个获奖者,这就是一个组合问题,因为获奖者的顺序并不重要。

但如果要给这 5 个获奖者分别颁发一等奖、二等奖、三等奖、优秀奖和鼓励奖,那么这就变成了一个排列问题,因为奖项的顺序是有区别的。

再比如,在密码学中,排列和组合也发挥着重要作用。

假设我们要设置一个 8 位数字的密码,每位数字可以是 0 到 9 中的任意一个,那么总共可能的密码数量就是一个排列问题。

因为密码的每一位数字的顺序都是至关重要的。

高中数学 1.2.2 组合1课件 新人教A版必修1

高中数学 1.2.2 组合1课件 新人教A版必修1

Anm
Cnm Am m
C
m n
Anm Amm
形成结论
公式
C n m
A n m A m m
n (n1 )(n2 ) (nm1 ) m !
( m,n∈N*,m≤n) 叫做组合数公式,
这个公式如何用阶乘形式表示?
Cnm
n! m!(n m)!
典例讲评
例1 一位教练的足球队共有17名初级学 员,他们中以前没有一人参加过比赛,按 照足球比赛规则,比赛时一个足球队的上 场队员是11人,问: (1)这位教练从这17名学员中可以形成多
m
时n ,计算
2
C比nn计m算 较方C 便nm .
课堂小结
2.利用组合数性质
Cn m1 Cn m,可C 以n m对1组合数进行合成
与分解,对于组合数的求和问题,要结 合数列的思想方法求解.
作业: P25练习:6. P27习题1.2A组:9,10,11,12.
C
2 10
45
A120 90
典例讲评
例3 在100件产品中有98件合格品, 2 件次品,从这100件产品中任意抽取3件. (1)有多少种不同的抽法? (2)抽出的3件中恰有1件是次品的抽法 有多少种? (3)抽出的3件至少有1件是次品的抽法 有多少种?
(1)C1300 161700(2)C2 1 C9 28 9506
C 2 2 0
(2 ) C n 32
2 C n 22
C n 1 2 . C
3 n
典例讲评
例5 证明:
C n 1 2 C n 2 3 C n 3 C n 0 C n 1 C n 2
n C n n C n n1Leabharlann C n 21课堂小结

高二数学人选修课件时组合与组合数公式

高二数学人选修课件时组合与组合数公式

02 03
案例二
假设有一个边长为1的正方形区域,任意投掷一个点,求 该点落在正方形内切圆内的概率。根据二维几何概型的计 算方法,内切圆的面积为π/4,正方形的面积为1,因此该 事件的概率为π/4。
案例三
假设有一个半径为1的球体,任意投掷一个点,求该点落 在球体内接正方体内的概率。根据三维几何概型的计算方 法,内接正方体的体积为2/√3,球体的体积为4π/3,因 此该事件的概率为(2/√3) / (4π/3) = √3/(2π)。
互斥事件的概率加法公式
若事件A与事件B互斥,则$P(A cup B)=P(A)+P(B)$。
对立事件的概率
若事件A与事件B对立,则$P(A)=1-P(B)$,$P(B)=1-P(A)$。
案例分析
案例一
掷一枚质地均匀的骰子,观察出现的 点数。求事件A(出现偶数点)的概 率。
案例三
某射手进行射击训练,每次射击命中 目标的概率为0.8,现连续射击5次, 求事件C(至少命中4次)的概率。
A
计算机科学
在算法设计和分析中,组合数学提供了许多有 用的工具和方法,如动态规划、分治法等。
物理学
在量子力学和统计力学中,组合数学用于 描述微观粒子的状态和相互作用。
B
C
化学
在化学中,组合数学可用于计算分子的可能 构型和化学键的组合方式。
生物学
在遗传学和生物信息学中,组合数学用于分 析基因序列的组合和变异情况。
常见问题类型
01
求组合数
直接利用组合数公式进行计算。
02
验证组合数性质Leabharlann 如验证C(n,m) = C(n,n-m),C(n,0) + C(n,1) + ... + C(n,n) = 2^n等。

组合数学课件-第一章:排列与组合

组合数学课件-第一章:排列与组合

积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。

组合数学课件--第一章第三节组合意义的解释(共27张PPT)

组合数学课件--第一章第三节组合意义的解释(共27张PPT)
21
:应用举例
码b与码a之间的汉明距离要大于或等于2r+1.
如果存在a与a的距离小于r,那么a与b的距离大于r。 解:先将1到999的整数都看作3位数,例如2就看作是002,这样从000到999。
试求从1到1000的整数中,0出现的次数。 求方程的非负整数的解的个数. 因此不合法的0的个数为 码b与码a之间的汉明距离要大于或等于2r+1. 9 *Stirling公式 35 C(m,0)+C(m,1)+C(m,2)+…+C(m,m)=2m
6
1.6.3 线性方程的整数解的个数问题:
x1+x2+…+xn=b,n和b都是非负整数;
求方程的非负整数的解的个数. 允许重复的组合模型是r个无标志的球放进n个有 区别的盒子的情况:
方程的非负整数的个数与b个无标志的球放进n个 有区别的盒子的情况一一对应.
C(n+b-1,b)
7
1.7 组合的解释
m[C(n,0)+C(n,1)+…+C(n,r)]≤2n
m
2n
C(n,0)C(n,1)...C(n,r)
***
23
1.9 司特林(Stirling公式)
n!~ 2n(n)n
e
2n (n)n
lim n
e 1 n!
***
24
1.9 例题
例:求小于10000的正整数中含有数字1的数的个数。
解:小于10000的正整数是1到9999,如果我们 把不到4位的数前面补零,
{1,2},{1,3}, {2,3},
如果允许重复,多了
{1,1}, {2,2}, {3,3}。
组合模型:

排列组合ppt课件

排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量

学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。

离散数学:认识集合、排列和组合的概念和应用

排列和组合都涉及到从n个元素中取出r个元素的问题,但它们的取法、计算方法和应用场景有所 不同
离散数学在计算机科学中的应用
离散数学在数据结构中的应用:集合论用于描述数据结构的集合性质,图论用于 描述数据结构的图性质。
离散数学在算法设计中的应用:集合论中的计数原理和排列组合原理用于设计算 法,图论中的最短路径算法用于优化算法。
集合是由确定的、不同的元 素所组成的总体。
集合中的元素是有序的,即 集合中的元素有顺序性。
集合可以通过列举法或描述 法进行定义。
列举法:通过一一列举出集合中的元素来表示集合 描述法:通过描述集合中元素的共同特征来表示集合 符号法:使用大括号{}来表示集合,并在大括号内列出集合中的元素
区间法:使用数轴上的区间来表示集合,包括开区间、闭区间和半开半闭区间等
离散数学在现实生活中的应用
离散概率论:离散概率论是离散数学在统计学中的应用,它为统计学提供了理论基础。
离散概率分布:离散概率分布是描述随机事件发生的可能性,例如二项分布、泊松分布等。
离散统计推断:离散统计推断是利用样本数据对总体参数进行估计和推断的方法,例如参数估计、 假设检验等。
离散数据模型:离散数据模型是描述离散数据的数学模型,例如概率图模型、贝叶斯网络等。
排列的应用:在离散数学中,排列的概念被广泛应用于组合数学、图论、逻辑推理等领域。
排列的性质:排列具有可交换性、可结合性和有界性。
排列的定义:从n个不同元素中取出m个元素(m≤n),按照一定的顺序排成一列, 称为从n个元素中取出m个元素的排列。
排列的计算方法:排列数用符号A(n,m)表示,计算公式为A(n,m)=n!/(n-m)!,其中 "!"表示阶乘。
离散概率论:离散随机事件的数学描述,如掷骰子、抽签等 概率空间:离散随机试验所有可能结果的集合,以及每个结果的概率 离散概率分布:描述离散随机变量取各个可能值的概率 条件概率和独立性:在离散概率论中,条件概率和随机事件的独立性有明确的定义和性质

高中数学 课件:1.2排列与组合1.2.2组合课件


题型一 题型二 题型三 题型四
题型一 组合的概念及其简单应用
【例1】 判断下列问题是排列问题,还是组合问题. (1)从1,2,3,…,9这9个数字中任取3个,组成一个三位数,这样的三 位数共有多少个? (2)从1,2,3,…,9这9个数字中任取3个,然后把这3个数字相加得到 一个和,这样的和共有多少个? (3)从a,b,c,d这4名学生中选2名学生,去完成同一件工作有多少种 不同的选法? (4)规定每两人相互通话一次,5人共通了多少次电话? (5)5个人相互各写一封信,共写了多少封信? 分析观察取出的元素与顺序有关还是无关,确定是排列问题,还 是组合问题.,是排列问题的有.(填序号)
解析:①无顺序,是组合问题;②2名学生完成两件不同的工作是排
列问题;③单循环比赛要求每两支球队之间只打一场比赛,没有顺
序,是组合问题;④争夺冠亚军是有顺序的,是排列问题.
答案:①③ ②④
123
(2)组合数公式:C������������
=
A������������ A������������
123
【做一做 3】 计算:(1)C2108=
;
(2)C939 + C929=
.
解析:(1)C2108
=
C220
=
A220 A22
=
20×2 19=190.
(2)C939
+
C929
=
C1300
=
A1300 A33
=
1003××929××198=161
700.
答案:(1)190 (2)161 700
A.504 B.729 C.84 D.27 解析:只需从 9 名学生中选出 3 名即可,从而有C93 = AA9333=84 种选法. 答案:C

组合数学课件--第一章第二节 允许重复的组合与不相邻的组合

11
一、序数法
怎样建立a(3)a(2)a(1)p(1)p(2)p(3)p(4)
a(3) 确定4的位置,a(2)确定3的位置
a(1)确定2的位置,剩余的位置就是1的位置 例3:021, 3 2 1 4 例3: 201, 2 4 1 3
12
一、序数法
求n个不同的数的全排列,主要有以下两步:
1、求出0到n!-1之间各数对应的序列{an-1, an-2,…, a1} m=an-1(n-1)!+an-2(n-2)!+…a2 * 2!+a1*1! 2、由{an-1, an-2,…, a1}确定排列序列p1p2…pn an-1,确定n的位置, an-2确定n-1的位置, ……………………… a1确定2的位置, 剩下的是1的位置。
9
一、序数法
推论 从0到n!-1的n!个整数与序列{an-1, an-2,…, a1} 一一对应。这里 0a1 1,0 a2 2, …, 0 an-1 n-1 算法: int a[]={0}; int m,n;// 0=<m<=n!-1 int b=m; int index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);
14
一、序数法
2、对于0,1,2,…,n!-1共n!个数求序列a[i]
for( i = 0; i < fact; i++ ) { int b=i, index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);

1.2排列与组合PPT课件


C
4 7

C
7 10
CA (3 )已 知3 2,求 n.
n
n
(4)求 C33n8-n+C231n+n的值.
例2.甲、乙、丙、丁4支足球队举行单循环赛,
(1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.
解:(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
C 第 一 步 ,3( 4 ) 个 ; 4
A 第 二 步 ,3( 6 ) 个 ; 3
A C A 根 据 分 步 计 数 原 理 , 3 4
3 3
4 3 .
A 从 而 3 C A C 4
3
C43 34 3
P3 4
P3 3
如何计算:
m n
-
34
概念讲解 组合数公式
排列与组合是有区别的,但它们又有联系.
从0到9这十个数字中任取三个数字的排列
A3 10
其中以0为排头的排列数为
A
2 9
.

所求的三位数的个数是
A A 3 10
2 9
1 0 9 8 - 9 8
有约束条件的排列问题
例5:由数字1、2、3、4、5组成没有重复数字的五位 数,其中小于50000的偶数共有多少个?
一般地,求从 n个不同元素中取出 m个元素的排
列数,可以分为以下2步:
第1步,先求出从这 n个不同元素中取出 m个元素
的组合数 C
m n

第2步,求每一个组合中m个元素的全排列数
A
m n

根据分步计数原理,得到: AnmCnmAm m
因此:C n mA A m n m mnn 1 n2 m !nm 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档