高考文科数学练习题解析数列的综合应用

合集下载

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析1.已知数列{an }中,a1=2,an-an-1-2n=0(n≥2,n∈N*).(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;(2)设bn=+++…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.【答案】(1)a2=6,a3=12. an=n(n+1).(2)实数t的取值范围为(-∞,-2)∪(2,+∞)【解析】解:(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N*),∴a2=6,a3=12.当n≥3时,an -an-1=2n,a n-1-a n-2=2(n-1),又a3-a2=2×3,a2-a1=2×2,∴an -a1=2[n+(n-1)+…+3+2],∴an=2[n+(n-1)+…+3+2+1]=2×=n(n+1).当n=1时,a1=2;当n=2时,a2=6,也满足上式,∴数列{an }的通项公式为an=n(n+1).(2)bn=++…+=++…+=-+-+…+-=-==.令f(x)=2x+(x≥1),则f′(x)=2-,当x≥1时,f′(x)>0恒成立,∴函数f(x)在[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(bn )max=.要使对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,则需t2-2mt+>(bn )max=,即t2-2mt>0对∀m∈[-1,1]恒成立,∴,解得t>2或t<-2,∴实数t的取值范围为(-∞,-2)∪(2,+∞).2.一函数y=f(x)的图象在给定的下列图象中,并且对任意an ∈(0,1),由关系式an+1=f(a n)得到的数列{an }满足an+1>a n(n∈N*),则该函数的图象是()【答案】A【解析】由an+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图象在直线y=x的上方,故选A.3.设函数)定义为如下数表,且对任意自然数n均有xn+1=的值为( ) A.1B.2C.4D.5【答案】D【解析】,又根据,所以有,,,, .,所以可知:,,故选D.【考点】数列的周期性4.是点集A到点集B的一个映射,且对任意,有.现对点集A中的点,,均有,点为(0,2),则线段的长度 .【答案】【解析】∵,∴,,,,,,…,根据变化规律可知,∴,,∴.【考点】1.数列的性质;2.两点间距离公式.5.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(1)b2012是数列{an}中的第项;(2)b2k-1=.(用k表示)【答案】(1)5030(2)【解析】由以上规律可知三角形数1,3,6,10,…的一个通项公式为an=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的为10,15,45,55,105,120,…故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….从而由上述规律可猜想:b2k =a5k= (k为正整数),b2k-1=a5k-1==,故b2012=b2×1006=a5×1006=a5030,即b2012是数列{an}中的第5030项.6.已知数列满足,则该数列的通项公式_________.【答案】【解析】∵,∴,∴,∴,,…,,∴,∴,∴.【考点】1.累加法求通项公式;2.裂项相消法求和.7.数列满足,则 .【答案】【解析】这类问题类似于的问题处理方法,在中用代换得(),两式相减得,,又,即,故.【考点】数列的通项公式.8.已知函数,记,若是递减数列,则实数的取值范围是______________.【答案】【解析】是递减数列,从开始是用式子计算,这时只要,即即可,关键是是通过二次式计算,根据二次函数的性质,应该有且,即且,解得,综上取值范围是.【考点】数列的单调性.9.已知数列{}的前n项和为,且,则使不等式成立的n的最大值为.【答案】4【解析】当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.【考点】1.等比数列的求和公式;2.数列的通项公式.10.甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为.(1)证明:是一个常数;(2)求与的关系式;(3)求的表达式.【答案】(1)18;(2);(3) .【解析】(1)利用n次操作后A和B的农药的和应与开始时农药的重量和相等建立等量关系,证明是一个常数;(2)借助第一问的结论和第n次后A中10千克的药水中农药的重量具有关系式,求解与的关系式;(3)根据第二问的递推关系,采用构造数列的思想进行求解.试题解析:(1)开始时,A中含有10=1.2千克的农药,B中含有10=0.6千克的农药,,A中含有千克的农药,B中含有千克的农药,它们的和应与开始时农药的重量和相等,从而(常数). 4分(2)第n次操作后,A中10千克的药水中农药的重量具有关系式:由(1)知,代入化简得① 8分(3)令,利用待定系数法可求出λ=—9,所以,可知数列是以为首项,为公比的等比数列.由①,,由等比数列的通项公式知:,所以. 12分【考点】1.数列的递推式;(2)数列的通项公式;(3)实际应用问题.11.等比数列的各项均为正数,且,则【答案】B【解析】等比数列中,所以【考点】等比数列性质及对数运算点评:等比数列中,若则,在对数运算中12.已知数列的首项为,对任意的,定义.(Ⅰ)若,(i)求的值和数列的通项公式;(ii)求数列的前项和;(Ⅱ)若,且,求数列的前项的和.【答案】(1) ,,(2) 当为偶数时,;当为奇数时,【解析】(Ⅰ) 解:(i),,………………2分由得当时,=………4分而适合上式,所以.………………5分(ii)由(i)得:……………6分……………7分…………8分(Ⅱ)解:因为对任意的有,所以数列各项的值重复出现,周期为. …………9分又数列的前6项分别为,且这六个数的和为8. ……………10分设数列的前项和为,则,当时,,……………11分当时,,…………12分当时所以,当为偶数时,;当为奇数时,. ……………13分【考点】数列的通项公式,数列的求和点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。

广东新高考数学人教版文科一轮复习训练48数列的综合应用(含答案解析)

广东新高考数学人教版文科一轮复习训练48数列的综合应用(含答案解析)

第48课数列的综合应用1.( 2013 东城质检)把数列 1 的全部数依据从大到小,左大右小的原则写成如右图2n 1所示的数表,第 k 行有 2k 1个数,第 k 行的第 s 个数(从左数起)记为A( k, s) ,则1 这 个数可记为 A ( ______)2011【分析】设数表的第一个数的分母为数列 { a n } ,∵ a 11, a 2 3 , a 3 7 , a 4 15, a 5 23 , ,1∴ a 2 a 1 2 , a 3 a 2 4 , , a a 1 2( n 1) , 11nn∴ (a a ) ( a a ) (a a )352 13 2nn 112 222 32(n 1)1 1,7 9 11 ∴ a a2(1 2n 1 ),∴ a n1,21 1 1n11 2n1151719 ???∴ 第 k 行的第 1个数为,???2k 1令 11 ,且 1 1 ,12k12k 2011 1 2011 ∴ 1006 2k 2012 ,∴ k 10 , ∴ 第 10 行的第 1个数为1,1023∴ 2011 10232(s 1) ,解得 s495 , ∴ A(10, 495) .2 .( 2013 朝 阳 二 模 ) 在 如 图所 示 的 数 表 中 , 第 i 行 第 j 列 的 数记 为 a i , j , 且 满 足a1, j2 j 1, a i,1 i , a i 1, j1ai , ja i 1, j (i , j N ) ,则此数表中的第2行第 7 列的数是 ;记第 3 行的数 3,5, 8,13,22,39, 为数列 {b n } ,则数列 { b n } 的通项公式是.第 1 行 1 2 4 8 第 2 行 2 3 5 9第 3 行 358 13【答案】 65 , a2n 1n 1n【分析】直接写出前两行,第1行12 4 8 16 32 64 第2行235 9 1733 65由上数表可知第2 行第 7 列的数是 65.∵第 3 行的数3,5, 8, 13, 22, 39,为数列 {b n} ,∴ b2b1 2 , b3b2 3 , b4b3 5 , b5b49 , b6 b517 ,∴ b b120, b b121, b b 1 22,, b b 1 2n 2,213243n n 1∴ (b b ) (b b ) (b b )(b b)213243n n1(1 20 ) (1 21)(122 )(1 2n 2 )∴ b n b1n 11(12n 1 )n 2 2n 1,12∴b n 2n 1 n 1.3.( 2013 江门一模)某学校每礼拜一供给1000 名学生A、B两种菜。

高考文科数学一轮复习练习-数列的综合应用

高考文科数学一轮复习练习-数列的综合应用

§6.4 数列的综合应用探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点数列求和掌握数列的求和方法2019天津,18,13分数列求和(错位相减法) 求通项公式★★★2017课标全国Ⅲ,17,12分数列求和(裂项相消法) 由递推式求通项公式数列的综合应用能综合应用等差、等比数列解决相应问题2016课标全国Ⅰ,17,12分等差、等比数列的综合问题等差数列的判定★★★分析解读综合运用数列,特别是等差数列、等比数列的有关知识,解答数列综合问题和实际问题,培养学生的理解能力、数学建模能力和运算能力.数列是特殊的函数,是高考的常考点.历年高考考题中低、中、高档试题均有出现,需引起充分的重视.本节内容在高考中分值为12分左右,属于中档题.破考点练考向【考点集训】考点一数列求和1.(2018福建闽侯第八中学期末,16)已知数列{na n}的前n项和为S n,且a n=2n,则使得S n-na n+1+50<0的最小正整数n的值为.答案 52.(2019湖南郴州第二次教学质量监测,16)已知数列{a n}和{b n}满足a1a2a3…a n=2b n(n∈N*),若数列{a n}为等比数列,且a1=2,a4=16,则数列{1b n}的前n项和S n=.答案2nn+13.(2018河南、河北两省联考,18)已知数列{a n}的前n项和为S n,a1=5,nS n+1-(n+1)S n=n2+n.(1)求证:数列{S nn}为等差数列;(2)令b n=2n a n,求数列{b n}的前n项和T n.答案(1)证明:由nS n+1-(n+1)S n=n2+n得S n+1n+1-S nn=1,又S11=5,所以数列{S nn}是首项为5,公差为1的等差数列.(2)由(1)可知S nn=5+(n-1)=n+4,所以S n=n2+4n.当n≥2时,a n=S n-S n-1=n2+4n-(n-1)2-4(n-1)=2n+3. 又a1=5符合上式,所以a n=2n+3(n∈N*),所以b n=(2n+3)2n,所以T n=5×2+7×22+9×23+…+(2n+3)2n,①2T n =5×22+7×23+9×24+…+(2n+1)2n+(2n+3)2n+1,② 所以②-①得T n =(2n+3)2n+1-10-(23+24+…+2n+1) =(2n+3)2n+1-10-23(1-2n -1)1-2=(2n+3)2n+1-10-(2n+2-8) =(2n+1)2n+1-2.考点二 数列的综合应用1.(2018福建漳州期末调研测试,5)等差数列{a n }和等比数列{b n }的首项均为1,公差与公比均为3,则a b 1+a b 2+a b 3=( ) A.64B.32C.38D.33答案 D2.(2018河南商丘第二次模拟,6)已知数列{a n }满足a 1=1,a n+1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则( ) A.a n ≥2n+1 B.S n ≥n 2C.a n ≥2n-1D.S n ≥2n-1答案 B3.(2019福建晋江(安溪一中、养正中学、惠安一中、泉州实验中学四校)期中,18)已知数列{a n }的前n 项和为S n ,且S n =2a n -2. (1)求数列{a n }的通项公式; (2)若数列{n+1a n}的前n 项和为T n ,求T n 以及T n 的最小值.答案 (1)当n=1时,a 1=2.当n ≥2时,S n-1=2a n-1-2, 所以a n =S n -S n-1=2a n -2a n-1,整理得a na n -1=2(常数), 所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n. (2)令b n =n+1a n,则b n =n+12n, 所以T n =221+322+…+n+12n①, 12T n =222+323+…+n+12n+1②, ①-②,得12T n =32-n+32n+1, 所以T n =3-n+32n, 令c n =n+32n ,则c n+1c n =n+42n+6<1, 所以c n >c n+1,从而数列{T n }是单调递增数列, 所以T n ≥T 1=1. 故T n 的最小值为1.4.(命题标准样题,16)设三角形的边长为不相等的整数,且最大边长为n,这些三角形的个数为a n . (1)求数列{a n }的通项公式;(2)在1,2,…,100中任取三个不同的整数,求它们可以是一个三角形的三条边长的概率. 附:1+22+32+…+n 2=n(n+1)(2n+1)6. 答案 本题考查三角形三边的关系、数列的概念、通项公式,等差数列求和,古典概型等数学知识.试题将数列与概率相结合,体现了理性思维、数学探究的学科素养,考查了逻辑推理能力、运算求解能力和创新能力,落实了基础性、综合性、创新性的考查要求.(1)设x,y,n 为满足题意的三角形的边长,不妨设x<y<n, 则x+y>n.由题设,易得a 1=a 2=a 3=0. 当n ≥4,且n 为偶数时,若y ≤n 2,x 不存在;若y=n 2+1,则x 为n 2;若y=n 2+2,则x 为n 2-1,n 2,n 2+1;……; 若y=n-1,则x 为2,3,…,n-2. 所以a n =1+3+…+(n-3)=(n -2)24. 当n>4,且n 为奇数时,可得 a n =2+4+…+(n-3)=(n -1)(n -3)4. 所以{a n }的通项公式为a n ={0,n =1,2,3,(n -2)24,n ≥4,且n 为偶数,(n -1)(n -3)4,n ≥5,且n 为奇数.(2)记S n 为数列{a n }的前n 项和.由(1)可得 S 100=14×(22+42+…+982)+14×(2×4+4×6+…+96×98) =(12+22+…+492)+12+22+…+482+(1+2+…+48) =49×50×1956. 故所求概率为S100100×99×983×2×1=65132.炼技法 提能力 【方法集训】方法 数列求和的方法1.(2018河南中原名校11月联考,10)设函数f(x)满足f(n+1)=2f(n)+n 2(n ∈N *),且f(1)=2,则f(40)=( )A.95B.97C.105D.392答案 D2.(2019吉林长春模拟,7)已知数列{a n }的前n 项和S n =n 2+2n,则数列{1a n ·a n+1}的前6项和为( )A.215B.415C.511D.1011答案 A3.(2019湘赣十四校第一次联考,17)已知函数f(x)=2 019·sin (πx -π3)(x ∈R )的所有正零点构成递增数列{a n }. (1)求数列{a n }的通项公式;(2)设b n =2n(a n +23),求数列{b n }的前n 项和S n .答案 (1)令f(x)=2 019sin (πx -π3)=0, 得πx -π3=kπ(k∈Z ),则有x=13+k(k ∈Z ). ∵f(x)的所有正零点构成递增数列{a n }, ∴{a n }是以13为首项,1为公差的等差数列, ∴a n =13+(n-1)×1=n -23(n ∈N *). (2)由(1)知b n =n ·2n.∴S n =1×21+2×22+3×23+…+(n-1)×2n-1+n×2n,① ∴2S n =1×22+2×23+3×24+…+(n-1)×2n+n×2n+1,② ②-①得S n =-1×21-22-23- (2)+n×2n+1=n×2n+1-21(1-2n )1-2=(n-1)·2n+1+2. 4.(2018河南安阳第二次模拟,17)设等差数列{a n }的前n 项和为S n ,点(n,S n )在函数f(x)=x 2+Bx+C-1(B,C ∈R )的图象上,且a 1=C. (1)求数列{a n }的通项公式;(2)记b n =a n (a 2n -1+1),求数列{b n }的前n 项和T n . 答案 (1)设数列{a n }的公差为d, 则S n =na 1+n(n -1)2d=d 2n 2+(a 1-d2)n, 又S n =n2+Bn+C-1,两式对照得{d 2=1,C -1=0,解得{d =2,C =1,又因为a 1=C,所以a 1=1,所以数列{a n }的通项公式为a n =2n-1.(2)由(1)知b n =(2n-1)(2·2n-1-1+1)=(2n-1)2n, 则T n =1×2+3×22+…+(2n-1)·2n,2T n =1×22+3×23+…+(2n-3)·2n +(2n-1)·2n+1, 两式相减得T n =(2n-1)·2n+1-2(22+23+ (2))-2 =(2n-1)·2n+1-2×22(1-2n -1)1-2-2 =(2n-3)·2n+1+6.【五年高考】A 组 统一命题·课标卷题组考点一 数列求和(2017课标全国Ⅲ,17,12分)设数列{a n }满足a 1+3a 2+…+(2n-1)a n =2n. (1)求{a n }的通项公式; (2)求数列{a n2n+1}的前n 项和.答案 (1)因为a 1+3a 2+…+(2n-1)a n =2n, 故当n ≥2时,a 1+3a 2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n =2. 所以a n =22n -1(n ≥2). 又由题设可得a 1=2, 从而{a n }的通项公式为a n =22n -1(n ∈N *). (2)记{a n2n+1}的前n 项和为S n .由(1)知a n 2n+1=2(2n+1)(2n -1)=12n -1-12n+1. 则S n =11-13+13-15+…+12n -1-12n+1=2n 2n+1.考点二 数列的综合应用(2016课标全国Ⅰ,17,12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n+1+b n+1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.答案 (1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,(3分)所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n-1.(5分) (2)由(1)和a n b n+1+b n+1=nb n 得b n+1=b n 3,(7分) 因此{b n }是首项为1,公比为13的等比数列.(9分) 记{b n }的前n 项和为S n , 则S n =1-(13)n1-13=32-12×3n -1.(12分)B 组 自主命题·省(区、市)卷题组考点一 数列求和1.(2019天津,18,13分)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3. (1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).答案 本题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力,体现了数学运算的核心素养.(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q. 依题意,得{3q =3+2d,3q 2=15+4d,解得{d =3,q =3,故a n =3+3(n-1)=3n,b n =3×3n-1=3n.所以,{a n }的通项公式为a n =3n,{b n }的通项公式为b n =3n.(2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n-1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=[n ×3+n(n -1)2×6]+(6×31+12×32+18×33+…+6n×3n)=3n 2+6(1×31+2×32+…+n×3n). 记T n =1×31+2×32+…+n×3n,①则3T n =1×32+2×33+…+n×3n+1,②②-①得,2T n =-3-32-33-…-3n +n×3n+1=-3(1-3n )1-3+n×3n+1=(2n -1)3n+1+32. 所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n+1+32=(2n -1)3n+2+6n 2+92(n ∈N *). 2.(2018浙江,20,15分)已知等比数列{a n }的公比q>1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1-b n )a n }的前n 项和为2n 2+n.(1)求q 的值;(2)求数列{b n }的通项公式.答案 (1)由a 4+2是a 3,a 5的等差中项得a 3+a 5=2a 4+4, 所以a 3+a 4+a 5=3a 4+4=28, 解得a 4=8.由a 3+a 5=20得8(q +1q)=20, 解得q=2或q=12, 因为q>1,所以q=2.(2)设c n =(b n+1-b n )a n ,数列{c n }的前n 项和为S n . 由c n ={S 1, n =1,S n -S n -1,n ≥2,解得c n =4n-1.由(1)可知a n =2n-1,所以b n+1-b n =(4n-1)·(12)n -1, 故b n -b n-1=(4n-5)·(12)n -2,n ≥2, b n -b 1=(b n -b n-1)+(b n-1-b n-2)+…+(b 3-b 2)+(b 2-b 1) =(4n-5)·(12)n -2+(4n-9)·(12)n -3+…+7·12+3. 设T n =3+7·12+11·(12)2+…+(4n-5)·(12)n -2,n ≥2, 12T n =3·12+7·(12)2+…+(4n-9)·(12)n -2+(4n-5)·(12)n -1(n ≥2), 所以12T n =3+4·12+4·(12)2+…+4·(12)n -2-(4n-5)·(12)n -1(n ≥2), 因此T n =14-(4n+3)·(12)n -2,n ≥2, 又b 1=1,所以b n =15-(4n+3)·(12)n -2. 3.(2017山东,19,12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n+1=b n b n+1,求数列{b n a n}的前n 项和T n . 答案 (1)设{a n }的公比为q,由题意知:a 1(1+q)=6,a 12q=a 1q 2,又a n >0,解得a 1=2,q=2,所以a n =2n.(2)由题意知:S 2n+1=(2n+1)(b 1+b 2n+1)2=(2n+1)b n+1,又S 2n+1=b n b n+1,b n+1≠0,所以b n =2n+1. 令c n =b n a n,则c n =2n+12n. 因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n+12n , 又12T n =322+523+724+…+2n -12n +2n+12n+1, 两式相减得12T n =32+(12+122+…+12n -1)-2n+12n+1,所以T n =5-2n+52n. 4.(2017北京,15,13分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n-1.答案 (1)设等差数列{a n }的公差为d. 因为a 2+a 4=10,所以2a 1+4d=10. 解得d=2. 所以a n =2n-1.(2)设等比数列{b n }的公比为q. 因为b 2b 4=a 5,所以b 1qb 1q 3=9.解得q 2=3.所以b 2n-1=b 1q 2n-2=3n-1.从而b 1+b 3+b 5+…+b 2n-1=1+3+32+…+3n-1=3n -12. 5.(2016天津,18,13分)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63. (1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(-1)nb n2}的前2n 项和. 答案 (1)设数列{a n }的公比为q.由已知,有1a 1-1a 1q =2a 1q 2,解得q=2,或q=-1.又由S 6=a 1·1-q 61-q=63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n-1.(2)由题意,得b n =12(log 2a n +log 2a n+1)=12(log 22n-1+log 22n)=n-12, 即{b n }是首项为12,公差为1的等差数列.设数列{(-1)nb n 2}的前n 项和为T n ,则T 2n =(-b 12+b 22)+(-b 32+b 42)+…+(-b 2n -12+b 2n 2)=b 1+b 2+b 3+b 4+…+b 2n-1+b 2n =2n(b 1+b 2n )2=2n 2.考点二 数列的综合应用1.(2018北京,15,13分)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n . 答案 (1)设{a n }的公差为d. 因为a 2+a 3=5ln 2, 所以2a 1+3d=5ln 2. 又a 1=ln 2,所以d=ln 2. 所以a n =a 1+(n-1)d=nln 2. (2)因为e a 1=e ln 2=2,e a n e a n -1=e a n -a n -1=e ln 2=2, 所以{e a n }是首项为2,公比为2的等比数列. 所以e a 1+e a 2+…+e a n =2×1-2n 1-2=2(2n-1). 2.(2017天津,18,13分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).答案 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8①. 由S 11=11b 4,可得a 1+5d=16②, 联立①②,解得a 1=1,d=3, 由此可得a n =3n-2.所以,{a n }的通项公式为a n =3n-2,{b n }的通项公式为b n =2n.(2)设数列{a 2n b n }的前n 项和为T n ,由a 2n =6n-2,有T n =4×2+10×22+16×23+…+(6n-2)×2n, 2T n =4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1, 上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=12×(1-2n )1-2-4-(6n-2)×2n+1=-(3n-4)2n+2-16. 得T n =(3n-4)2n+2+16.所以,数列{a 2n b n }的前n 项和为(3n-4)2n+2+16.3.(2016浙江,17,15分)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.答案 (1)由题意得{a 1+a 2=4,a 2=2a 1+1,则{a 1=1,a 2=3.又当n ≥2时,由a n+1-a n =(2S n +1)-(2S n-1+1)=2a n ,得a n+1=3a n .又因为a 2=3=3a 1,所以数列{a n }是首项为1,公比为3的等比数列. 所以,数列{a n }的通项公式为a n =3n-1,n ∈N *.(2)设b n =|3n-1-n-2|,n ∈N *,则b 1=2,b 2=1. 当n ≥3时,由于3n-1>n+2,故b n =3n-1-n-2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n ≥3时,T n =3+9(1-3n -2)1-3-(n+7)(n -2)2=3n -n 2-5n+112,经检验,n=2时也符合.所以T n ={2, n =1,3n -n 2-5n+112,n ≥2,n ∈N *.C 组 教师专用题组考点一 数列求和1.(2015湖北,19,12分)设等差数列{a n }的公差为d,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q=d,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =an b n,求数列{c n }的前n 项和T n .解析 (1)由题意有,{10a 1+45d =100,a 1d =2,即{2a 1+9d =20,a 1d =2,解得{a 1=1,d =2,或{a 1=9,d =29.故{a n =2n -1,b n =2n -1,或{a n =19(2n +79),b n=9·(29)n -1. (2)由d>1,知a n =2n-1,b n =2n-1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n+32n , 故T n =6-2n+32n -1.2.(2015安徽,18,12分)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n+1S n S n+1,求数列{b n }的前n 项和T n .答案 (1)由题设知a 1·a 4=a 2·a 3=8, 又a 1+a 4=9,可解得{a 1=1,a 4=8或{a 1=8,a 4=1(舍去).由a 4=a 1q 3得公比为q=2,故a n =a 1q n-1=2n-1.(2)S n =a 1(1-q n )1-q=2n-1,又b n =a n+1S n S n+1=S n+1-S n S n S n+1=1S n -1S n+1, 所以T n =b 1+b 2+…+b n =(1S 1-1S 2)+(1S 2-1S 3)+…+(1S n -1S n+1)=1S 1-1S n+1=1-12n+1-1.3.(2015山东,19,12分)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n+1}的前n 项和为n2n+1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 答案 (1)设数列{a n }的公差为d. 令n=1,得1a 1a 2=13, 所以a 1a 2=3. 令n=2,得1a 1a 2+1a 2a 3=25, 所以a 2a 3=15. 解得a 1=1,d=2, 所以a n =2n-1. (2)由(1)知b n =2n ·22n-1=n ·4n,所以T n =1·41+2·42+…+n ·4n , 所以4T n =1·42+2·43+…+n ·4n+1,两式相减,得-3T n =41+42+ (4)-n ·4n+1=4(1-4n )1-4-n ·4n+1 =1-3n 3×4n+1-43. 所以T n =3n -19×4n+1+49=4+(3n -1)4n+19. 4.(2014课标Ⅰ,17,12分)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根. (1)求{a n }的通项公式; (2)求数列{a n 2n }的前n 项和.答案 (1)方程x 2-5x+6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d,则a 4-a 2=2d,故d=12,从而a 1=32. 所以{a n }的通项公式为a n =12n+1.(2)设{a n 2n }的前n 项和为S n ,由(1)知a n2n =n+22n+1,则S n =322+423+…+n+12n +n+22n+1, 12S n =323+424+…+n+12n+1+n+22n+2. 两式相减得12S n =34+(123+…+12n+1)-n+22n+2=34+14(1-12n -1)-n+22n+2.所以S n =2-n+42n+1.5.(2014湖北,19,12分)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n,使得S n >60n+800?若存在,求n 的最小值;若不存在,说明理由. 答案 (1)设数列{a n }的公差为d,依题意,得2,2+d,2+4d 成等比数列,故有(2+d)2=2(2+4d),化简得d 2-4d=0,解得d=0或d=4.当d=0时,a n =2;当d=4时,a n =2+(n-1)·4=4n-2,从而得数列{a n }的通项公式为a n =2或a n =4n-2. (2)当a n =2时,S n =2n.显然2n<60n+800, 此时不存在正整数n,使得S n >60n+800成立. 当a n =4n-2时,S n =n[2+(4n -2)]2=2n 2. 令2n 2>60n+800,即n 2-30n-400>0, 解得n>40或n<-10(舍去),此时存在正整数n,使得S n >60n+800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n;当a n =4n-2时,存在满足题意的n,其最小值为41.6.(2014安徽,18,12分)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n ∈N *. (1)证明:数列{an n}是等差数列;(2)设b n =3n·√a n ,求数列{b n }的前n 项和S n . 答案 (1)证明:由已知可得a n+1n+1=a n n +1,即a n+1n+1-an n=1. 所以{a n n}是以a 11=1为首项,1为公差的等差数列. (2)由(1)得a n n=1+(n-1)·1=n,所以a n =n 2.从而b n =n ·3n.∴S n =1·31+2·32+3·33+…+n ·3n,① 3S n =1·32+2·33+…+(n-1)·3n+n ·3n+1.② ①-②得-2S n =31+32+ (3)-n ·3n+1=3·(1-3n )1-3-n ·3n+1=(1-2n)·3n+1-32. 所以S n =(2n -1)·3n+1+34.7.(2014山东,19,12分)在等差数列{a n }中,已知公差d=2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式;(2)设b n =a n(n+1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .答案 (1)由题意知(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+6),解得a 1=2,所以数列{a n }的通项公式为a n =2n. (2)由题意知b n =a n(n+1)2=n(n+1).所以b n+1-b n =2(n+1), 所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n-1+b n ) =4+8+12+…+2n =n2(4+2n)2=n(n+2)2,当n 为奇数时,若n=1,则T 1=-b 1=-2, 若n>1,则T n =T n-1+(-b n ) =(n -1)(n+1)2-n(n+1) =-(n+1)22,n=1时,满足上式. 所以T n ={-(n+1)22,n 为奇数,n(n+2)2,n 为偶数. 8.(2013重庆,16,13分)设数列{a n }满足:a 1=1,a n+1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20. 答案 (1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n-1,S n =1-3n 1-3=12(3n-1). (2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d,所以公差d=5, 故T 20=20×3+20×192×5=1 010. 9.(2013安徽,19,13分)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f(x)=(a n -a n+1+a n+2)x+a n+1cos x-a n+2sin x 满足 f '(π2)=0.(1)求数列{a n }的通项公式; (2)若b n =2(a n +12a n),求数列{b n }的前n 项和S n .答案 (1)由题设可得, f '(x)=a n -a n+1+a n+2-a n+1sin x-a n+2·cos x. 对任意n ∈N *,f '(π2)=a n -a n+1+a n+2-a n+1=0,即a n+1-a n =a n+2-a n+1, 故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d=1,所以a n =2+1·(n-1)=n+1. (2)由b n =2(a n +12a n)=2(n +1+12n+1)=2n+12n +2知,S n =b 1+b 2+…+b n =2n+2·n(n+1)2+12[1-(12)n ]1-12=n 2+3n+1-12n . 10.(2013湖南,19,13分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *. (1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.答案 (1)令n=1,得2a 1-a 1=a 12, 即a 1=a 12.因为a 1≠0, 所以a 1=1. 令n=2,得2a 2-1=S 2=1+a 2. 解得a 2=2.当n ≥2时,2a n -1=S n ,2a n-1-1=S n-1,两式相减得2a n -2a n-1=a n .即a n =2a n-1. 于是数列{a n }是首项为1,公比为2的等比数列. 因此,a n =2n-1.所以数列{a n }的通项公式为a n =2n-1.(2)由(1)知na n =n ·2n-1.记数列{n ·2n-1}的前n 项和为B n ,于是B n =1+2×2+3×22+…+n×2n-1,① 2B n =1×2+2×22+3×23+…+n×2n.②①-②得-B n =1+2+22+…+2n-1-n ·2n=2n-1-n ·2n. 从而B n =1+(n-1)·2n .考点二 数列的综合应用1.(2018江苏,14,5分)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 . 答案 272.(2017江苏,19,16分)对于给定的正整数k,若数列{a n }满足:a n-k +a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k =2ka n 对任意正整数n(n>k)总成立,则称数列{a n }是“P(k)数列”. (1)证明:等差数列{a n }是“P(3)数列”;(2)若数列{a n }既是“P(2)数列”,又是“P(3)数列”,证明:{a n }是等差数列. 证明 (1)因为{a n }是等差数列,设其公差为d,则a n =a 1+(n-1)d,从而,当n ≥4时,a n-k +a n+k =a 1+(n-k-1)d+a 1+(n+k-1)d=2a 1+2(n-1)d=2a n ,k=1,2,3, 所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n , 因此等差数列{a n }是“P(3)数列”.(2)数列{a n }既是“P(2)数列”,又是“P(3)数列”,因此, 当n ≥3时,a n-2+a n-1+a n+1+a n+2=4a n ,① 当n ≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n .② 由①知,a n-3+a n-2=4a n-1-(a n +a n+1),③ a n+2+a n+3=4a n+1-(a n-1+a n ).④将③④代入②,得a n-1+a n+1=2a n ,其中n ≥4, 所以a 3,a 4,a 5,…是等差数列,设其公差为d'. 在①中,取n=4,则a 2+a 3+a 5+a 6=4a 4,所以a 2=a 3-d', 在①中,取n=3,则a 1+a 2+a 4+a 5=4a 3,所以a 1=a 3-2d', 所以数列{a n }是等差数列.3.(2016四川,19,12分)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n+1=qS n +1,其中q>0,n ∈N *. (1)若a 2,a 3,a 2+a 3成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a n2=1的离心率为e n ,且e 2=2,求e 12+e 22+…+e n 2.答案 (1)由已知,S n+1=qS n +1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n ≥1. 又由S 2=qS 1+1得到a 2=qa 1, 故a n+1=qa n 对所有n ≥1都成立.所以,数列{a n }是首项为1,公比为q 的等比数列. 从而a n =q n-1.由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3, 所以a 3=2a 2,故q=2. 所以a n =2n-1(n ∈N *).(2)由(1)可知,a n =q n-1.所以双曲线x 2-y 2a n2=1的离心率e n =√1+a n2=√1+q 2(n -1). 由e 2=√1+q 2=2解得q=√3.所以,e 12+e 22+…+e n2 =(1+1)+(1+q 2)+…+[1+q 2(n-1)]=n+[1+q 2+…+q2(n-1)]=n+q 2n -1q 2-1 =n+12(3n-1).4.(2015天津,18,13分)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7. (1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.答案 (1)设数列{a n }的公比为q,数列{b n }的公差为d,由题意知q>0.由已知,有{2q 2-3d =2,q 4-3d =10,消去d,整理得q 4-2q 2-8=0.又因为q>0,解得q=2,所以d=2.所以数列{a n }的通项公式为a n =2n-1,n ∈N *;数列{b n }的通项公式为b n =2n-1,n ∈N *.(2)由(1)有c n =(2n-1)·2n-1,设{c n }的前n 项和为S n ,则 S n =1×20+3×21+5×22+…+(2n-3)×2n-2+(2n-1)×2n-1, 2S n =1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,上述两式相减,得-S n =1+22+23+ (2)-(2n-1)×2n=2n+1-3-(2n-1)×2n=-(2n-3)×2n-3,所以,S n =(2n-3)·2n+3,n ∈N *.5.(2015浙江,17,15分)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n+1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . 答案 (1)由a 1=2,a n+1=2a n ,得a n =2n(n ∈N *).由题意知,当n=1时,b 1=b 2-1,故b 2=2. 当n ≥2时,1n b n =b n+1-b n ,整理得b n+1n+1=b nn, 所以b n =n(n ∈N *).(2)由(1)知a n b n =n ·2n,因此T n =2+2·22+3·23+…+n ·2n,2T n =22+2·23+3·24+…+n ·2n+1, 所以T n -2T n =2+22+23+ (2)-n ·2n+1.故T n =(n-1)2n+1+2(n ∈N *).6.(2014广东,19,14分)设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S n 2-(n 2+n-3)S n-3(n 2+n)=0,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式; (3)证明:对一切正整数n,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.答案 (1)∵S n 2-(n 2+n-3)S n -3(n 2+n)=0, ∴令n=1,得a 12+a 1-6=0,解得a 1=2或a 1=-3. 又a n >0,∴a 1=2.(2)由S n 2-(n 2+n-3)S n -3(n 2+n)=0,得[S n -(n 2+n)](S n +3)=0,又a n >0,所以S n +3≠0, 所以S n =n 2+n,所以当n ≥2时,a n =S n -S n-1=n 2+n-[(n-1)2+n-1]=2n,又由(1)知,a 1=2,符合上式, 所以a n =2n.(3)证明:由(2)知,1a n (a n +1)=12n(2n+1),所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)=12×3+14×5+…+12n(2n+1)<12×3+13×5+15×7+…+1(2n -1)(2n+1) =16+12[(13-15)+(15-17)+…+(12n -1-12n+1)]=16+12(13-12n+1)<16+12×13=13.7.(2013课标Ⅱ,17,12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n-2.解析 (1)设{a n }的公差为d.由题意得,a 112=a 1a 13,即(a 1+10d)2=a 1(a 1+12d).于是d(2a 1+25d)=0.又a 1=25,所以d=0(舍去)或d=-2. 故a n =-2n+27.(2)令S n =a 1+a 4+a 7+…+a 3n-2.由(1)知a 3n-2=-6n+31,故{a 3n-2}是首项为25,公差为-6的等差数列.从而 S n =n 2(a 1+a 3n-2) =n 2(-6n+56) =-3n 2+28n.8.(2013山东,20,12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N *,求{b n }的前n 项和T n .答案 (1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1得{4a 1+6d =8a 1+4d,a 1+(2n -1)d =2a 1+2(n -1)d +1,解得a 1=1,d=2. 因此a n =2n-1,n ∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N *,得当n=1时,b 1a 1=12; 当n ≥2时,b n a n=1-12n -(1-12n -1)=12n .所以b n a n =12n ,n ∈N *.由(1)知,a n =2n-1,n ∈N *,所以b n =2n -12n ,n ∈N *,又T n =12+322+523+…+2n -12n, 12T n =122+323+…+2n -32n +2n -12n+1, 两式相减得12T n =12+(222+223+…+22n )-2n -12n+1 =32-12n -1-2n -12n+1,所以T n =3-2n+32n. 【三年模拟】时间:70分钟 分值:95分一、选择题(每小题5分,共20分)1.(2018福建厦门第一学期期末质检,7)已知数列{a n }满足a n+1+(-1)n+1a n =2,则其前100项和为( ) A.250 B.200 C.150 D.100 答案 D2.(2020届河南商丘模拟,6)对于函数y=f(x),部分x 与y 的对应值如下表:x 1 2 3 4 5 6 7 8 9 y745813526数列{x n }满足x 1=2,且对任意n ∈N *,点(x n ,x n+1)都在函数y=f(x)的图象上,则x 1+x 2+x 3+…+x 2 019的值为( )A.9 408B.9 422C.9 424D.9 428答案 B3.(2020届福建福州模拟,10)已知数列{a n }满足a 1=1,a n+1=(n+1)a n22a n 2+4na n +n 2,则a 8=( )A.8964-2B.8932-2C.8916-2D.897-2答案 A4.(2019河北衡水中学第一次摸底,12)已知函数f(x)={m x -2 017,x ≥2 019,(3m 2 018+1)x -2 020,x <2 019,数列{a n }满足:a n =f(n),n ∈N *,且{a n }是单调递增数列,则实数m 的取值范围是( ) A.(1,2] B.(1,2)C.(2,+∞)D.(1,+∞)答案 C二、解答题(共75分)5.(2019安徽黄山毕业班第二次质量检测,17)已知数列{na n -1}的前n 项和S n =n,n ∈N *.(1)求数列{a n }的通项公式; (2)令b n =2n+1(a n -1)2(a n+1-1)2,数列{b n }的前n 项和为T n ,求证:对任意的n ∈N *,都有T n <1.答案 (1)因为 S n =n,① 所以当n ≥2时,S n-1=n-1,②由①-②得na n -1=1,故a n =n+1,又因为a 1=2适合上式, 所以a n =n+1(n ∈N *).(2)证明:由(1)知,b n =2n+1(a n -1)2(a n+1-1)2=2n+1n 2(n+1)2=1n 2-1(n+1)2, 所以T n =(112-122)+(122-132)+…+[1n 2-1(n+1)2]=1-1(n+1)2.所以T n <1.6.(2020届皖江名校联盟第一次联考,17)已知数列{a n }满足a 1=1,n 2a n+1-(n+1)2a n =2n 2(n+1)2,n ∈N *,设b n =an n2.(1)求数列{b n }的通项公式; (2)求数列{1b n b n+1}的前n 项和S n .答案 (1)因为n 2a n+1-(n+1)2a n =2n 2(n+1)2,n ∈N *, 所以a n+1(n+1)2-a n n 2=2(n ∈N *),又b n =an n2,所以数列{b n }是等差数列.因为a 1=1,所以b n =an n2=a 112+2(n-1)=2n-1(n ∈N *).(6分)(2)因为1b n b n+1=1(2n -1)(2n+1)=12(12n -1-12n+1), 所以S n =12×(11-13+13-15+…+12n -1-12n+1)=12×(1-12n+1)=n2n+1.(12分)7.(2020届新疆哈密月考,17)已知数列{a n },{b n },其中a 1=5,b 1=-1,且满足a n =12(3a n-1-b n-1),b n =-12(a n-1-3b n-1),n ∈N *,n ≥2. (1)求证:数列{a n -b n }为等比数列; (2)求数列{3×2n -1a n a n+1}的前n 项和S n .答案 (1)证明:a n -b n =12(3a n-1-b n-1)-(-12)(a n-1-3b n-1)=2(a n-1-b n-1),n ∈N *,n ≥2, 又a 1-b 1=5-(-1)=6,所以{a n -b n }是首项为6,公比为2的等比数列. (2)由(1)知,a n -b n =3×2n.①因为a n +b n =12(3a n-1-b n-1)+(-12)(a n-1-3b n-1)=a n-1+b n-1,n ∈N *,n ≥2,又a 1+b 1=5+(-1)=4,所以{a n +b n }为常数列且a n +b n =4.② 联立①②得a n =3×2n-1+2,故3×2n -1a n a n+1=3×2n -1(3×2n -1+2)(3×2n +2)=13×2n -1+2-13×2n +2. 所以S n =(13×20+2-13×21+2)+(13×21+2-13×22+2)+…+(13×2n -1+2-13×2n+2)=15-13×2n +2. 8.(2019湖南百所重点名校大联考,17)已知数列{a n }满足:a 1+a 2+a 3+…+a n =n-a n (n=1,2,3,…). (1)求证:数列{a n -1}是等比数列;(2)令b n =(2-n)(a n -1)(n=1,2,3,…),如果对任意n ∈N *,都有b n +14t ≤t 2,求实数t 的取值范围. 答案 (1)证明:由a 1+a 2+a 3+…+a n =n-a n ,① 得a 1+a 2+a 3+…+a n+1=n+1-a n+1,②②-①可得 2a n+1-a n =1. 即a n+1-1=12(a n -1), 又a 1-1=-12,∴{a n -1}是以-12为首项,12为公比的等比数列. (2)由(1)可得a n =1-(12)n , 故b n =n -22n. 设数列{b n }的第r 项最大,则有{r -22r≥r -12r+1,r -22r≥r -32r -1,即{2(r -2)≥r -1,r -2≥2(r -3). ∴3≤r ≤4,故数列{b n }的最大项是b 3或b 4,且b 3=b 4=18.∵对任意n ∈N *,都有b n +14t ≤t 2,即b n ≤t 2-14t 对任意n ∈N *恒成立,∴18≤t 2-14t,解得t ≥12或t ≤-14.∴实数t 的取值范围是[12,+∞)∪(-∞,-14].9.(2020届山东夏季高考模拟,17)在①b 1+b 3=a 2,②a 4=b 4,③S 5=-25这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求出k 的值;若k 不存在,说明理由.设等差数列{a n }的前n 项和为S n ,{b n }是等比数列, ,b 1=a 5,b 2=3,b 5=-81,是否存在k,使S k >S k+1且S k+1<S k+2?注:如果选择多个条件分别解答,按第一个解答计分. 答案 方案一:选条件①.设{b n }的公比为q,则q 3=b 5b 2=-27,解得q=-3,所以b n =-(-3)n-1.从而a 5=b 1=-1,a 2=b 1+b 3=-10, 由于{a n }是等差数列,所以a n =3n-16. 因为S k >S k+1且S k+1<S k+2等价于a k+1<0且a k+2>0,所以满足题意的k 存在,当且仅当{3(k +1)-16<0,3(k +2)-16>0,解得k=4.方案二:选条件②.设{b n }的公比为q,则q 3=b 5b 2=-27,解得q=-3,所以b n =-(-3)n-1.从而a 5=b 1=-1,a 4=b 4=27,所以{a n }的公差d=-28.S k >S k+1且S k+1<S k+2等价于a k+1<0且a k+2>0,此时d=a k+2-a k+1>0,与d=-28矛盾,所以满足题意的k 不存在. 方案三:选条件③.设{b n }的公比为q,则q 3=b 5b 2=-27,解得q=-3 ,所以b n =-(-3)n-1.从而a 5=b 1=-1, 由{a n }是等差数列得S 5=5(a 1+a 5)2, 由S 5=-25得a 1=-9. 所以a n =2n-11.因为S k >S k+1且S k+1<S k+2等价于a k+1<0且a k+2>0,所以满足题意的k 存在,当且仅当{2(k +1)-11<0,2(k +2)-11>0,解得k=4.10.(2020届江西高安模拟,20)已知函数f(x)满足f(x+y)=f(x)·f(y)且f(1)=12. (1)当n ∈N *时,求f(n)的表达式;(2)设a n =n ·f(n),n ∈N *,求证:a 1+a 2+a 3+…+a n <2. 答案 (1)∵f(x+y)=f(x)·f(y)且f(1)=12, ∴令x=n,y=1,得f(n+1)=f(n)·f(1)=12f(n), ∵n∈N *,∴数列{f(n)}是以f(1)=12为首项,12为公比的等比数列, ∴f(n)=12·(12)n -1=(12)n (n ∈N *). (2)证明:设T n =a 1+a 2+…+a n , ∵a n =n ·f(n)=n ·(12)n (n ∈N *),∴T n =12+2×(12)2+3×(12)3+…+n×(12)n ,则12T n =(12)2+2×(12)3+3×(12)4+…+(n-1)×(12)n +n×(12)n+1,两式相减,得12T n =12+(12)2+(12)3+…+(12)n -n×(12)n+1=12[1-(12)n]1-12-n×(12)n+1=1-(12)n -n×(12)n+1=1-2+n2n+1, ∴T n =2-2+n2n<2. 11.(2020届河南洛阳联考,19)已知数列{a n }满足a 1=12,2a n+1a n =1+1n(n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和T n ;(3)设数列{b n }满足b n ={-2n -10,n =2k,n a n,n =2k -1,其中k ∈N *.记{b n }的前n 项和为S n ,是否存在正整数m,p(m<p),使得S m =S p 成立?若存在,请求出所有满足条件的m,p;若不存在,请说明理由. 答案 (1)数列{a n }满足a 1=12,2a n+1a n =1+1n,整理得2a n+1n+1=an n,即a n+1n+1a n n =12(常数),则数列{a n n}是等比数列,其中首项为12,公比为12. 所以a n n =12·(12)n -1=(12)n,即a n =n 2n (n ∈N *).。

专题三 第二讲 数列的综合应用

专题三 第二讲 数列的综合应用

一、选择题1.(2011·安徽高考)若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15解析:a 1+a 2+…+a 10=-1+4-7+10+…+(-1)10·(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9·(3×9-2)+(-1)10·(3×10-2)]=3×5=15.答案:A2.向量v =(a n +1-a n 2,a 2n +12a n),v 是直线y =x 的方向向量,a 1=5,则数列{a n }的前10项和为( )A .50B .100C .150D .200解析:依题意得a 2n +12a n =a n +1-a n 2,化简得a n +1=a n .又a 1=5,所以a n =5,数列{a n }的前10项和为5×10=50.答案:A3.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( )解析:∵S n =na 1+n (n -1)2d ,∴S n =d 2n 2+(a 1-d 2)n ,又a 1>0,公差d <0,所以点(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.答案:C4.已知函数f (x )=⎩⎪⎨⎪⎧(1-3a )x +10a ,x ≤6,a x -7, x >6.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递减数列,则实数a 的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫13,12C.⎝⎛⎭⎫13,58D.⎝⎛⎭⎫58,1解析:∵f (n )=⎩⎪⎨⎪⎧(1-3a )n +10a ,n ≤6,a n -7, n >6是递减数列, ∴⎩⎪⎨⎪⎧ 1-3a <0,0<a <1,f (6)>f (7),即⎩⎪⎨⎪⎧ 1-3a <0,0<a <1,6-8a >1,解得13<a <58. 答案:C二、填空题 5.(2011·北京高考)在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =____________;|a 1|+|a 2|+…+|a n |=____________.解析:设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |= 12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1) =12(2n -1)=2n -1-12. 答案:-2 2n -1-126.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,x n =________,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.解析:∵y =x n +1, ∴y ′=(n +1)x n ,它在点(1,1)处的切线方程为y -1=(n +1)(x -1),它与x 轴交点的横坐标为x n =1-1n +1=n n +1. 由a n =lg x n ,得a n =lg n -lg(n +1),于是a 1+a 2+…+a 99=lg1-lg2+lg2-lg3+…+lg99-lg100=lg1-lg100=0-2=-2. 答案:n n +1-2 7.(2011·陕西高考)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________(米).解析:当放在最左侧坑时,路程和为2×(0+10+20+…+190);当放在左侧第2个坑时,路程和为2×(10+0+10+20+…+180)(减少了360米);当放在左侧第3个坑时,路程和为2×(20+10+0+10+20+…+170)(减少了680米);依次进行,显然当放在中间的第10、11个坑时,路程和最小,为2×(90+80+…+0+10+20+…+100)=2 000米.答案:2 000三、解答题8.已知二次函数f (x )=x 2-2(10-3n )x +9n 2-61n +100(n ∈N *).(1)设函数y =f (x )的图像的顶点的横坐标构成数列{a n },求证:数列{a n }是等差数列;(2)在(1)的条件下,若数列{c n }满足c n =1+14n -252+a n (n ∈N *),求数列{c n }中最大的项和最小的项.解:(1)证明:y =f (x )的图像的顶点的横坐标为x =-b 2a =--2(10-3n )2=10-3n ,∴a n =10-3n ,∴a n -a n -1=-3.∴{a n }是等差数列.(2)∵c n =1+14n -252+a n =1+14n -252+10-3n =1+22n -5, 当n ≤2时,22n -5<0,且c 1>c 2, 当n ≥3时,22n -5>0且c n >c n +1. ∴{c n }中最小的项为c 2=-1,最大的项为c 3=3.9.(2011·北京海淀)数列{a n }的前n 项和为S n ,若a 1=2,且S n =S n -1+2n (n ≥2,n ∈N *).(1)求S n ;(2)是否存在等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 9?若存在,则求出数列{b n }的通项公式;若不存在,则说明理由.解:(1)因为S n =S n -1+2n ,所以有S n -S n -1=2n 对n ≥2,n ∈N *成立.即a n =2n 对n ≥2成立.又a 1=S 1=2×1,所以a n =2n 对n ∈N *成立.所以a n +1-a n =2对n ∈N *成立.所以{a n }是等差数列. 所以S n =a 1+a n 2·n =n 2+n ,n ∈N *. (2)存在.由(1)知a n =2n 对n ∈N *成立,则a 3=6,a 9=18.又a 1=2,所以由b 1=a 1,b 2=a 3,b 3=a 9,得b 2b 1=b 3b 2=3.即存在以b1=2为首项,公比为3的等比数列{b n},其通项公式为b n=2·3n-1.10.已知数列{a n}满足a1=1,a2=4,a n+2+2a n=3a n+1(n∈N*).(1)求数列{a n}的通项公式;(2)记数列{a n}的前n项和S n,求使得S n>21-2n成立的最小整数n.解:(1)由a n+2+2a n-3a n+1=0得a n+2-a n+1=2(a n+1-a n),∴数列{a n+1-a n}是以a2-a1=3为首项,公比为2的等比数列.∴a n+1-a n=3·2n-1,∴n≥2时,a n-a n-1=3·2n-2,…,a3-a2=3·2,a2-a1=3,累加得a n-a1=3·2n-2+…+3·2+3=3(2n-1-1),∴a n=3·2n-1-2(当n=1时,也满足).(2)由(1)利用分组求和法得S n=3(2n-1+2n-2+…+2+1)-2n=3(2n-1)-2n,S n=3(2n-1)-2n>21-2n得3·2n>24,即2n>8=23,∴n>3,∴使得S n>21-2n成立的最小整数n=4.。

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析1.已知数列满足:且.(1)求数列的通项公式;(2)令,数列的前项和为,求证:时,且【答案】(1);(2)详见解析.【解析】(1)由令,然后用迭加法求出数列的通项公式,最后求数列的通项公式;(2)由(1)知,写出及并化简,利用函数的思想解决与数列有关的不等式问题.解:(1)易知:,令得,若,则当时,也满足上式,故所以 6分(2)易知:8分先证不等式时,令,则∴在上单调递减,即同理:令,则∴在上单调递增,即,得证.取,得,所以14分【考点】1、数列的递推公式;2、函数思想在数列综合问题中的应用.2.已知数列,满足,,,数列的前项和为,.(1)求数列的通项公式;(2)求证:;(3)求证:当时,.【答案】(1),(2)详见解析,(3)详见解析.【解析】(1)求数列的通项公式,需先探究数列的递推关系,由,得,代入,得,∴,从而有,∵,∴是首项为1,公差为1的等差数列,∴,即.(2)∵,∴,,∴.(3)∵,∴.由(2)知,∴∵,所以解:(1)由,得,代入,得,∴,从而有,∵,∴是首项为1,公差为1的等差数列,∴,即.(2)∵,∴,,,∴.(3)∵,∴.由(2)知,∵,∴.【考点】求数列通项,数列不等式,已知,且对一切都3.设各项均为正数的数列的前n项和为Sn成立.(1)若λ=1,求数列的通项公式;(2)求λ的值,使数列是等差数列.【答案】(1);(2).【解析】(1)本题已知条件是,我们要从这个式子想办法得出与的简单关系式,变形为,这时我们联想到累乘法求数列通项公式的题型,因此首先由得,又,这个式子可化简为,这样就变成我们熟悉的已知条件,已知解法了;(2)这种类型问题,一种方法是从特殊到一般的方法,可由成等差数列,求出,然后把代入已知等式,得,,这个等式比第(1)题难度大点,把化为,有当n≥2时,,整理,得,特别是可变形为,这样与第(1)处理方法相同,可得,即,从而说不得是等差数列.试题解析:(1)若λ=1,则,.又∵,∴, 2分∴,化简,得.① 4分∴当时,.②②-①,得,∴(). 6分∵当n=1时,,∴n=1时上式也成立,∴数列{an }是首项为1,公比为2的等比数列,an=2n-1(). 8分(2)令n=1,得.令n=2,得. 10分要使数列是等差数列,必须有,解得λ=0. 11分当λ=0时,,且.当n≥2时,,整理,得,, 13分从而,化简,得,所以. 15分综上所述,(),所以λ=0时,数列是等差数列. 16分【考点】递推公式,累乘法,与的关系,等差数列.4.已知数列中,,,,则= .【答案】1306【解析】,,∴,所以=【考点】数列求和。

(完整版)高考复习:数列的综合运用含解析答案(教师版+学生版)

(完整版)高考复习:数列的综合运用含解析答案(教师版+学生版)

数列的综合运用考点一等差数列与等比数列的综合问题例 1、在等比数列 { a n}( n∈N * )中, a1>1,公比 q>0 ,设 b n= log 2a n,且 b1+ b3+b5=6,b1b3b5= 0.(1)求证:数列{ b n} 是等差数列;(2) 求{ b n} 的前n 项和S n及 { a n} 的通项a n.考点二等差数列与等比数列的实质应用例 2、一位少儿园老师给班上k(k≥3) 个小朋友分糖果.她发现糖果盒中原有糖果数为a0,就先从别处抓 2 块糖加入盒中,而后把盒内糖果的1分给第一个小朋友;再从别处抓22 块糖加入盒中,而后把盒内糖果的13 分给第二个小朋友;,此后她老是在分给一个小朋友后,就从别处抓 2 块糖放入盒中,而后把盒内糖果的1分给第n+ 1n( n= 1,2,3,, k)个小朋友,分给第 n 个小朋友后 (未加入 2 块糖果前 )盒内剩下的糖果数为a n.(1)当 k= 3, a0= 12 时,分别求 a1, a2, a3;(2)请用 a n-1表示 a n,并令 b n=(n+1)a n,求数列{ b n}的通项公式;(3)能否存在正整数 k(k≥ 3)和非负整数 a0,使得数列{ a n} (n≤ k)成等差数列?假如存在,恳求出全部的 k 和 a0;假如不存在,请说明原因.考点三数列与不等式例 3、设数列 { a n} 的前 n 项和为 S n,已知 a1= a2= 1, b n= nS n+(n+2)a n,数列 { b n} 是公差为 d 的等差数列, n∈N * .(1) 求 d 的值;(2)求数列 { a n} 的通项公式;22n+ 1★(3) 求证: (a1a2· ·a n) ·(S1S2· ·S n)<n+1 n+2 .考点四数列与函数例 4、已知函数 f(x)=( x-1)2,g(x)= 10(x- 1),数列 { a n} 知足 a1= 2,(a n+1- a n)g(a n)+ f(a n)= 0,9b n=10(n+ 2)(a n- 1).(1)求证:数列 { a n- 1} 是等比数列;(2)当 n 取何值时, b n取最大值?并求出最大值;★(3)若 t m< t m+1对随意 m∈ N *恒成立,务实数t 的取值范围.b m b m+ 1数列的综合运用 ( 作业 )1. 已知等差数列{ a n } 的公差为- 2,且 a 1, a 3, a 4 成等比数列,则 a 20= ________.2.设等差数列 { a n } 的公差 d ≠0,a 1= 4d ,若 a k 是 a 1 与 a 2k 的等比中项, 则 k 的值为 ________.3.设 S n 是等比数列 { a n } 的前 n 项和, S 3, S 9, S 6 成等差数列,且 a 2+ a 5= 2a m ,则 m =________.4.某住所小区计划植树许多于100 棵,若第一天植2 棵,此后每日植树的棵数是前一天的 2 倍,则需要的最少天数n(n ∈ N * )等于 ________.5.某公司在第 1 年初购置一台价值为 120 万元的设施M ,M 的价值在使用过程中逐年减 少.从第 2 年到第 6 年,每年初 M 的价值比上年初减少 10 万元;从第 7 年开始,每年初 M的价值为上年初的75%. 则第 n 年初 M 的价值 a n = ________.6.植树节某班 20 名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中搁置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往 返所走的行程总和最小,这个最小值为________米.7.设数列 { a } 中,若 a= a + a*),则称数列 { a } 为“凸数列”,已知数列 { b }(n ∈ Nnn +1nn +2nn为“凸数列”,且b 1= 1, b 2=- 2,则数列 { b n } 的前 2 013 项和为 ________.n2+n 的数列 { a n }1234 5n > a n + 1对 n ≥ 88.通项公式为 a = an,若知足 a <a <a < a < a ,且 a恒成立,则实数 a 的取值范围是 ________.9.将正偶数摆列以下表,此中第i 行第 j 个数表示为 a(i , j ∈ N ),比如 a = 18,若 aij*43ij= 2 014,则 i + j________.246810121416182010.三个互不相等的实数成等差数列,适合互换这三个数的地点后, 变为一个等比数列,则此等比数列的公比是 ________.11.设数列 { a n } 的前 n 项和为 S n,知足 a n+ S n= An2+ Bn+ 1(A≠ 0).(1) 若 a1=3, a2=9,求证数列 { a n-n} 是等比数列,并求数列{ a n} 的通项公式;24B- 1(2)已知数列 { a n} 是等差数列,求的值.A12.已知数列 { a n} 中,a1=2,a2= 4,a n+1= 3a n- 2a n-1(n≥ 2,n∈ N* ).(1) 证明数列 { a n+1- a n} 是等比数列,并求出数列{ a n } 的通项公式;2a n-1(2)记 b n=( n∈N * ),数列 { b n} 的前 n 项和为 S n,求使 S n>2 013 成立的 n 的最小值. a n13.已知数列{ a n} 的前n 项和为S n.(1) 若数列{ a n} 是等比数列,知足2a1+a3= 3a2,a3+ 2 是a2,a4的等差中项,求数列{ a n}的通项公式;(2)能否存在等差数列 { a n} ,使对随意 n∈N*,都有 a n·S n= 2n2(n+ 1)?若存在,恳求出全部知足条件的等差数列;若不存在,请说明原因.14.已知数列 { a n} 中, a1= 2,n∈ N*, a n> 0,数列 { a n} 的前 n 项和为 S n,且知足2.a n+1=S n+1+S n-2(1)求 { S n} 的通项公式.(2)设 { b k} 是数列 { S n} 中按从小到大次序构成的整数数列.①求 b3;②若存在 N(N∈N * ),当 n≤ N 时,使得在数列{ S n} 中,数列 { b k} 有且只有20 项,求 N 的取值范围.数列的综合运用考点一等差数列与等比数列的综合问题例 1、在等比数列 { a n}( n∈N * )中, a1>1,公比 q>0 ,设 b n= log 2a n,且 b1+ b3+b5=6,b1b3b5= 0.(1)求证:数列{ b n} 是等差数列;(2) 求{ b n} 的前n 项和S n及 { a n} 的通项a n.解: (1) 证明:∵b n= log 2a n,a n+1∴b n+1- b n= log 2a n= log 2q 为常数,∴数列{ b n} 为等差数列且公差2 d= log q.(2)设数列 { b n} 的公差为 d,∵b1+ b3+ b5= 6,∴b3= 2. ∵a1>1,∴b1= log 2a1>0.∵b1b3 b5= 0,∴b5= 0.b1+ 2d= 2,b1= 4,∴解得b + 4d=0,d=- 1.1n n- 1× (-1)=9n- n2n.∴S = 4n+22log2q=- 1,q=1 2,∵∴log2a1= 4, a = 16.1∴a n= 25-n(n∈N* ).考点二等差数列与等比数列的实质应用例 2、一位少儿园老师给班上k(k≥3) 个小朋友分糖果.她发现糖果盒中原有糖果数为a0,就先从别处抓 2 块糖加入盒中,而后把盒内糖果的12分给第一个小朋友;再从别处抓2 块糖加入盒中,而后把盒内糖果的1 分给第二个小朋友;,此后她老是在分给一个小朋友后,就3从别处抓 2 块糖放入盒中,而后把盒内糖果的1分给第n+ 1n( n= 1,2,3,, k)个小朋友,分给第 n 个小朋友后(未加入 2 块糖果前)盒内剩下的糖果数为a n.(1) 当k= 3, a0= 12 时,分别求a1, a2, a3;(2)请用 a n-1表示 a n,并令 b n=(n+1)a n,求数列{ b n}的通项公式;(3)能否存在正整数 k(k≥ 3)和非负整数 a0,使得数列{ a n} (n≤ k)成等差数列?假如存在,恳求出全部的 k 和 a0;假如不存在,请说明原因.解: (1)当 k= 3, a0=12 时,1a1= (a0+ 2)-2(a0+2) =7,1a2= (a1+ 2)-3(a1+2) =6,1a3= (a2+ 2)-4(a2+2) =6.(2)由题意知1n a n= (a n-1+2) -(a n-1+ 2)=n+ 1(a n-1+ 2),n+ 1即( n+ 1)a n= n(a n-1+ 2)= na n-1+ 2n.因为 b n= (n+ 1)a n,所以 b n- b n-1= 2n,b n-1- b n-2= 2n-2,b1- b0= 2.2+2n n累加得 b n- b0==n(n+1).2又 b0= a0,所以 b n=n( n+ 1)+ a0.a0(3) 由 b n= n(n+1)+ a0,得 a n= n+.n+ 1若存在正整数k(k≥ 3)和非负整数 a 0,使得数列 { a n}( n≤ k)成等差数列,则a1+ a3= 2a2,即(1 +a20)+3+a40= 2(2+a30 ),解得 a0= 0,当 a0= 0n=n,对随意正整数n时, a k(k≥ 3) ,有 { a }( n≤ k)成等差数列.[类题通法 ]解数列应用题的建模思路从实质出发,经过抽象归纳成立数学模型,经过对模型的分析,再返回实质中去,其思路框图为:考点三数列与不等式例 3、设数列 { a n } 的前 n 项和为 S n ,已知 a 1= a 2= 1, b n = nS n +(n +2)a n ,数列 { b n } 是公差为 d 的等差数列, n ∈N * .(1) 求 d 的值;(2) 求数列 { a n } 的通项公式;(3) 求证:22n +1(a 1a 2· ·a n ) ·(S 1S 2· ·S n )< n + 1 n + 2 .解: (1) 因为 a 1= a 2= 1,所以 b 1= S 1+ 3a 1=4, b 2= 2S 2+ 4a 2= 8,所以 d = b 2- b 1= 4.(2) 因为数列 { b n } 是等差数列,所以 b n = 4n , 所以 nS n + (n + 2)a n = 4n ,即 n + 2S n +n a n = 4.①n + 1当 n ≥ 2 时, S n -1+ a n - 1= 4. ② n - 1由①-②得 (S n)+ n + 2n + 1n -1n nn - 1- S a -a= 0.n - 1所以 a n + n + 2 n n + 1 n -1,即 a n = 1 nn =· .n - 1a n - 1 2n - 1则a 2= 1 2, a 3= 1 3, ,a n = 1 na 1 ··a n - 1· .2 1 a 2 2 2 2n - 1以上各式两边分别相乘,得a n=1·n.a 1 2n -1因为 a 1= 1,所以 a n =n.2n -1n + 2(3) 证明:因为 S n + n a n = 4, a n > 0, S n > 0,所以S n n +2 n S + n + 2n a= 2.nn· n a ≤2则 0< a n nn1 2 n1 2nn1× 2S ≤4·.所以 (a a · ·a ) ·(S S· ·S )≤4·.③n + 2n + 1 n +2因为 n = 1 时, S n n + 2≠ na,所以③式等号取不到.22 n +1则( a 1a 2· ·a n ) ·(S 1S 2· ·S n )< .n + 1 n + 2 [类题通法 ]数列与不等式相联合问题的办理方法解决数列与不等式的综合问题时,假如是证明题要灵巧选择不等式的证明方法,如比较法、综合法、剖析法、放缩法等;假如是解不等式问题要使用不等式的各样不一样解法,如列表法、因式分解法、穿根法等.总之解决这种问题把数列和不等式的知识奇妙联合起来综合办理就行了.考点四数列与函数例 4、已知函数 f(x)=( x -1)2 ,g(x)= 10(x - 1),数列 { a n } 知足 a 1= 2,(a n + 1- a n )g(a n )+ f(a n )= 0,9b n = 10(n + 2)(a n - 1).(1) 求证:数列 { a n - 1} 是等比数列;(2) 当 n 取何值时, b n 取最大值?并求出最大值;(3)若t m<t m +1对随意m ∈N * 恒成立,务实数 t 的取值范围.b m b m + 1解: (1) 证明:因为 (a n +1- a n )g( a n )+ f(a n )= 0,f(a n )= (a n -1) 2, g(a n )= 10(a n - 1),所以 10(a n+1- a n)(a n- 1)+ (a n- 1)2= 0,整理得 (a n- 1)[10( a n+1- a n)+ a n- 1]= 0,所以 a n= 1n+ 1nn-1=0② .①或 10(a- a )+ a由①得数列 { a n} 是各项为 1的常数列,而1n+ 1- 1)=a = 2,不合题意.由②整理得10(a9(a n- 1),又 a1- 1= 1,9所以 { a n- 1} 是首项为1,公比为10的等比数列.(2)由 (1)可知 a n- 1= ( 9)n-1, n∈N*,10所以 b n=109(n+ 2)(a n- 1)= (n+ 2)(109)n> 0,9 nb n+1n+ 3+ 11091所以b n=n+ 29 n=10(1+n+2).10当 n= 7 时,b= 1,即 b788=b ;b7当 n< 7 时,b n+1> 1,即 b n+1> b n;b nb当 n> 7 时,n+1< 1,即 b n+1nb n< b .所以当 n=7 或 8 时, b n获得最大值,最大值为8798 b=b =107.t m t m+11-10t<0.(*)<得 t m9 m+3(3) 由b m b m+1m+ 2由题意知, (*) 式对随意m∈N*恒成立.①当 t= 0时, (*) 式明显不行立,所以t= 0 不合题意;②当 t< 0时,由 1 -10t> 0可知 t m< 0(m∈N * ),m+29 m+ 3而当 m 为偶数时, t m > 0, 所以 t < 0 不合题意;③当 t > 0 时,由 t m > 0(m ∈N *)知,1-10t< 0,m + 2 9 m +39 m + 3所以 t >(m ∈N * ).10 m +29 m + 3令 h(m)=(m ∈N * ).10 m + 29 m + 4 9 m + 3因为 h(m + 1)- h(m)= -10 m + 3 10 m + 2 9< 0,=-10 m + 2 m + 3所以 h(1) > h(2)> h(3)> > h(m - 1)> h(m) ,6所以 h(m)的最大值为h(1) = 5.6所以实数 t 的取值范围是 (5,+ ∞ ).数列的综合运用 ( 作业 )1. 已知等差数列{ a n } 的公差为- 2,且 a 1, a 3, a 4 成等比数列,则 a 20= ____ -30____.分析: 设 {an} 的首项为 a ,则 a , a - 4, a - 6 成等比数列,则 (a - 4)2= a(a - 6),解得 a= 8.又公差 d =- 2,所以 a 20=a + 19d =8+ 19× (- 2)=- 30.2.设等差数列 { a n } 的公差 d ≠0,a 1= 4d ,若 a k 是 a 1 与 a 2k 的等比中项, 则 k 的值为 ________.分析:由条件知 a n = a 1+* 2(n - 1)d =4d + (n - 1)d = (n + 3)d ,即 a n = (n + 3)d(n ∈N ).又 a k =1 2k 22= 4d ·(2k + 3)d ,且 d ≠ 0,所以 (k + 3)2=4(2k + 3),即 k 2- 2k - 3=0,解a ·a ,所以 (k + 3) d得 k = 3 或 k =- 1(舍去 ).答案: 33.设 S 是等比数列n的前 n 项和, S , S , S 成等差数列,且a + a = 2a ,则 m =n39625m{ a }________.分析:设等比数列 { an}a1 1-q9a1 1- q3936得 2·=+的公比为 q,明显 q≠ 1.由 2S = S+ S1-q1- qa1 1- q611 4=2a1m-1,即,所以 2q9=q3+ q6,即 1+q3=2q625=2a m1- q.因为 a+ a,所以 a q+ a q q1+ q3= 2q m-2,所以 m- 2= 6,所以 m= 8.4.某住所小区计划植树许多于100 棵,若第一天植 2 棵,此后每日植树的棵数是前一天的 2 倍,则需要的最少天数n(n∈ N* )等于 ________.分析:设每日植树的棵数构成的数列为{ a n} ,由题意可知它是等比数列,且首项为2,公比为 2,2 1- 2n所以由题意可得≥ 100,即 2n≥ 51,1-2而 25= 32,26= 64,n∈N*,所以 n≥ 6.答案: 65.某公司在第 1 年初购置一台价值为120 万元的设施 M ,M 的价值在使用过程中逐年减少.从第 2 年到第 6 年,每年初 M 的价值比上年初减少 10 万元;从第7 年开始,每年初 M 的价值为上年初的75%. 则第 n 年初 M 的价值 a n= ________.分析:当 n≤ 6 时,数列 { a n } 是首项为120,公差为- 10 的等差数列,a n= 120- 10(n- 1)=130- 10n;当 n≥ 7 时,数列 { a n} 是以 a6为首项,34为公比的等比数列,又 a6= 70,所以 a n= 70×34n-6.130- 10n,n≤ 6,答案: a n=3-70×4n6, n≥ 76.植树节某班20 名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中搁置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的行程总和最小,这个最小值为________米.分析:当放在最左边坑时, 行程和为 2× (0+ 10+20++ 190);当放在左边第 2 个坑时,行程和为 2× (10+0+ 10+ 20+ + 180)(减少了 360 米 ) ;当放在左边第 3 个坑时,行程和为2× (20+ 10+ 0+ 10+ 20+ + 170)( 减少了 680 米 );挨次进行,明显当放在中间的第 10、11个坑时,行程和最小,为2× (90+ 80+ + 0+10+ 20+ + 100)= 2 000 米.7.设数列 { a } 中,若 a= a + a* ),则称数列 { a } 为“凸数列”,已知数列 { b }(n ∈ Nnn +1 nn +2nn为“凸数列”,且 b 1= 1, b 2=- 2,则数列 { b n } 的前 2 013 项和为 ________.分析: 由 “凸数列 ”的定义, 可知, b 1=1,b 2=- 2,b 3=- 3,b 4 =- 1,b 5= 2,b 6= 3,b 7= 1,b 8=- 2, ,故数列 { b n } 是周期为 6 的周期数列,又 b 1+ b 2+ b 3 + b 4+ b 5+ b 6= 0,故数列 { b n }的前 2013 2 013 1 23项和 S = b + b + b = 1- 2- 3=- 4.8.通项公式为 n 2+n 的数列 { a n } 12 345n> a n + 1 对 n ≥ 8 a = an,若知足 a <a <a < a < a ,且 a 恒成立,则实数 a 的取值范围是 ________.分析: 因为 a 1< a 2< a 3<a 4<a 5,即 a + 1<4a + 2<9a + 3< 16a + 4< 25a + 5,所以 a >- 1.9 因为 a n n + 1对 n ≥ 8 恒成立,即 an 2+ n > a(n + 1)2+ (n + 1),所以 a <-1> a因为 2n2n + 1+ 1≥ 17,所以-1 ≥-1112n + 117.要使得 a <- 2n +1对 n ≥8 恒成立,则 a<-17.1 1 综上,-9< a <- 17.11答案: (- 9,- 17)9.将正偶数摆列以下表,此中第i 行第 j 个数表示为 a ij (i , j ∈ N * ),比如 a 43= 18,若 a ij= 2 014,则 i + j________.2468101214161820分析: 正偶数数列 {2 n} ,则 a ij = 2 014 为正偶数数列的第 1 007 项,设 a ij 在第 i 行,前 ii i - 1i i + 1i i - 1< 1 007≤ i i +1-1 行共有2 个正偶数,前 i 行共有 2个正偶数,于是有2 2 ,i ∈N *,得 i =45,前 i - 1 行有 990 个数,则 a ij = 2 014 是第 45 行第 17 个数,即 j = 17,所以 i+ j = 62.10.三个互不相等的实数成等差数列,适合互换这三个数的地点后, 变为一个等比数列,则此等比数列的公比是________.分析: 设这三个数分别为 a - d , a , a + d(d ≠ 0),因为 d ≠ 0,所以 a - d , a ,a + d 或 a+ d ,a , a -d 不行能成等比数列.若a - d ,a + d ,a 或 a ,a + d ,a - d 成等比数列,则 (a +d)2= a(a - d),即 d =- 3a ,此时 q =a1或 q=a -3a=- =- 2;若 a ,a - d , a + d 或 aa - 3a 2 aa - 3aa+ d ,a - d ,a 成等比数列, 则 (a - d)2= a(a + d),即 d = 3a ,此时, q =a =- 2 或 q =a - 3a11=- 2.故 q =- 2 或- 2.nnnn2+Bn + 1(A ≠ 0).11. (2014 苏·州质检 )设数列 { a } 的前 n 项和为 S ,知足 a + S = An13, a 29,求证数列 { a n-n} 是等比数列,并求数列 n(1) 若 a =2= 4{ a } 的通项公式;(2) 已知数列 n是等差数列,求B - 1的值.{ a }A解: (1) 证明:分别令 n = 1,2,2a 1= A + B + 1,代入条件得2a 2+ a 1= 4A + 2B + 1.A = 1,又 a 1= 3, a 2 = 9,解得22 43B = 2.所以 a nn12+3①+ S = 2n 2n + 1,则 a n+1+ S n+1=1(n+1) 2+3(n+ 1)+ 1. ②22②-①得2a n+1- a n= n+ 2.1则 a n+1- (n+ 1)=2(a n- n).1≠ 0,因为 a1- 1=211所以数列 { a n- n} 是首项为2,公比为2的等比数列.11所以 a n- n=2n,则 a n= n+2n.(2) 因为数列 { a n} 是等差数列,所以设a n= dn+ c,则S n=n d+c+dn+c=dn2+c+dn.222所以 a n n d2+c+3d+ S =2n2 n+ c.d3d B-1所以 A=2, B= c+2, c= 1.所以A= 3.12.已知数列 { a n} 中,a1=2,a2= 4,a n+1= 3a n-2a n-1(n≥ 2,n∈ N *).(1) 证明数列{ a n+1- a n} 是等比数列,并求出数列{ a n } 的通项公式;2a n-1(2)记 b n=( n∈N * ),数列 { b n} 的前 n 项和为 S n,求使 S n>2 013 成立的 n 的最小值. a n解: (1) 证明∵a n+1= 3a n- 2a n-1(n≥ 2, n∈N* ),∴a n+1- a n= 2(a n- a n-1)(n≥ 2, n∈N *).∵a1= 2, a2= 4,∴a2- a1= 2≠ 0,∴a n- a n-1≠ 0(n≥ 2,n∈N* ) ,故数列 { a n+1- a n} 是首项为2,公比为 2 的等比数列,∴a n+1- a n= 2n,∴a n= ( a n- a n-1)+ (a n-1- a n-2)+ (a n-2- a n-3) ++(a2-a1)+a1=2n-1+2n-2+2n-3+ +21+ 2=2× 1-2n -1+ 2= 2n (n ≥ 2,n ∈N *),1- 2又 a 1= 2 也知足上式,∴ a n =2n ( n ∈N * ).2 a - 11 11(2) 由 (1)知 b n =n=2 1- a n = 2 1- 2n = 2- n -1( n ∈N *),a n21n1+ 11 +12+ + n11- 2n = 2n - 2 1- 1n1 1,∴S = 2n -2 22 -1= 2n -1 2 = 2n -2+ n-21- 2 由 S n >2 01311 2 015得, 2n - 2+ 2n -1>2 013,即 n +2n > 2 ,∵n ∈N *,∴n +1n 的值随 n 的增大而增大,2∴n 的最小值为 1 008.13. (2014 ·州模拟扬 )已知数列 { a n } 的前 n 项和为 S n .(1) 若数列 { a n } 是等比数列,知足 2a 1+a 3= 3a 2,a 3+ 2 是 a 2,a 4 的等差中项,求数列{ a n }的通项公式;(2) 能否存在等差数列 { a n } ,使对随意 n ∈N * ,都有 a n ·S n = 2n 2(n + 1)?若存在,恳求出全部知足条件的等差数列;若不存在,请说明原因.解: (1) 设等比数列 { a n } 的首项为 a 1 ,公比为 q ,2a 1+ a 3= 3a 2,依题意有a 2+ a 4= 2 a 3+ 2 ,a 1 2+ q 21 ①= 3a q ,即32+4.a 1q + q 1②= 2a q由①得 q 2- 3q + 2= 0,解得 q = 1 或 q = 2.当 q = 1 时,不合题意,舍去;当 q = 2 时,代入②得 a 1= 2,所以 a n = 2·2n - 1= 2n .(2) 假定存在知足条件的数列 { a n } ,设此数列的公差为d.法一: [a1+ (n- 1)d]n n-1= 2n2(n+ 1),a n+d12d2322312即2 n2+2a1d- d n +a1-2a1d+2d= 2n2+ 2n对任意 n ∈N*恒成立,则d22=2,3a1d- d2=2,22312a1-2a1d+2d= 0,解得d= 2,d=- 2,n或此时 a n= 2n=- 2n.a = 2 a =- 2.或 a11故存在等差数列{ a n } ,使对随意n∈N*,都有 a n·S n= 2n2(n+ 1),此中 a n=2n 或 a n=- 2n.法二:令 n= 1, a2= 4 得 a =±2,1121 2令 n= 2 得 a2-24= 0,+ a a①当 a1= 2 时, a2= 4 或 a2=- 6,若 a2= 4,则 d= 2, a n= 2n, S n= n(n+ 1),对随意 n∈N *,都有 a n·S n= 2n2 (n+ 1);若 a2=- 6,则 d=- 8,a3=- 14, S3=- 18,不知足 a3·S3= 2× 32× (3+ 1),舍去.②当 a1=- 2 时, a2=- 4 或 a2= 6,若 a2=- 4,则 d=- 2,a n=- 2n,S n=- n(n+ 1),对随意 n∈N*,都有 a n·S n= 2n2(n+1);若 a2= 6,则 d= 8, a3= 14, S3= 18,不知足 a3·S3= 2× 32× (3+ 1),舍去.综上所述,存在等差数列 { a n} ,使对随意 n∈N *,都有 a n·S n=2n2( n+ 1),此中 a n= 2n 或a n=- 2n.14.(2014 ·锡模拟无 )已知数列 { a n} 中,a1= 2,n∈N *,a n> 0,数列 { a n} 的前 n 项和为 S n,2且知足a n+1=S n+1+S n-2.(1)求 { S n} 的通项公式.(完好版)高考复习:数列的综合运用含分析答案(教师版+学生版)(2)设 { b k} 是数列 { S n} 中按从小到大次序构成的整数数列.①求 b3;②若存在 N(N∈N * ),当 n≤ N 时,使得在数列 { S n} 中,数列 { b k} 有且只有 20 项,求 N 的取值范围.解: (1) 因为 a n+1= S n+1-S n,所以 (S n+1- S n)( S n+1+ S n- 2)= 2,22即 S n+1n n+ 1n所以 (S n+1- 1)2- (S n- 1)2=2,且 (S1- 1)2= 1,所以 {( S n- 1)2} 是首项为 1,公差为 2 的等差数列,所以 S n= 1+2n- 1.(2)①当 n= 1 时, S1= 1+ 1=2= b1;当 n= 5 时, S5= 1+ 3=4= b2;当 n= 13 时, S13=1+ 5= 6= b3.②因为 2n- 1 是奇数, S n= 1+2n- 1为有理数,则 2n- 1=2k- 1,所以 n= 2k2- 2k+ 1.当 k= 20 时, n= 761;当 k= 21 时, n= 841.所以存在 N∈[761,840] (N∈N * ),当 n≤ N 时,使得在 { S n} 中,数列 { b k} 有且只有20 项.。

文科数学高考真题分类汇编 数列的综合应用答案

文科数学高考真题分类汇编 数列的综合应用答案

(n
N )

11.【解析】证明:(1)因为 an 是等差数列,设其公差为 d ,则an = a1 + (n −1)d ,
从而,当n≥4 时, an−k + an+k = a1 + (n − k − 1)d + a1 + (n + k −1)d
= 2a1 + 2(n −1)d = 2an , k =1, 2,3, 所以 an −3 + an −2 +an −1+an+1 + an+2 +an +3 = 6an ,
若 q ≤ −1,则 a1 + a2 + a3 + a4 = a1(1+ q)(1+ q2)≤0 ,
而a1 + a2 + a3 ≥ a1 1 ,所以 ln(a1 + a2 + a3 ) 0 ,
与 ln(a1 + a2 + a3 ) = a1 + a2 + a3 + a4 ≤ 0 矛盾,
所以 −1 q 0 ,所以 a1 − a3 = a1(1−q2) 0 , a2 − a4 = a1q(1− q2) 0 ,
所以 xn

1 2n−1



xn
xn+1 2

2xn
+1

xn

1 − 1 ≥2( 1 − 1) 0
xn+1 2
xn 2
所以 1 − 1 ≥ 2( 1 − 1)≥≥ 2n−1 ( 1 − 1) = 2n−2
xn 2
xn−1 2
x1 2

高考数学专题复习-6.4数列求和、数列的综合应用-高考真题练习(附答案)

高考数学专题复习-6.4数列求和、数列的综合应用-高考真题练习(附答案)

6.4数列求和、数列的综合应用考点数列求和及数列的综合应用1.(2014课标Ⅱ文,5,5分)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =()A.n(n+1)B.n(n-1)C.or1)2D.ot1)2答案A ∵a 2,a 4,a 8成等比数列,∴42=a 2·a 8,即(a 1+3d)2=(a 1+d)(a 1+7d),将d=2代入上式,解得a 1=2,∴S n =2n+ot1)·22=n(n+1),故选A.2.(2012课标文,12,5分)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为()A.3690B.3660C.1845D.1830答案D 当n=2k 时,a 2k+1+a 2k =4k-1,当n=2k-1时,a 2k -a 2k-1=4k-3,∴a 2k+1+a 2k-1=2,∴a 2k+1+a 2k+3=2,∴a 2k-1=a 2k+3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(2×60-1)=30×(3+119)2=30×61=1830.3.(2019浙江,10,4分)设a,b∈R,数列{a n }满足a 1=a,a n+1=2+b,n∈N *,则()A.当b=12时,a 10>10 B.当b=14时,a 10>10C.当b=-2时,a 10>10D.当b=-4时,a 10>10答案A 本题以已知递推关系式判断指定项范围为载体,考查学生挖掘事物本质以及推理运算能力;考查的核心素养为逻辑推理,数学运算;体现了函数与方程的思想,创新思维的应用.令a n+1=a n ,即2+b=a n ,即2-a n +b=0,若有解,则Δ=1-4b≥0,即b≤14,∴当b≤14时,a n *,即存在b≤14,且使数列{a n }为常数列,B 、C 、D 选项中,b≤14成立,故存在使a n*),排除B 、C 、D.对于A,∵b=12,∴a 2=12+12≥12,a 3=22+12≥+12=34,a4+12=1716,∴a5,a 6,…,a 10,=1=1+C 641×116+C 642+…=1+4+638+…>10.故a 10>10.4.(多选)(2020新高考Ⅰ,12,5分)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且P (X =i )=p i >0(i =1,2,…,n ),∑=ni 1p i =1,定义X 的信息熵H (X )=-∑=ni 1p i log 2p i .()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p 1的增大而增大C.若p i =1(i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )答案AC 对于A ,若n =1,则p 1=1,∴H (X )=-1×log 21=0,A 正确.对于B ,若n =2,则p 1+p 2=1,∴H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),∵p 1+p 2=1,∴p 2=1-p 1,p 1∈(0,1),∴H (X )=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],令f (p 1)=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],∴f '(p 1)=-p 1·11·ln2+log 2p 1+(1-p 1)·−1(1−1)·ln2-log 2(1-p 1)=-[log 2p 1-log 2(1-p 1)]=log 21−11,令f '(p 1)>0,得0<p 1<12;令f '(p 1)<0,得12<p 1<1.∴y =f (p 1)在0,1上为减函数,∴H (X )随着p 1的增大先增大后减小,B 不正确.对于C ,由p i =1(i =1,2,…,n )可知,H (X )=-∑=ni 1pEog2B =−∑=ni 11log21=log 2n ,∴H (X )随着n 的增大而增大,C 正确对于D ,解法一(特例法):不妨设m =1,n =2,则H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),由于p 1+p 2=1,不妨设p 1=p2=12,则H (X )212+12log 22=1,H (Y )=-1×log 21=0,故H (X )>H (Y ),D 不正确.解法二:由P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),得P (Y =1)=p 1+p 2m ,P (Y =2)=p 2+p 2m -1,……,P (Y =m )=p m +p m +1,∴H (Y )=-∑=mj 1[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m -1)log 2(p 2+p 2m -1)+…+(p m +p m +1)log 2(p m +p m +1)],由n =2m ,得H (X )=-∑=mi 21p i log 2p i =-(p 1log 2p 1+p 2log 2p 2+…+p 2m log 2p 2m ),不妨设0<a <1,0<b <1,且0<a +b ≤1,则log 2a <log 2(a +b ),a log 2a <a log 2(a +b ),同理b log 2b <b log 2(a +b ),∴a log 2a +b log 2b <(a +b )log 2(a +b ),∴p 1log 2p 1+p 2m log 2p 2m <(p 1+p 2m )log 2(p 1+p 2m ),p 2log 2p 2+p 2m -1log 2p 2m -1<(p 2+p 2m -1)log 2(p 2+p 2m -1),……p m log 2p m +p m +1log 2p m +1<(p m +p m +1)log 2(p m +p m +1),∴∑=mi 21pEog2B <∑=mj 1(p j +p 2m +1-j )log 2(p j +p 2m +1-j ),∴H (X )>H (Y ),D 不正确.5.(2021新高考Ⅰ,16,5分)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n 次,那么∑=nk 1S k =dm 2.答案5;240×3解析解法一:列举法+归纳法.由上图可知,对折n 次后,共可以得到(n +1)种不同规格的图形,故对折4次可以得到5种不同规格的图形.归纳上述结论可知,对折n次后得到不同规格的图形的面积之和为120(+K1dm 2(n ∈N *),故S k =120(+dm 2(k ∈N *),记T n =∑=nk 1(k +1,∴T n =220+321+422+…+2K2+r12K1,①12B =221+322+423+…+2K1+r12,②①-②得,122+12+122+…+12K1−r1221−12r12=3−r32,∴T n =6-r32K1,∴∑=nk 1S =120×6=240×32.解法二:对折3次可以得到208dm×12dm ,204dm ×122dm ,202dm ×124dm ,20dm×128dm ,共四种不同规格的图形,对折4次可以得到2016dm×12dm ,208dm ×122dm ,204dm ×124dm ,202dm ×128dm ,20dm×1216dm ,共五种不同规格的图形,由此可以归纳出对折n 次可得到(n +1)种不同规格的图形,每种规格的图形的面积均为20×122dm 2,∴∑=nk 1S k =20×12×12×2+14×3+18×4+…+12×(n +1)dm 2,记T n =22+34+…+r12,则12B =24+38+…+r12r1,∴T n -12B =12B =1+18+…−r12r1=32−12−r12r1=32−r32r1,∴T n =3-r32,∴∑=nk 1S =240×32.6.(2018江苏,14,5分)已知集合A={x|x=2n-1,n∈N *},B={x|x=2n ,n∈N *}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为.答案27解析本题考查数列的插项问题.设A n =2n-1,B n =2n,n∈N *,当A k <B l <A k+1(k,l∈N *)时,2k-1<2l<2k+1,有k-12<2l-1<k+12,则k=2l-1,设T l =A 1+A 2+…+2t1+B 1+B 2+…+B l ,则共有k+l=2l-1+l 个数,即T l =2t1+l ,而A 1+A 2+…+2t1=2×1−1+2-12×2l-1=22l-2,B 1+B 2+…+B l =2(1−2)1−2=2l+1-2.则T l =22l-2+2l+1-2,则l,T l ,n,a n+1的对应关系为l T l n a n+112a n+1132336210456033079108494121720453182133396611503865780观察到l=5时,T l =S 21<12a 22,l=6,T l =S 38>12a 39,则n∈[22,38),n∈N *时,存在n,使S n ≥12a n+1,此时T 5=A 1+A 2+…+A 16+B 1+B 2+B 3+B 4+B 5,则当n∈[22,38),n∈N *时,S n =T 5+(t22+1)(22−5+t5)2=n 2-10n+87.a n+1=A n+1-5=A n-4,12a n+1=12[2(n-4)-1]=24n-108,S n -12a n+1=n 2-34n+195=(n-17)2-94,则n≥27时,S n -12a n+1>0,即n min =27.7.(2014安徽理,12,5分)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q=.答案1解析设{a n }的公差为d,则a 3+3=a 1+1+2d+2,a 5+5=a 1+1+4d+4,由题意可得(a 3+3)2=(a 1+1)(a 5+5).∴[(a 1+1)+2(d+1)]2=(a 1+1)[(a 1+1)+4(d+1)],∴(a 1+1)2+4(d+1)(a 1+1)+[2(d+1)]2=(a 1+1)2+4(a 1+1)(d+1),∴d=-1,∴a 3+3=a 1+1,∴公比q=3+31+1=1.8.(2020江苏,11,5分)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n-1(n∈N *),则d+q 的值是.答案4解析设数列{a n }的首项为a 1,数列{b n }的首项为b 1,易知q≠1,则{a n +b n }的前n 项和S n =na 1+ot1)2d+1(1-)1−=2n 2+1n-11−q n +11−=n 2-n+2n -1,∴2=1,q=2,则d=2,q=2,∴d+q=4.9.(2020课标Ⅰ文,16,5分)数列{a n }满足a n+2+(-1)na n =3n-1,前16项和为540,则a 1=.答案7解析令n=2k(k∈N *),则有a 2k+2+a 2k =6k-1(k∈N *),∴a 2+a 4=5,a 6+a 8=17,a 10+a 12=29,a 14+a 16=41,∴前16项的所有偶数项和S 偶=5+17+29+41=92,∴前16项的所有奇数项和S 奇=540-92=448,令n=2k-1(k∈N *),则有a 2k+1-a 2k-1=6k-4(k∈N *).∴a 2k+1-a 1=(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2k+1-a 2k-1)=2+8+14+…+6k-4=o2+6t4)2=k(3k-1)(k∈N *),∴a 2k+1=k(3k-1)+a 1(k∈N *),∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1,a 15=140+a 1,∴前16项的所有奇数项和S 奇=a 1+a 3+…+a 15=8a 1+2+10+24+44+70+102+140=8a 1+392=448.∴a 1=7.10.(2015江苏理,11,5分)设数列{a n }满足a 1=1,且a n+1-a n =n+1(n∈N *),10项的和为.答案2011解析由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,……,a n -a n-1=n-1+1(n≥2),则有a n -a 1=1+2+3+…+n-1+(n-1)(n≥2),因为a 1=1,所以a n =1+2+3+…+n(n≥2),即a n =2+n2(n≥2),又当n=1时,a 1=1也适合上式,故a n =2+n 2(n∈N *),所以1=22+n=2从而11+12+13+…+110=2×11=2011.11.(2020新高考Ⅰ,14,5分)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为答案3n 2-2n审题指导:数列{2n -1}表示首项为1,公差为2的等差数列,各项均为正奇数,而数列{3n -2}表示首项为1,公差为3的等差数列,数列的项为交替出现的正奇数与正偶数,它们的公共项为数列{3n -2}中的奇数项,所以{a n }是首项为1,公差为6的等差数列.解题思路:∵数列{2n -1}的项为1,3,5,7,9,11,13,…,数列{3n -2}的项为1,4,7,10,13,…,∴数列{a n}是首项为1,公差为6的等差数列,∴a n=1+(n-1)×6=6n-5,∴数列{a n}的前n项和S n=(1+6K5)×2=3n2-2n.12.(2022新高考Ⅰ,17,10分)记S n为数列{a n}的前n项和,已知a1=113的等差数列.(1)求{a n}的通项公式;(2)证明:11+12+…+1<2.解析(1)解法一:依题意得,S1=a1=1.∴=11+(n-1)×13=r23.∴3S n=(n+2)a n,则3S n+1=(n+1+2)a n+1=(n+3)a n+1,∴3S n+1-3S n=(n+3)a n+1-(n+2)a n,即3a n+1=(n+3)a n+1-(n+2)a n,∴na n+1=(n+2)a n,即r1=r2,由累乘法得r11=(r1)(r2)1×2,又a1=1,∴a n+1=(r1)(r2)2,∴a n=or1)2(n≥2),又a1=1满足上式,∴a n=or1)2(n∈N*).解法二:同解法一求得na n+1=(n+2)a n,∴r1r2,即r1(r1)(r2)=or1),or1)是常数列,首项为12,∴or1)=12,∴a n=or1)2.(2)证明:由(1)知1=2or1)2∴11+12+…+1=2++…+=21=2−2r1<2. 13.(2021新高考Ⅰ,17,10分)已知数列{a n}满足a1=1,a n+1=+1,为奇数,+2,为偶数.(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.解题指导:(1)由已知条件求出{a n}的递推式,从而得出{b n}的递推式,再由已知条件求出b1,从而求出数列{b n}的通项公式.(2)根据题目条件把{a n}的前20项分成两组,并用其中偶数项的和表示前20项的和,再用数列{b n}的前10项的和表示,根据等差数列前n项和公式求出结果.解析(1)由题意得a2n+1=a2n+2,a2n+2=a2n+1+1,所以a2n+2=a2n+3,即b n+1=b n+3,且b1=a2=a1+1=2,所以数列{b n}是以2为首项,3为公差的等差数列,所以b1=2,b2=5,b n=2+(n-1)×3=3n-1.(2)当n为奇数时,a n=a n+1-1.设数列{a n}的前n项和为S n,则S20=a1+a2+…+a20=(a1+a3+…+a19)+(a2+a4+…+a20)=[(a2-1)+(a4-1)+…+(a20-1)]+(a2+a4+…+a20)=2(a2+a4+…+a20)-10,由(1)可知a2+a4+…+a20=b1+b2+…+b10=10×2+10×92×3=155,故S20=2×155-10=300,即{a n}的前20项和为300.解题关键:一是对已知关系式进行转化,进而利用等差数列定义求得数列{b n}的通项公式;二是利用分组求和的方式对S20进行重组变形,结合a n与b n的关系求得结果.14.(2020课标Ⅲ理,17,12分)设数列{a n}满足a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.解析(1)a2=5,a3=7.猜想a n=2n+1.由已知可得a n+1-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-1)],……a2-5=3(a1-3).因为a1=3,所以a n=2n+1.(2)由(1)得2n a n=(2n+1)2n,所以S n=3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1.所以S n =(2n -1)2n +1+2.方法总结数列求和的5种方法解决数列的求和问题,首先要得到数列的通项公式,有了通项公式,再根据其特点选择相应的求和方法.数列求和的方法有以下几类:(1)公式法:等差或等比数列的求和用公式法;(2)裂项相消法:形如a n =1orp ,可裂项为a n =13)错位相减法:形如c n =a n ·b n ,其中{a n }是等差数列,{b n }是等比数列;(4)分组求和法:形如c n =a n +b n ,其中{a n }是等差数列,{b n }是等比数列;(5)并项求和法.15.(2017课标Ⅲ文,17,12分)设数列{a n }满足a 1+3a 2+…+(2n-1)a n =2n.(1)求{a n }的通项公式;(2)n 项和.解析(1)因为a 1+3a 2+…+(2n-1)a n =2n,故当n≥2时,a 1+3a 2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n =2.所以a n =22t1(n≥2).又由题设可得a 1=2,从而{a n }的通项公式为a n =22t1(n∈N *).(2)n 项和为S n .由(1)知2r1=2(2r1)(2t1)=12t1-12r1.则S n =11-13+13-15+…+12t1-12r1=22r1.思路分析(1)条件a 1+3a 2+…+(2n-1)a n =2n 的实质就是数列{(2n-1)a n }的前n 项和,故可利用a n 与S n 的关系求解.(2)利用(1)求得的{a n }的通项公式,然后用裂项相消法求和.易错警示(1)要注意n=1时,是否符合所求得的通项公式;(2)裂项相消后,注意留下了哪些项,避免遗漏.16.(2016课标Ⅱ文,17,12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解析(1)设数列{a n }的公差为d,由题意有2a 1+5d=4,a 1+5d=3.解得a 1=1,d=25.(3分)所以{a n }的通项公式为a n =2r35.(5分)(2)由(1)知,b n 分)当n=1,2,3时,1≤2r35<2,b n =1;当n=4,5时,2≤2r35<3,b n =2;当n=6,7,8时,3≤2r35<4,b n =3;当n=9,10时,4≤2r35<5,b n =4.(10分)所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.(12分)评析本题考查了等差数列,同时对考生的创新能力进行了考查,充分理解[x]的意义是解题的关键.17.(2016浙江文,17,15分)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n∈N *.(1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.解析(1)由题意得1+2=4,2=21+1,则1=1,2=3.又当n≥2时,由a n+1-a n =(2S n +1)-(2S n-1+1)=2a n ,得a n+1=3a n .所以,数列{a n }的通项公式为a n =3n-1,n∈N *.(2)设b n =|3n-1-n-2|,n∈N *,则b 1=2,b 2=1.当n≥3时,由于3n-1>n+2,故b n =3n-1-n-2,n≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n≥3时,T n =3+9(1−3t2)1−3-(r7)(t2)2=3-2-5n+112,所以T n =1,≥2,n ∈N *.易错警示(1)当n≥2时,得出a n+1=3a n ,要注意a 1与a 2是否满足此关系式.(2)在去掉绝对值时,要考虑n=1,2时的情形.在求和过程中,要注意项数,最后T n 要写成分段函数的形式.18.(2016北京文,15,13分)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解析(1)等比数列{b n }的公比q=32=93=3,(1分)所以b 1=2=1,b 4=b 3q=27.(3分)设等差数列{a n }的公差为d.因为a 1=b 1=1,a 14=b 4=27,所以1+13d=27,即d=2.(5分)所以a n =2n-1(n=1,2,3,…).(6分)(2)由(1)知,a n =2n-1,b n =3n-1.因此c n =a n +b n =2n-1+3n-1.(8分)从而数列{c n }的前n 项和S n =1+3+…+(2n-1)+1+3+…+3n-1=o1+2t1)2+1−31−3=n 2+3-12.(13分)规范解答要规范解答过程,分步书写,这样可按步得分.19.(2016山东,理18,文19,12分)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1.(1)求数列{b n }的通项公式;(2)令c n =(+1)r1(+2),求数列{c n }的前n 项和T n .解析(1)由题意知,当n≥2时,a n =S n -S n-1=6n+5.当n=1时,a 1=S 1=11,所以a n =6n+5.设数列{b n }的公差为d.由1=1+2,2=2+3,即11=21+d,17=21+3d,可解得b 1=4,d=3.所以b n =3n+1.(2)由(1)知c n =(6r6)r1(3r3)=3(n+1)·2n+1.又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n+1)×2n+1],2T n =3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n =3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×4+4(1−2)1−2-(n +1)×2r2=-3n·2n+2.所以T n =3n·2n+2.方法总结若某数列的通项是等差数列与等比数列的通项的积或商,则该数列的前n项和可以采用错位相减法求解,注意相减后的项数容易出错.评析本题主要考查了等差数列及前n项和,属中档题.20.(2016天津,18,13分)已知{an }是等比数列,前n项和为Sn(n∈N*),且11-12=23,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2a n和log2a n+1的等差中项,求数列{(-1)n2}的前2n项和.解析(1)设数列{a n}的公比为q.由已知,有11-11q=212,解得q=2,或q=-1.又由S6=a1·1−61−=63,知q≠-1,所以a1·1−261−2=63,得a1=1.所以a n=2n-1.(2)由题意,得bn=12(log2a n+log2a n+1)=12(log22n-1+log22n)=n-12,即{b n}是首项为12,公差为1的等差数列.设数列{(-1)n2}的前n项和为T n,则T2n=(-12+22)+(-32+42)+…+(-2t12+22)=b1+b2+b3+b4+…+b2n-1+b2n=2o1+2)2=2n2.评析本题主要考查等差数列、等比数列及其前n项和公式等基础知识,考查数列求和的基本方法和运算求解能力.21.(2015福建文,17,12分)等差数列{an }中,a2=4,a4+a7=15.(1)求数列{an}的通项公式;(2)设bn=2-2+n,求b1+b2+b3+…+b10的值.解析(1)设等差数列{a n}的公差为d.由已知得1+d=4,(1+3d)+(1+6d)=15,解得1=3,=1.所以a n=a1+(n-1)d=n+2.(2)由(1)可得bn=2n+n.所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=2(1−210)1−2+(1+10)×102=(211-2)+55=211+53=2101.评析本小题主要考查等差数列、等比数列、数列求和等基础知识,考查运算求解能力.22.(2015课标Ⅰ理,17,12分)S n 为数列{a n }的前n 项和.已知a n >0,2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1r1,求数列{b n }的前n 项和.解析(1)由2+2a n =4S n +3,可知r12+2a n+1=4S n+1+3.可得r12-2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=r12-2=(a n+1+a n )(a n+1-a n ).由于a n >0,可得a n+1-a n =2.又12+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1.(6分)(2)由a n =2n+1可知b n =1r1=1(2r1)(2r3)=设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n++…+=3(2r3).(12分)23.(2015安徽文,18,12分)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =r1r1,求数列{b n }的前n 项和T n .解析(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得1=1,4=8或1=8,4=1(舍去).由a 4=a 1q 3得公比为q=2,故a n =a 1q n-1=2n-1.(2)S n =1(1-)1−=2n -1,又b n =r1=r1-r1=1-1,所以T n =b 1+b 2+…+b n =11-1r1=1-12r1-1.评析本题考查等比数列通项公式及等比数列性质,等比数列求和.24.(2015天津理,18,13分)已知数列{a n }满足a n+2=qa n (q 为实数,且q≠1),n∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 222t1,n∈N *,求数列{b n }的前n 项和.解析(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3,所以a 2(q-1)=a 3(q-1).又因为q≠1,故a 3=a 2=2,由a 3=a 1·q,得q=2.当n=2k-1(k∈N *)时,a n =a 2k-1=2k-1=2t12;当n=2k(k∈N *)时,a n =a 2k =2k=22.所以,{a n }的通项公式为a n =2t12,n 为奇数,22为偶数.(2)由(1)得b n =log 222t1=2t1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n-1)×12t2+n×12t1,12S n =1×121+2×122+3×123+…+(n-1)×12t1+n×12,上述两式相减,得12S n =1+12+122+…+12t1-2=1−121−12-2=2-22-2,整理得,S n =4-r22t1.所以,数列{b n }的前n 项和为4-r22t1,n∈N *.评析本题主要考查等比数列及其前n 项和公式、等差中项等基础知识.考查数列求和的基本方法、分类讨论思想和运算求解能力.25.(2015山东文,19,12分)已知数列{a n }是首项为正数的等差数列,n 项和为2r1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2,求数列{b n }的前n 项和T n .解析(1)设数列{a n }的公差为d.令n=1,得112=13,所以a 1a 2=3.令n=2,得112+123=25,所以a 2a 3=15.解得a 1=1,d=2,所以a n =2n-1.(2)由(1)知b n =2n·22n-1=n·4n,所以T n =1·41+2·42+…+n·4n,所以4T n =1·42+2·43+…+n·4n+1,两式相减,得-3T n =41+42+ (4)-n·4n+1=4(1−4)1−4-n·4n+1=1−33×4n+1-43.所以T n =3t19×4n+1+49=4+(3t1)4r19.26.(2015浙江文,17,15分)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n∈N *),b 1+12b 2+13b 3+…+1b n =b n+1-1(n∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .解析(1)由a 1=2,a n+1=2a n ,得a n =2n(n∈N *).由题意知:当n=1时,b 1=b 2-1,故b 2=2.当n≥2时,1b n =b n+1-b n ,整理得r1r1=,所以b n =n(n∈N *).(2)由(1)知a n b n =n·2n,因此T n =2+2·22+3·23+…+n·2n,2T n =22+2·23+3·24+…+n·2n+1,所以T n -2T n =2+22+23+ (2)-n·2n+1.故T n =(n-1)2n+1+2(n∈N *).评析本题主要考查数列的通项公式,等差和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力.27.(2015湖北文,19,12分)设等差数列{a n }的公差为d,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q=d,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =,求数列{c n }的前n 项和T n .解析(1)由题意有,101+45d =100,1d =2,即21+9d =20,1d =2,解得1=1,=2,或1=9,=29.故=2n-1,=2t1,或=1979),=.(2)由d>1,知a n =2n-1,b n =2n-1,故c n =2t12t1,于是T n =1+32+522+723+924+…+2t12t1,①12T n =12+322+523+724+925+…+2t12.②①-②可得12T n =2+12+122+…+12t2-2t12=3-2r32,故T n =6-2r32t1.28.(2014湖南文,16,12分)已知数列{a n }的前n 项和S n =2+n2,n∈N *.(1)求数列{a n }的通项公式;(2)设b n =2+(-1)na n ,求数列{b n }的前2n 项和.解析(1)当n=1时,a 1=S 1=1;当n≥2时,a n =S n -S n-1=2+n 2-(t1)2+(n-1)2=n.故数列{a n }的通项公式为a n =n.(3)由(1)知,b n =2n+(-1)nn,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n).记A=21+22+ (22),B=-1+2-3+4-…+2n,则A=2(1−22)1−2=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故数列{b n }的前2n 项和T 2n =A+B=22n+1+n-2.评析本题考查数列的前n 项和与通项的关系,数列求和等知识,含有(-1)n的数列求和要注意运用分组求和的方法.29.(2014课标Ⅰ文,17,12分)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根.(1)求{a n }的通项公式;(2)n 项和.解析(1)方程x 2-5x+6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d,则a 4-a 2=2d,故d=12,从而a 1=32.所以{a n }的通项公式为a n =12n+1.(2)n 项和为S n ,由(1)知2=r22r1,则S n =322+423+…+r12+r22r1,12S n =323+424+…+r12r1+r22r2.两式相减得12S n =34+…-r22r2=34+-r22r2.所以S n =2-r42r1.评析本题考查等差数列及用错位相减法求数列的前n 项和,第(1)中由条件求首项、公差,进而求出结论是基本题型,第(2)问中,运算准确是关键.30.(2014安徽文,18,12分)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n∈N *.(1)证明:;(2)设b n =3n·,求数列{b n }的前n 项和S n .解析(1)证明:由已知可得r1r1=+1,即r1r1-=1.是以11=1为首项,1为公差的等差数列.(2)由(1)得=1+(n-1)·1=n,所以a n =n 2.从而b n =n·3n.S n =1·31+2·32+3·33+…+n·3n,①3S n =1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2S n =31+32+ (3)-n·3n+1=3·(1−3)1−3-n·3n+1=(1-2p ·3r1-32.所以S n =(2t1)·3r1+34.评析本题考查等差数列定义的应用,错位相减法求数列的前n项和,解题时利用题(1)提示对递推关系进行变形是关键.31.(2014山东文,19,12分)在等差数列{an }中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{an}的通项公式;(2)设bn=or1)2,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解析(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知bn=or1)2=n(n+1).所以T n=-1×2+2×3-3×4+…+(-1)n n×(n+1).因为b n+1-b n=2(n+1),所以当n为偶数时,T n =(-b1+b2)+(-b3+b4)+…+(-bn-1+bn)=4+8+12+ (2)=2(4+2n)2=or2)2,当n为奇数时,T n =Tn-1+(-bn)=(t1)(r1)2-n(n+1)=-(r1)22.所以T n为奇数,为偶数.评析本题考查等比数列和等差数列的综合应用、等差数列的通项公式及数列的求和,分类讨论思想和逻辑推理能力.32.(2013课标Ⅰ文,17,12分)已知等差数列{an }的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)n 项和.解析(1)设{a n }的公差为d,则S n =na 1+ot1)2d.由已知可得31+3d =0,51+10d =−5.解得a 1=1,d=-1.故{a n }的通项公式为a n =2-n.(2)由(1)知1=1(3-2p(1-2p =n 项和为121-1-11+11-13+…+12t3-12t1=1−2.评析本题考查等差数列的通项公式及前n 项和公式,考查了裂项求和的方法,考查了运算求解能力与方程思想.33.(2011课标理,17,12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,32=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,n 项和.解析(1)设数列{a n }的公比为q.由32=9a 2a 6得32=942,所以q 2=19.由条件可知q>0,故q=13.由2a 1+3a 2=1得2a 1+3a 1q=1,所以a 1=13.故数列{a n }的通项公式为a n =13.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n)=-or1)2.故1=-2or1)=-211+12+…+1=-2123=-2r1.n 项和为-2r1.评析本题主要考查等比数列的通项公式以及裂项求和的基本方法,属容易题.34.(2020课标Ⅲ文,17,12分)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8.(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m+1=S m+3,求m.解析(1)设{a n }的公比为q,则a n =a 1q n-1.由已知得1+1q =4,12-1=8.解得a 1=1,q=3.所以{a n }的通项公式为a n =3n-1.(2)由(1)知log 3a n =n-1.故S n =ot1)2.由S m +S m+1=S m+3得m(m-1)+(m+1)m=(m+3)(m+2),即m 2-5m-6=0.解得m=-1(舍去)或m=6.35.(2020浙江,20,15分)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n+1-a n ,c n+1=r2c n ,n∈N *.(1)若{b n }为等比数列,公比q>0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式;(2)若{b n }为等差数列,公差d>0,证明:c 1+c 2+c 3+…+c n <1+1,n∈N *.解析本题主要考查等差数列、等比数列等基础知识,同时考查数学运算和逻辑推理等素养.(1)由b 1+b 2=6b 3得1+q=6q 2,解得q=12.由c n+1=4c n 得c n =4n-1.由a n+1-a n =4n-1得a n =a 1+1+4+…+4n-2=4t1+23.(2)证明:由c n+1=c n 得c n =121=所以c 1+c 2+c 3+…+c n 由b 1=1,d>0得b n+1>0,因此c 1+c 2+c 3+…+c n <1+1,n∈N *.36.(2020江苏,20,16分)已知数列{a n }(n∈N *)的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n,均有r11-1=λr11成立,则称此数列为“λ~k”数列.(1)若等差数列{a n }是“λ~1”数列,求λ的值;(2)若数列{a n }是数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ~3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.解析本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)因为等差数列{a n }是“λ~1”数列,则S n+1-S n =λa n+1,即a n+1=λa n+1,也即(λ-1)a n+1=0,此式对一切正整数n 均成立.若λ≠1,则a n+1=0恒成立,故a 3-a 2=0,而a 2-a 1=-1,这与{a n }是等差数列矛盾.所以λ=1.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列{a n }(n∈N *)是3数列,所以r1-=即r1-=因为a n >0,所以S n+1>S n >0,n ,则b n 即(b n -1)2=13(2-1)(b n >1).解得b n =2,也即r1=4,所以数列{S n }是公比为4的等比数列.因为S 1=a 1=1,所以S n =4n-1.则a n =1(=1),3×4t2(n ≥2).(3)设各项非负的数列{a n }(n∈N *)为“λ~3”数列,则r113-13=λr113,即3r1-3=λ3r1-.因为a n ≥0,而a 1=1,所以S n+1≥S n >0,n ,则c n -1=λ33-1(c n ≥1),即(c n -1)3=λ3(3-1)(c n ≥1).(*)①若λ≤0或λ=1,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)②若λ>1,则(*)化为(c n -1)2+3+23-1+1=0,因为c n ≥1,所以2+3+23-1c n+1>0,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)③若0<λ<1,则2+3+23-1c n+1=0的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t).所以S n+1=S n 或S n+1=t 3S n .由于数列{S n }从任何一项求其后一项均有两种不同结果,所以这样的数列{S n }有无数多个,则对应的{a n }有无数多个.综上所述,能存在三个各项非负的数列{a n }为“λ~3”数列,λ的取值范围是0<λ<1.37.(2019课标Ⅱ文,18,12分)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.(1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解析本题主要考查等比数列的概念及运算、等差数列的求和;考查学生的运算求解能力;体现了数学运算的核心素养.(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0.解得q=-2(舍去)或q=4.因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2.38.(2019天津文,18,13分)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =1,为奇数,2为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n∈N *).解析本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力,体现了数学运算素养.满分13分.(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.依题意,得3=3+2s 32=15+4d,解得=3,=3,故a n =3+3(n-1)=3n,b n =3×3n-1=3n.所以,{a n }的通项公式为a n =3n,{b n }的通项公式为b n =3n.(2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n-1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=×3+ot1)2×6+(6×31+12×32+18×33+…+6n×3n )=3n 2+6(1×31+2×32+…+n×3n).记T n =1×31+2×32+…+n×3n,①则3T n =1×32+2×33+…+n×3n+1,②②-①得,2T n =-3-32-33-…-3n +n×3n+1=-3(1−3)1−3+n×3n+1=(2t1)3r1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2t1)3r1+32=(2t1)3r2+62+92(n∈N *).思路分析(1)利用等差、等比数列的通项公式求出公差d,公比q 即可.(2)利用{c n }的通项公式,进行分组求和,在计算差比数列时采用错位相减法求和.解题关键根据n 的奇偶性得数列{c n }的通项公式,从而选择合适的求和方法是求解的关键.39.(2019江苏,20,16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{an }(n∈N*)满足:a2a4=a5,a3-4a2+4a1=0,求证:数列{an}为“M-数列”;(2)已知数列{bn }(n∈N*)满足:b1=1,1=2-2r1,其中S n为数列{b n}的前n项和.①求数列{bn}的通项公式;②设m为正整数,若存在“M-数列”{cn }(n∈N*),对任意正整数k,当k≤m时,都有ck≤bk≤ck+1成立,求m的最大值.解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)设等比数列{an }的公比为q,所以a1≠0,q≠0.由24=5,3-42+41=0,得124=14,12-41q+41=0,解得1=1,=2.因此数列{a n}为“M-数列”.(2)①因为1=2-2r1,所以b n≠0.由b1=1,S1=b1,得11=21-22,则b2=2.由1=2-2r1,得S n=r12(r1-),当n≥2时,由b n=S n-S n-1,得b n=r12(r1-)-t12(-t1),整理得b n+1+b n-1=2b n.所以数列{b n}是首项和公差均为1的等差数列.因此,数列{b n}的通项公式为b n=n(n∈N*).②由①知,bk=k,k∈N*.因为数列{c n}为“M-数列”,设公比为q,所以c1=1,q>0.因为c k≤b k≤c k+1,所以q k-1≤k≤q k,其中k=1,2,3,…,m.当k=1时,有q≥1;当k=2,3,…,m时,有ln≤lnq≤ln t1.设f(x)=ln(x>1),则f'(x)=1−ln2.令f'(x)=0,得x=e.列表如下:x(1,e)e(e,+∞) f'(x)+0-f(x)↗极大值↘因为ln22=ln86<ln96=ln33,所以f(k)max =f(3)=ln33.取q=33,当k=1,2,3,4,5时,ln≤lnq,即k≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.40.(2018北京文,15,13分)设{a n }是等差数列,且a 1=ln2,a 2+a 3=5ln2.(1)求{a n }的通项公式;(2)求e 1+e 2+…+e .解析(1)设{a n }的公差为d.因为a 2+a 3=5ln2,所以2a 1+3d=5ln2.又a 1=ln2,所以d=ln2.所以a n =a 1+(n-1)d=nln2.(2)因为e 1=e ln2=2,e e t1=e -t1=e ln2=2,所以{e }是首项为2,公比为2的等比数列.所以e 1+e 2+…+e =2×1−21−2=2(2n-1).41.(2018江苏,20,16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m∈N *,q∈(1,2],证明:存在d∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)由条件知a n =(n-1)d,b n =2n-1.因为|a n -b n |≤b 1对n=1,2,3,4均成立,即|(n-1)d-2n-1|≤1对n=1,2,3,4均成立.即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得73≤d≤52.因此,d (2)由条件知:a n =b 1+(n-1)d,b n =b 1q n-1.若存在d∈R,使得|a n -b n |≤b 1(n=2,3,…,m+1)均成立,即|b 1+(n-1)d-b 1q n-1|≤b 1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d 满足t1-2t1b 1≤d≤t1t1b 1.因为q∈(1,2],所以1<q n-1≤q m≤2,从而t1-2t1b 1≤0,t1t1b 1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n -b n |≤b 1对n=2,3,…,m+1均成立.(n=2,3,…,m+1).①当2≤n≤m 时,-2-t1-2t1=B --n t1+2ot1)=o -t1)-+2ot1),当1<q≤21时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时,,的最大值为-2.②设f(x)=2x(1-x),当x>0时,f'(x)=(ln2-1-xln2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m 时,t1t1=ot1)≤因此,当2≤n≤m+1时,,的最小值为.因此,d 疑难突破本题是数列的综合题,考查等差数列、等比数列的概念和相关性质,第(1)问主要考查绝对值不等式.第(2)问要求d 的范围,使得|a n -b n |≤b 1对n=2,3,…,m+1都成立,首先把d 分离出来,变成t1-2t1b 1≤d≤t1t1b 1,难点在于讨论t1-2t1b 1的最大值和t1t1b 1的最小值.可以通过作差讨论其单调性,要作商讨论单调性,∵t1t1=ot1)=q 1当2≤n≤m 时,1<q n ≤2,∴q 1−可以构造函数f(x)=2x (1-x),通过讨论f(x)在(0,+∞)上的单调性去证明得到数列,解出最小值.两个数列,一个作差得到单调性,一个作商得到单调性,都是根据数列本身结构而得,方法自然合理,最后构造函数判断1的大小是难点,平时多积累,多思考,也是可以得到的.42.(2017课标Ⅱ文,17,12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.解析本题考查了等差、等比数列.设{a n }的公差为d,{b n }的公比为q,则a n =-1+(n-1)d,b n =q n-1.由a 2+b 2=2得d+q=3.①(1)由a 3+b 3=5得2d+q 2=6.②联立①和②解得=3,=0(舍去),或=1,=2.因此{b n }的通项公式为b n =2n-1.(2)由b 1=1,T 3=21得q 2+q-20=0.解得q=-5或q=4.当q=-5时,由①得d=8,则S 3=21.当q=4时,由①得d=-1,则S 3=-6.43.(2017课标Ⅰ文,17,12分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.解析本题考查等差、等比数列.(1)设{a n }的公比为q,由题设可得1(1+q)=2,1(1+q +2)=-6.解得q=-2,a 1=-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 数列的综合应用题型一 数列在数学文化与实际问题中的应用[典例] (1)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则此人第4天和第5天共走了( )A .60里B .48里C .36里D .24里(2)(2019·北京东城区模拟)为了观看2022年的冬奥会,小明打算从2018年起,每年的1月1日到银行存入a 元 的一年期定期储蓄,若年利率为p ,且保持不变,并约定每年到期存款本息均自动转为新一年的定期.到2022年的1月1日不再存钱而是将所有的存款和利息全部取出,则可取回________元.[解析] (1)由题意知,此人每天走的里数构成公比为12的等比数列{a n },设等比数列的首项为a 1,则a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192,所以a 4=192×18=24,a 5=24×12=12,则a 4+a 5=24+12=36,即此人第4天和第5天共走了36里. (2)2022年1月1日可取出钱的总数为 a (1+p )4+a (1+p )3+a (1+p )2+a (1+p ) =a ·(1+p )[1-(1+p )4]1-(1+p )=ap [(1+p )5-(1+p )] =ap [(1+p )5-1-p ].[答案] (1)C (2)ap [(1+p )5-1-p ] [方法技巧]1.数列与数学文化解题3步骤1.在我国古代著名的数学名著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A .9日B .8日C .16日D .12日解析:选A 由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d =13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d =-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m 1=9或m 2=-40(舍去),故选A.2.(2018·江西金溪一中月考)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t 倍.下列选项中,与t 值最接近的是( )A .11B .13C .15D .17解析:选B 设鱼原来的质量为a ,饲养n 年后鱼的质量为a n ,q =200%=2,则a 1=a (1+q ),a 2=a 1⎝⎛⎭⎫1+q 2=a (1+q )⎝⎛⎭⎫1+q 2,…,a 5=a (1+2)×(1+1)×⎝⎛⎭⎫1+12×⎝⎛⎭⎫1+122×⎝⎛⎭⎫1+123=40532a ≈12.7a ,即5年后,鱼的质量预计为原来的12.7倍,故选B. 题型二 数列中的新定义问题[典例] 若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”,已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“调和数列”,且b 1+b 2+…+b 2 019=20 190,则b 2b 2 018的最大值是________.[解析] 因为数列⎩⎨⎧⎭⎬⎫1b n 是“调和数列”,所以b n +1-b n =d ,即数列{b n }是等差数列, 所以b 1+b 2+…+b 2 019=2 019(b 1+b 2 019)2=2 019(b 2+b 2 018)2=20 190,所以b 2+b 2 018=20.又1b n >0,所以b 2>0,b 2 018>0, 所以b 2+b 2 018=20≥2b 2b 2 018,即b 2b 2 018≤100(当且仅当b 2=b 2 018时等号成立), 因此b 2b 2 018的最大值为100. [答案] 100 [方法技巧]新定义数列问题的特点及解题思路新定义数列题的特点是:通过给出一个新的数列的概论,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使问题得以解决.[针对训练]1.定义一种运算“※”,对于任意n ∈N *均满足以下运算性质:(1)2※2 019=1;(2)(2n +2)※2 019=(2n )※2 019+3,则2 018※2 019=________.解析:设a n =(2n )※2 019,则由运算性质(1)知a 1=1,由运算性质(2)知a n +1=a n +3,即a n +1-a n =3.所以数列{a n }是首项为1,公差为3的等差数列,故2 018※2 019=(2×1 009)※2 019=a 1 009=1+1 008×3=3 025. 答案:3 0252.定义各项为正数的数列{p n }的“美数”为np 1+p 2+…+p n(n ∈N *).若各项为正数的数列{a n }的“美数”为12n +1,且b n =a n +14,则1b 1b 2+1b 2b 3+…+1b 2 018b 2 019=________.解析:因为各项为正数的数列{a n }的“美数”为12n +1,所以n a 1+a 2+…+a n =12n +1.设数列{a n }的前n 项和为S n ,则S n =n (2n +1), S n -1=(n -1)[2(n -1)+1]=2n 2-3n +1(n ≥2), 所以a n =S n -S n -1=4n -1(n ≥2).又1a 1=13,所以a 1=3,满足式子a n =4n -1, 所以a n =4n -1(n ∈N *).又b n =a n +14,所以b n =n , 所以1b 1b 2+1b 2b 3+…+1b 2 018b 2 019=11×2+12×3+…+12 018×2 019=1-12+12-13+…+12 018-12 019=1-12 019=2 0182 019. 答案:2 0182 019题型三 数列与函数的综合问题[典例] (1)(2019·重庆模拟)已知f (x )=x 2+a ln x 在点(1,f (1))处的切线方程为4x -y -3=0,a n =12f ′(n )-n (n ≥1,n ∈N *),{a n }的前n 项和为S n ,则下列选项正确的是( )A .S 2 018-1<ln 2 018B .S 2 018>ln 2 018+1C .ln 2 018<S 1 009-1D .ln 2 018>S 2 017(2)(2019·昆明模拟)已知定义在R 上的函数f (x )是奇函数,且满足f (3-x )=f (x ),f (-1)=3,数列{a n }满足a 1=1且a n =n (a n +1-a n )(n ∈N *),则f (a 36)+f (a 37)=________.[解析] (1)由题意得f ′(x )=2x +a x ,∴f ′(1)=2+a =4,解得a =2.∴a n =12f ′(n )-n=12⎝⎛⎭⎫2n +2n -n =1n (n ≥1,n ∈N *).设g (x )=ln(x +1)-x ,则当x ∈(0,1)时,g ′(x )=1x +1-1=-x x +1<0,∴g (x )在(0,1)上单调递减,∴g (x )<g (0)=0,即ln(x +1)<x .令x =1n ,则ln ⎝⎛⎭⎫1n +1=ln n +1n <1n ,∴ln 21+ln 32+ln 43+…+ln n +1n <1+12+13+…+1n ,故ln(n +1)<S n .设h (x )=ln x +1x -1,则当x ∈(1,+∞)时,h ′(x )=1x -1x 2>0,∴h (x )在(1,+∞)上单调递增,∴h (x )>h (1)=0,即ln x >1-1x ,x ∈(1,+∞).令x =1+1n ,则ln ⎝⎛⎭⎫1n +1=ln n +1n >1n +1,∴ln 21+ln 32+ln 43+…+ln n +1n >12+13+…+1n +1n +1,故ln(n +1)>S n +1-1.故选A. (2)因为函数f (x )是奇函数,所以f (-x )=-f (x ),又因为f (3-x )=f (x ),所以f (3+x )=f (-x )=-f (x )=-f (3-x )=f (x -3),即f (x +6)=f (x ),所以f (x )是以6为周期的周期函数.由a n =n (a n +1-a n )可得a n +1a n =n +1n ,则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n n -1·n -1n -2·n -2n -3·n -3n -4 (2)1×1=n ,即a n =n ,所以a 36=36,a 37=37,又因为f (-1)=3,f (0)=0,所以f (a 36)+f (a 37)=f (0)+f (1)=f (1)=-f (-1)=-3.[答案] (1)A (2)-3 [方法技巧]数列与函数综合问题的类型及注意点1.(2019·玉溪模拟)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=( )A .18B .21C .24D .30解析:选B ∵函数y =x 2(x >0)的导函数为y ′=2x ,∴函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).令y =0,可得x =12a k ,即a k +1=12a k ,∴数列{a n }为等比数列,a n =16×⎝⎛⎭⎫12n -1,∴a 1+a 3+a 5=16+4+1=21.故选B.2.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x 的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( )A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:选D 因为点(n ,S n +3)在函数y =3×2x 的图象上, 所以S n +3=3×2n ,即S n =3×2n -3.当n ≥2时,a n =S n -S n -1=3×2n -3-(3×2n -1-3)=3×2n -1, 又当n =1时,a 1=S 1=3,所以a n =3×2n -1.设b n =b 1q n -1,则b 1q n -1+b 1q n =3×2n -1,可得b 1=1,q =2,所以数列{b n }的通项公式为b n =2n -1.由等比数列前n 项和公式可得T n =2n -1. 综合选项可知,只有D 正确.3.(2019·抚顺模拟)已知函数f (x )=ax 2+bx 的图象经过(-1,0)点,且在x =-1处的切线斜率为-1.设数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项的和T n . 解:(1)函数f (x )=ax 2+bx 的图象经过(-1,0)点,则a -b =0,即a =b .①因为f ′(x )=2ax +b ,函数f (x )=ax 2+bx 在x =-1处的切线斜率为-1,所以-2a +b =-1.②由①②得a =1,b =1,所以数列{a n }的前n 项和S n =f (n )=n 2+n . 当n ≥2时,S n -1=(n -1)2+(n -1), 所以a n =S n -S n -1=2n .当n =1时,a 1=2符合上式,则a n =2n . (2)由于a n =2n , 则1a n ·a n +1=12n (2n +2)=14⎝⎛⎭⎫1n -1n +1,则T n =14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=14⎝⎛⎭⎫1-1n +1=n 4n +4.题型四 数列与不等式的综合问题[典例] (2019·福州八校联考)数列{a n }中,a 1=3,a n +1=2a n +2(n ∈N *). (1)求证:{a n +2}是等比数列,并求数列{a n }的通项公式; (2)设b n =n a n +2,S n =b 1+b 2+b 3+…+b n ,证明:对任意n ∈N *,都有15≤S n <45.[证明] (1)∵a n +1=2a n +2,∴a n +1+2=2(a n +2).∵{a n +2}是以a 1+2=5为首项,公比q =2的等比数列,∴a n =5×2n -1-2.(2)由(1)可得b n =n5×2n -1, ∴S n =15⎝⎛⎭⎫1+22+322+…+n 2n -1,①12S n =15⎝⎛⎭⎫12+222+323+…+n 2n ,② ①-②可得S n =25⎝⎛⎭⎫1+12+122+…+12n -1-n 2n=25⎝ ⎛⎭⎪⎫1-12n1-12-n 2n =25⎝⎛⎭⎫2-2+n 2n <45. ∴S n <45,又∵S n +1-S n =b n +1=n +15×2n >0,∴数列{S n }单调递增,S n ≥S 1=15,∴对任意n ∈N *,都有15≤S n <45.[方法技巧]数列中不等式证明问题的解题策略数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝⎛⎭⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k .(3)2(n +1-n )<1n<2(n -n -1). [针对训练](2019·广安模拟)已知数列{a n }的前n 项和为S n ,a 1=1,且S n +1=S n +a n +n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求满足不等式T n ≥1910的最小正整数n .解:(1)由S n +1=S n +a n +n +1(n ∈N *),得a n +1-a n =n +1,又a 1=1, 所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=(1+n )n2. 所以数列{a n }的通项公式为a n =(1+n )n2. (2)由(1)知1a n=2(1+n )n =2⎝⎛⎭⎫1n -1n +1,所以T n =2[ ⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 ] =2⎝⎛⎭⎫1-1n +1=2nn +1. 令2n n +1≥1910,解得n ≥19, 所以满足不等式T n ≥1910的最小正整数n 为19.[课时跟踪检测]1.(2019·深圳模拟)设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B .n +2n +1C.n n -1D .n +1n解析:选A ∵f ′(x )=mx m -1+a =2x +1,∴a =1,m =2, ∴f (x )=x (x +1),则1f (n )=1n (n +1)=1n -1n +1,用裂项法求和得S n =1-12+12-13+…+1n -1n +1=n n +1. 2.已知函数f (n )=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 2 018=( )A .-2 017B .-2 018C .2 017D .2 018解析:选D 当n 为奇数时,n +1为偶数,则a n =n 2-(n +1)2=-2n -1,所以a 1+a 3+a 5+…+a 2 017=-(3+7+11+…+4 035).当n 为偶数时,n +1为奇数,则a n =-n 2+(n +1)2=2n +1,所以a 2+a 4+a 6+…+a 2 018=5+9+13+…+4 037.所以a 1+a 2+a 3+…+a 2 018=(5-3)+(9-7)+(13-11)+…+(4 037-4 035)=2×1 009=2 018,故选D.3.(2017·四川乐山模拟)对于数列{a n },定义H 0=a 1+2a 2+…+2n -1a nn 为{a n }的“优值”.现已知某数列的“优值”H 0=2n +1,记数列{a n -20}的前n 项和为S n ,则S n 的最小值为( )A .-64B .-68C .-70D .-72解析:选D 由题意可知:H 0=a 1+2a 2+…+2n -1a n n =2n +1,则a 1+2a 2+…+2n -1·a n =n ·2n +1.当n ≥2时,a 1+2a 2+…+2n -2·a n -1=(n -1)·2n , 两式相减得2n -1·a n =n ·2n +1-(n -1)·2n ,a n =2(n +1),当n =1时成立,∴a n -20=2n -18,显然{a n -20}为等差数列. 令a n -20≤0,解得n ≤9,故当n =8或9时,{a n -20}的前n 项和S n 取最小值, 最小值为S 8=S 9=9×(-16+0)2=-72,故选D.4.(2019·湖北襄阳联考)已知函数f ⎝⎛⎭⎫x +12为奇函数,g (x )=f (x )+1,若a n =g ⎝⎛⎭⎫n 2 019,则数列{a n }的前2 018项和为( )A .2 017B .2 018C .2 019D .2 020解析:选B ∵函数f ⎝⎛⎭⎫x +12为奇函数,∴其图象关于原点对称,∴函数f (x )的图象关于点⎝⎛⎭⎫12,0对称,∴函数g (x )=f (x )+1的图象关于点⎝⎛⎭⎫12,1对称,∴g (x )+g (1-x )=2,∵a n =g ⎝⎛⎭⎫n 2 019,∴数列的前2 018项之和为g ⎝⎛⎭⎫12 019+g ⎝⎛⎭⎫22 019+g ⎝⎛⎭⎫32 019+…+g ⎝⎛⎭⎫2 0172 019+g ⎝⎛⎭⎫2 0182 019=2 018.故选B.5.(2019·林州一中调研)已知数列{a n }的前n 项和为S n ,且a 1=5,a n +1=-12a n +6,若对任意的n ∈N *,1≤p (S n -4n )≤3恒成立,则实数p 的取值范围为( )A .(2,3]B .[2,3]C .(2,4]D .[2,4]解析:选B 由数列的递推关系式可得a n +1-4=-12(a n -4),则数列{a n -4}是首项为a 1-4=1,公比为-12的等比数列,∴a n -4=1×⎝⎛⎭⎫-12n -1,∴a n =⎝⎛⎭⎫-12n -1+4,∴S n =23⎣⎡⎦⎤1-⎝⎛⎭⎫-12n +4n ,∴不等式1≤p (S n -4n )≤3恒成立,即1≤p ×23⎣⎡⎦⎤1-⎝⎛⎭⎫-12n ≤3恒成立.当n 为偶数时,可得1≤p ×23⎣⎡⎦⎤1-⎝⎛⎭⎫12n ≤3,可得2≤p ≤92,当n 为奇数时,可得1≤p ×23⎣⎡⎦⎤1+⎝⎛⎭⎫12n ≤3,可得32≤p ≤3,故实数p 的取值范围为[2,3].6.(2019·昆明适应性检测)已知数列{a n }的前n 项和为S n ,且a n =4n ,若不等式S n +8≥λn 对任意的n ∈N *都成立,则实数λ的取值范围为________.解析:因为a n =4n ,所以S n =2n 2+2n ,不等式S n +8≥λn 对任意的n ∈N *恒成立,即λ≤2n 2+2n +8n ,又2n 2+2n +8n =2n +8n +2≥10(当且仅当n =2时取等号),所以实数λ的取值范围为(-∞,10].答案:(-∞,10]7.(2019·济宁模拟)若数列{a n }满足:只要a p =a q (p ,q ∈N *),必有a p +1=a q +1,那么就称数列{a n }具有性质P .已知数列{a n }具有性质P ,且a 1=1,a 2=2,a 3=3,a 5=2,a 6+a 7+a 8=21,则a 2 020=____________.解析:根据题意,数列{a n }具有性质P ,且a 2=a 5=2, 则有a 3=a 6=3,a 4=a 7,a 5=a 8=2. 由a 6+a 7+a 8=21,可得a 3+a 4+a 5=21, 则a 4=21-3-2=16,进而分析可得a 3=a 6=a 9=…=a 3n =3,a 4=a 7=a 10=…=a 3n +1=16,a 5=a 8=…=a 3n+2=2(n ≥1),则a 2 020=a 3×673+1=16. 答案:168.我国古代数学名著《九章算术》中有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第一天长高3尺,莞草第一天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同(结果采取“只入不舍”的原则取整数,相关数据:lg 3≈0.477 1,lg 2≈0.301 0).解析:由题意得,蒲草的高度组成首项为a 1=3,公比为12的等比数列{a n },设其前n 项和为A n ;莞草的高度组成首项为b 1=1,公比为2的等比数列{b n },设其前n 项和为B n .则A n =3⎝⎛⎭⎫1-12n 1-12,B n =2n -12-1,令3⎝⎛⎭⎫1-12n 1-12=2n -12-1,化简得2n +62n =7(n ∈N *),解得2n =6,所以n =lg 6lg 2=1+lg 3lg 2≈3,即第3天时蒲草和莞草高度相同. 答案:39.(2019·安阳模拟)设等差数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=x 2+Bx +C -1(B ,C ∈R)的图象上,且a 1=C .(1)求数列{a n }的通项公式;(2)记数列b n =a n (a 2n -1+1),求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d , 则S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n . 又S n =n 2+Bn +C -1,两式比较得d 2=1,B =a 1-d2,C -1=0.又a 1=C ,解得d =2,C =1=a 1,B =0, ∴a n =1+2(n -1)=2n -1.(2)∵b n =a n (a 2n -1+1)=(2n -1)(2×2n -1-1+1)=(2n -1)×2n , ∴数列{b n }的前n 项和T n =2+3×22+5×23+…+(2n -1)×2n , ∴2T n =22+3×23+…+(2n -3)×2n +(2n -1)×2n +1, ∴-T n =2+2×(22+23+…+2n )-(2n -1)×2n +1 =2+2×4(2n -1-1)2-1-(2n -1)×2n +1=(3-2n )×2n +1-6,故T n =(2n -3)×2n +1+6.10.2017年12月4日0时起某市实施机动车单双号限行,新能源汽车不在限行范围内,某人为了出行方便,准备购买某新能源汽车.假设购车费用为14.4万元,每年应交付保险费、充电费等其他费用共0.9万元,汽车的保养维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.(1)设使用n 年该车的总费用(包括购车费用)为f (n ),试写出f (n )的表达式;(2)问这种新能源汽车使用多少年报废最合算(即该车使用多少年平均费用最少),年平均费用的最小值是多少?解:(1)由题意得f (n )=14.4+(0.2+0.4+0.6+…+0.2n )+0.9n =14.4+0.2n (n +1)2+0.9n =0.1n 2+n +14.4.(2)设该车的年平均费用为S 万元,则有S =1n f (n )=1n (0.1n 2+n +14.4)=n 10+14.4n +1≥2 1.44+1=3.4. 当且仅当n 10=14.4n ,即n =12时,等号成立,即S 取最小值3.4万元.所以这种新能源汽车使用12年报废最合算,年平均费用的最小值是3.4万元.11.(2018·淮南一模)若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 12a n .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. 解:(1)∵S n =16-13a n , ∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n , ∴a n =14a n -1. 又∵S 1=16-13a 1,∴a 1=18, ∴a n =18×⎝⎛⎭⎫14n -1=⎝⎛⎭⎫122n +1. (2)证明:由c n +1-c n =log 12a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1).∴1c 2+1c 3+1c 4+…+1c n=122-1+132-1+142-1+…+1n2-1=12×[ ⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫1n-1-1n+1]=12⎣⎡⎦⎤⎝⎛⎭⎫1+12-⎝⎛⎭⎫1n+1n+1=34-12⎝⎛⎭⎫1n+1n+1<34.又∵1c2+1c3+1c4+…+1c n≥1c2=13,∴原式得证.。

相关文档
最新文档