化工原理实验三单相流体阻力测定实验

合集下载

化工原理实验报告-流体流动阻力的测定

化工原理实验报告-流体流动阻力的测定

实验一流体流动阻力的测定一、实验目的1、掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。

2、测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re的关系曲线。

3、测定流体流经管件(阀门)时的局部阻力系数ξ。

4、识辨组成管路的各种管件、阀门,并了解其作用。

二、实验装置实验装置如下图所示:1、水箱2、离心泵3、压差传感器4、温度计5、涡轮流量计6、流量计7、转子流量计8、转子流量计9、压差传感器10、压差传感器11、压差传感器12、粗糙管实验段13、光滑管实验段14、层流管实验段15、压差传感器16、压差传感器17、阐阀18、截止阀图1 实验装置流程图装置参数:名称材质管内径/mm 测量段长度/mm三、实验原理1、直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2122ff p p p l u h d λρρ∆-=== ⑴即 22fd p luλρ∆=⑵Re du ρμ=⑶采用涡轮流量计测流量V2900Vu dπ=⑷ 用压差传感器测量流体流经直管的压力降f p ∆。

根据实验装置结构参数l 、d ,流体温度T (查流体物性ρ、μ),及实验时测定的流量V 、压力降ΔPf ,求取Re 和λ,再将Re 和λ标绘在双对数坐标图上。

2、局部阻力系数ζ的测定流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,这种方法称为阻力倍数法。

即:'2'2ffp u h g gζρ∆== ⑸ 故 '22fp u ζρ∆=⑹根据连接管件或阀门两端管径中小管的直径d ,流体温度T (查流体物性ρ、μ),及实验时测定的流量V 、压力降ΔPf ’,通过式⑸或⑹,求取管件(阀门)的局部阻力系数ζ。

四、实验步骤1、开启仪表柜上的总电源、仪表电源开关。

2、首先对水泵进行灌水,然后关闭出口阀,启动水泵,待电机转动平稳后,把出口阀缓缓开到最大。

3、实验从做大流量开始做起,最小流量应控制在1.5m3/h。

化工原理实验~流体流动阻力系数的测定实验报告

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告一、实验目的:1、掌握测定流体流动阻力实验的一般实验方法。

2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。

3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。

4、将所得光滑管的λ—Re方程与Blasius方程相比较。

二、实验器材:流体阻力实验装置一套三、实验原理:1、直管摩擦阻力不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。

影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。

流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为△P=f (d, l, u,ρ,μ,ε)引入下列无量纲数群。

雷诺数Re=duρ/μ相对粗糙度ε/ d管子长径比l / d从而得到△P/(ρu2)=ψ(duρ/μ,ε/ d, l / d)令λ=φ(Re,ε/ d)△P/ρ=(l / d)φ(Re,ε/ d)u2/2可得摩擦阻力系数与压头损失之间的关系,这种关系可=△P/ρ=λ(l / d)u2/2用试验方法直接测定。

hf——直管阻力,J/kg式中,hfl——被测管长,md——被测管内径,mu——平均流速,m/sλ——摩擦阻力系数。

当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。

根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。

改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。

(1)、湍流区的摩擦阻力系数在湍流区内λ=f(Re,ε/ d)。

对于光滑管,大量实验证明,当Re在3×103~105范围内,λ和Re的关系遵循Blasius关系式,即λ=0.3163 / Re0.25对于粗糙管,λ和Re的关系均以图来表示。

化工原理实验流体阻力实验

化工原理实验流体阻力实验
验结果不整理成单位管长压头损失与 流速u之间的关系?而整理成~Re关系,有什么好处? 2、以水做介质所测得的λ ~Re关系能否适用于其它
流体?如何应用?
3、在不同设备上(包括不同管径),不同水温下测定 的λ ~Re数据能否关联在同一条曲线上?
4、如果测压口、孔边缘有毛刺或安装不垂直,对静 压的测量有何影响?
5、实验前应确定实验范围,测量点数并合理布点。
六、实验结果及分析
1、根据光滑管和粗糙管实验数据结果,在双 对数坐标纸上标绘出λ ~Re曲线,对照化工原理 教材上有关图形,即可估出该管的相对粗糙度和 绝对粗糙度。 2、根据局部阻力实验结果,求出闸阀全开时 的平均ξ 值。 3、对实验结果进行分析讨论。
得出一相对粗糙度时 Re 的关系。

2 p d
f
l u 2
2.局部阻力
流体在流过突然扩大,弯头等管件时,由于运动的速度和
方向突然变化,产生局部阻力,影响阻力的因素较多。
u Hf 2
形状及流体的 与
2
J
Kg
式中: 称为局部阻力系数,它与所流过的管件的几何
Re 数有关,当 Re 数大到一定值后则
四、实验方法
1、向储水槽内注水,直到水满为止。 2、先接电预热10~15分钟,然后启动泵进行实验。 3、光滑管阻力测定:
(1)关闭粗糙管阀,将光滑管阀全开,在流量为零条件下,打开 通向倒置U型管的进水阀,检查导压管内是否有气泡存在。若倒置U型 管内液柱高度差不为零,则表明导压管内存在气泡,需要进行赶气泡 操作。
关闭光滑管阀,将粗糙管阀全开,从小流量到最大流 量,测取15~20组数据。
5、测取水箱水温。待数据测量完毕,关闭流量调节阀, 停泵。

流体流动阻力的测定(化工原理实验报告)

流体流动阻力的测定(化工原理实验报告)

流体流动阻力的测定(化工原理实验报告)流体流动阻力的测定(化工原理实验报告)摘要:本实验研究了流体流动阻力的测定方法,以了解流阻比数据和参数对流体流动特性的影响。

实验中采用了空心管实验装置,在一定的压差试验条件下,通过压力表和熨斗流量计测量压力和流量,计算出流阻比系数。

通过实验,研究了流阻比系数随着实验参数(流量、温度、压力)变化的规律,从而获得一定规律性的微观流动特性数据。

关键词:流阻比;熨斗流量计;实验;流动阻力1 前言流体流动阻力是研究流体流动特性的一项重要参数。

它决定了流体在管道内流动时会受到什么样的阻力,直接影响着流体在设备内的流动性能和传热特性。

因此,准确测量流体流动阻力是研究管道流动的关键问题。

本实验旨在研究空心管装置测量的流阻比数据对流体流动特性的影响,以便获得微观流动特性数据,并用于管道设计、传热学的研究中。

2 实验目的1)研究在空心管实验装置内测量流阻比系数的变化规律:2)利用测量的流阻比系数,得出瞬态流体流动特性曲线,即流量与压力的变化规律; 3)通过实验有规律地分析,获得实验流体的微观流动特性参数。

3 实验装置本实验主要采用空心管实验装置(见图1),由电磁阀控制罐内的液体,带动空心管内的流体循环,保持流量一定,从而实现实验的要求。

该装置由如下几个部分组成:(1)空心管;(2)球阀;(3)高低压罐;(4)汽缸和气缸;(5)液体泵;(6)电磁阀;(7)水箱;(8)熨斗流量计;(9)压力表;(10)温度计。

4 实验方法1)确定实验条件:根据实验任务,确定温度、压力、流量等参数,以及电磁阀的控制时间;2)进行实验:根据实验条件,控制电磁阀的开启和关闭,实现空心管内的液体流动,同时调节实验参数,测量压力及流量;3)根据压力和流量,绘出流量-压力曲线,计算出对应的流阻比系数;4)根据实验数据,进行实验数据分析,探究实验参数变化时,流阻比系数变化规律,得出流体的微观流动特性参数。

5 实验数据在实验中,调节不同的参数,实现不同的实验条件,测量得到流量和压力的数据,根据测量的实验数据,画出Flow-Pressure曲线,结果如下表1所示:实验条件实测压力(MPa) 实测流量(M3/h)流阻比(MPa/m3/h)条件1 0.39 0.159 0.80条件2 0.51 0.159 1.06条件3 0.62 0.159 1.29条件4 0.68 0.159 1.41条件5 0.80 0.159 1.64表1 实验结果图2 Flow-Pressure曲线图6 结论1)根据上述的实验结果,可以发现,随着压力和流量的增加,流阻比也相应地增大;2)通过分析实验数据,可以获得一定的规律性的微观流动特性数据,即通过把不同的实验参数变量并入方程式中,可以根据需要精确地预测不同条件下,流体流动时的压力和流量变化规律;3)该测试结果可以作为设计管路时流体传热特性和流动特性的参考,更好地掌握管路中流体的流动特性。

化工原理-流体阻力实验报告(北京化工大学)

化工原理-流体阻力实验报告(北京化工大学)

北京化工大学化工原理实验报告实验名称:流体阻力实验班级:化工1305班*名:***学号:********** 序号:11同组人:宋雅楠、陈一帆、陈骏设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第4套实验日期:2015-11-27一、实验摘要首先,本实验使用UPRS Ⅲ型第4套实验设备,通过测量不同流速下水流经不锈钢管、镀锌管、层流管、突扩管、阀门的压头损失来测定不同管路、局部件的雷诺数与摩擦系数曲线。

确定了摩擦系数和局部阻力系数的变化规律和影响因素,验证在湍流区内λ与雷诺数Re 和相对粗糙度的函数。

该实验结果可为管路实际应用和工艺设计提供重要的参考。

结果,从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re 增大而减小,并且光滑管的摩擦阻力系数较好地满足Blasuis 关系式:0.250.3163Re λ= 。

突然扩大管的局部阻力系数随Re 的变化而变化。

关键词:摩擦系数,局部阻力系数,雷诺数,相对粗糙度二、实验目的1、掌握测定流体流动阻力实验的一般实验方法:①测量湍流直管的阻力,确定摩擦阻力系数。

②测量湍流局部管道的阻力,确定摩擦阻力系数。

③测量层流直管的阻力,确定摩擦阻力系数。

2、验证在湍流区内摩擦阻力系数λ与雷诺数Re 以及相对粗糙度的关系。

3、将实验所得光滑管的λ-Re 曲线关系与Blasius 方程相比较。

三、实验原理1、 直管阻力不可压缩流体在圆形直管中做稳定流动时,由于黏性和涡流的作用会产生摩擦阻力(即直管阻力);流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,会产生局部阻力。

由于分子的流动过程的运动机理十分复杂,目前不能用理论方法来解决流体阻力的运算问题,必须通过实验研究来掌握其规律。

为了减少实验的工作量、化简工作难度、同时使实验的结果具有普遍的应用意义,应采用基于实验基础的量纲分析法来对直管阻力进行测量。

利用量纲分析的方法,结合实际工作经验,流体流动阻力与流体的性质、流体流经处的几何尺寸、流体的运动状态有关。

化工原理实验—流体流动阻力测定实验

化工原理实验—流体流动阻力测定实验

化工原理实验报告—流体流动阻力测定实验班级: 031112班小组:第六组指导老师:刘慧仙组长:陈名组员:魏建武曹然实验时间: 2013年10月18日目录一、实验内容 (1)二、实验目的 (1)三、实验基本原理 (1)1.直管阻力 (1)2.局部阻力 (3)四、实验设计 (3)1.实验方案 (3)2.测试点及测试方法 (3)原始数据 (3)测试点 (4)测试方法 (4)3.控制点及调节方法 (4)4.实验装置和流程设计 (4)主要设备和部件 (4)实验装置流程图 (4)五、实验操作要点 (5)六、实验数据处理和结果讨论分析 (6)实验数据处理 (6)1.实验数据记录表 (6)2.流体直管阻力测定实验数据整理表 (7)3.流体局部阻力测定实验数据整理表 (8)4.计算示例。

(9)结果讨论分析 (10)七、思考题 (11)实验一流体流动阻力的测定实验一、实验内容1.测定流体在特定材质和的直管中流动时的阻力摩擦系数,并确定和之间的关系。

2.测定流体通过阀门时的局部阻力系数。

二、实验目的1.了解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验方法。

2.测定流体流径直管的摩擦阻力和流经管件或局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。

3.熟悉压差计和流量计的使用方法。

4.认识组成管路系统的各部件、阀门并了解其作用。

三、实验基本原理流体管路是由直管、管件(如三通、肘管、弯头)、阀门等部件组成。

流体在管路中流动时,由于黏性剪应力和涡流的作用,不可避免地要消耗一定的机械能,流体在直管中流动的机械能损失为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。

在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。

1.直管阻力流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即①由于流体分子在流动过程中的运动机理十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。

化工原理流体流动阻力测定试验

化工原理流体流动阻力测定试验

流体流动阻力测定的实验一、实验目的及任务1 .学习直管摩擦阻力AP 八直管摩擦系数人的测定方法。

2 .掌握直管摩擦系数人与雷诺数Re 和相对粗糙度之间的关系及其变化规律。

3 .掌握局部摩擦阻力APr 局部阻力系数Z 的测定方法。

4 .学习压强差的几种测量方法和提高其测量精确度的一些技巧。

二、基本原理流体在管路中流动时,由于黏性剪应力和涡流的存在,不可避免地会引起流体压力损耗。

这种 损耗包括流体在流动时所产生的直管阻力损失和局部阻力损失。

1 .直管阻力损失流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示, l u 2h =九 x 一 x 一 f d 2式中 d 一管径,m ;1 一管长,m ; u —流速,m / s ; 九一摩擦系数。

在一定的流速下,测出阻力损失,按下式即可求出摩擦系数九7 d 2九=h x_x —f 1 u 2阻力损失h f 可通过对两截面间作机械能衡算求出(1-3)P -流体的密度,kg/m 3A f -两截面的压强差,Pa 。

由式(1-4)可知,对于水平等径直管只要测出两截面上静压强的差即可算出h f 。

两截面上静压 强的差可用压差计测出。

流速由流量计测得,在已知管径d 和平均流速u 的情况下,只需测出流体 的温度K 查出该流体的密度p 和黏度〃,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数人与雷诺数Re 的关系。

2.局部阻力损失阀门、突然扩大、突然缩小、弯头、三通等管件的局部阻力系数可用下式计算对于水平等径直管,z 1=z 2 u 1=u 2, 上式可简化为p 「P 2PA p―f P(1-4)式中p 1-p 2一两截面的压强差, Pa ;(1-1)(1-2)1 2)(1-5)三、实验装置流程和主要设备1.实验装置流程流体流动阻力实验流程如图1-1所示。

图1-1流动阻力实验流程示意图1-水箱;2-离心泵;3、4-放水阀;5、13-缓冲罐;6-局部阻力近端测压阀;7、15-局部阻力远端测压阀;8、20-粗糙管测压回水阀;9、19-光滑管测压阀;10-局部阻力管阀;11-U型管进水阀;12- 压力传感器;14-流量调节阀;15、16-水转子流量计;17-光滑管阀;18-粗糙管阀;21-倒置U型管放空阀;22-倒置U型管;23-水箱放水阀;24-放水阀;2.被测光滑直管段:管径d—0.008m;管长L—1.69m;材料一不锈钢管被测粗糙直管段:管径d—0.010m;管长L—1.69m;材料一不锈钢管被测局部阻力直管段:管径d—0.015m;管长L—1.2m;材料一不锈钢管3.压力传感器:型号:LXWY 测量范围:200 KPa4.直流数字电压表:型号:PZ139 测量范围:0〜200 KPa5.离心泵:型号:WB70/055 流量:8(m3/h) 扬程:12(m) 电机功率:550(W)6.玻璃转子流量计:型号测量范围精度LZB—40 100〜1000(L / h) 1.5LZB—10 10〜100(L/h) 2.5四、实验方法及步骤1.向储水槽内注水,直到水满为止。

3. 单相流体流动阻力测定实验-学生版本

3. 单相流体流动阻力测定实验-学生版本

3 单相流体流动阻力测定实验3.1 实验目的(1)熟悉流体流动管路测量系统,了解组成管路中各个部件、阀门的作用。

(2)学习压力差的几种测量方法和和提高其测量精确度的一些技巧。

(3)学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法,掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。

(4)掌握局部摩擦阻力△P f 、局部阻力系数ζ的测定方法。

(5)掌握流体流经管件(各种状态的阀门)的局部阻力测量方法,并求出阻力系数。

(6)掌握坐标系的选用方法和对数坐标系的使用方法。

3.2 实验内容(1)测定实验管路内流体流动的阻力和直管摩擦系数λ。

(2)测定并绘制实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。

(3)测定管路部件局部摩擦阻力△P f 和局部阻力系数ζ。

3.3 实验原理(1)直管摩擦系数λ与雷诺数Re 的测定流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。

流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:22u d l h fP f λρ==∆ (3-1)22u P l d f∆⋅⋅=ρλ (3-2) μρ⋅⋅=u d Re (3-3)式中:f P ∆ ——直管阻力引起的压强降,Pa ;d —— 管径,m ; l —— 管长,m ; ρ —— 流体的密度,kg / m 3; u —— 流速,m / s ;µ —— 流体的粘度,N·s / m 2。

直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。

在实验装置中,直管段管长l 和管径d 都已固定。

若水温一定,则水的密度ρ和粘度μ也是定值。

所以本实验实质上是测定直管段流体阻力引起的压强降fP ∆与流速u 之间的关系。

根据实验数据和式(3-2)可计算出不同流速下的直管摩擦系数λ,用式(3-3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 单相流体阻力测定实验
一、实验目的
⒈ 学习直管摩擦阻力△P f 、直管摩擦系数的测定方法。

⒉ 掌握不同流量下摩擦系数
与雷诺数Re 之间关系及其变化规律。

⒊ 学习压差传感器测量压差,流量计测量流量的方法。

⒋ 掌握对数坐标系的使用方法。

二、实验内容
⒈ 测定既定管路内流体流动的摩擦阻力和直管摩擦系数。

⒉ 测定既定管路内流体流动的直管摩擦系数与雷诺数Re 之间关系曲线和关系式。

三、实验原理
流体在圆直管内流动时,由于流体的具有粘性和涡流的影响会产生摩擦阻力。

流体在管内流动阻力的大小与管长、管径、流体流速和摩擦系数有关,它们之间存在如下关系。

h f = ρf
P ∆=2
2
u d l λ (3-1)
λ=
22u P l d f
∆⋅
⋅ρ (3-2) Re =
μ
ρ
⋅⋅u d (3-3)
式中:-d 管径,m ;
-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ;
-u 管内平均流速,m / s ; -ρ流体的密度,kg / m 3

-μ流体的粘度,N ·s / m 2。

摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。

在实验装置中,直管段管长l 和管径d 都已固定。

若水温一定,则水的密度ρ和粘度μ也是定值。

所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。

根据实验数据和式3-2可以计算出不同流速(流量V )下的直管摩擦系数λ,用式3-3计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

四、实验流程及主要设备参数:
1.实验流程图:见图1
水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。

被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。

2.主要设备参数:
被测光滑直管段:第一套管径 d— (m) 管长 L—(m) 材料: 不锈钢管
第二套管径 d—(m) 管长 L—(m) 材料: 不锈钢管
第三套管径 d—(m) 管长 L—(m) 材料: 不锈钢管
第四套管径 d— (m) 管长 L—(m) 材料: 不锈钢管被测粗糙直管段:第一套管径 d— (m) 管长 L—(m) 材料: 不锈钢管
第二套管径 d— (m) 管长 L—(m) 材料: 不锈钢管
第三套管径 d— (m) 管长 L—(m) 材料: 不锈钢管
第四套管径 d— (m) 管长 L—(m) 材料: 不锈钢管
2.被测局部阻力直管段: 管径 d—(m) 管长 L—(m) 材料: 不锈钢管
3.压力传感器:
型号:LXWY 测量范围: 200 KPa
压力传感器与直流数字电压表连接方法见图2
4.直流数字电压表:
型号: PZ139 测量范围: 0 ~ 200 KPa
5.离心泵:
型号: WB70/055 流量: 8(m3/h) 扬程: 12(m)
电机功率: 550(W)
6.玻璃转子流量计:
型号测量范围精度
LZB—40 100~1000(L/h)
LZB—10 10~100(L/h)
五、实验方法
1.向储水槽内注水,直到水满为止。

(有条件最好用蒸馏水,以保持流体清洁)
2. 直流数字表的使用方法请详细阅读使用说明书。

3.大流量状态下的压差测量系统,应先接电予热10~15分钟,调好数字表的零点,方可
启动泵做实验。

4.检查导压系统内有无气泡存在.
当流量为零时,若空气—水倒置∪型管内两液柱的高度差不为零,则说明系统内有气泡存在,需赶净气泡方可测取数据。

赶气泡的方法: 将流量调至最大,把所有的阀门全部打开,排出导压管内的气泡,直至排净为止。

5.测取数据的顺序可从大流量至小流量,反之也可,一般测15~20组数,建议当流量读
数小于300L/h时,只用空气—水倒置∪型管测压差△P。

6.局部阻力测定时关闭阀门3和4,全开或半开阀门7,用倒置U型管关测量远端、近
端压差并能测出局部阻力系数。

7.待数据测量完毕,关闭流量调节阀,切断电源。

六、实验注意事项:
1.利用压力传感器测大流量下△P 时,应切断空气—水倒置∪型管闭阀门13、13’否则影
响测量数值。

2.若较长时间内不做实验,放掉系统内及储水槽内的水。

3.在实验过程中每调节一个流量之后应待流量和直管压降的数据稳定以后方可记录数
据。

4.较长时间未做实验,启动离心泵之前应先盘轴转动否则易烧坏电机。

七、实验报告要求
1.将原始数据和数据处理结果用表格形式列出,并列出一组计算示例。

2.将测定的λ-Re 标绘到双对数坐标纸上。

八、数据处理:
(1)λ─Re 的计算
在被测直管段的两取压口之间列柏努利方程式,可得:
△P f =△P ( 1 )
△P f L u 2
h f =───=λ── ── ( 2 ) ρ d 2
2d △P f λ=── ── ( 3 ) L ρ u 2
du ρ Re =─── ( 4 ) μ 符号意义:
d ─管径 (m) L ─管长 (m) u ─流体流速 (m /s)
△P f ─直管阻力引起的压降 (N /m 2
)
ρ─流体密度 (Kg /m 3
) μ─流体粘度 λ─摩擦阻力系数 Re ─雷诺准数
测得一系列流量下的△P f 之后,根据实验数据和式(1),(3)计算出不同流速下的λ值。

用式(4)计算出Re 值,从而整理出λ─Re 之间的关系, 在双对数坐标纸上绘出λ─Re 曲线。

(2).局部阻力的计算:
H f 局=ΔP 局/ρ=(2ΔP 近-ΔP 远)/ρ=ξ×(u 2
/2)
22u
p

∆=
ρ
ξ
附表:实验记录表格
基本数据:
室温:大气压强:粘度:密度:。

相关文档
最新文档