2015届高考数学 集合、常用逻辑用语专题汇编及详细答案

合集下载

专题01 集合与常用逻辑用语(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题01 集合与常用逻辑用语(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题01集合与常用逻辑用语考点十年考情(2015-2024)命题趋势考点1集合间的基本关系(10年2考)2023·全国新Ⅱ卷、2020全国新Ⅰ卷一般给两个集合,要求通过解不等式求出集合,然后通过集合的运算得出答案。

考点2交集(10年10考)2024·全国新Ⅰ卷、2024年全国甲卷、2023·北京卷、2023全国新Ⅰ卷、2022·全国新Ⅱ卷、2022年全国乙卷、2022年全国甲卷、2022全国新Ⅰ卷、2021年全国乙卷、2021年全国甲卷、2021年全国甲卷、2021全国新Ⅰ卷考点3并集(10年8考)2024·北京卷、2022·浙江卷、2021·北京卷、2020·山东卷、2019·北京卷、2017·浙江卷、2017·全国卷、2016·山东卷、2016·全国卷、2015·全国卷考点4补集(10年8考)2024年全国甲卷、2023年全国乙卷、2023年全国乙卷、2022·全国乙卷、2022·北京卷、2021全国新Ⅱ卷、2020全国新Ⅰ卷、2018·浙江卷、2018·全国卷、2017·北京卷考点5充分条件与必要条件(10年10考)2024·全国甲卷、2024·天津卷、2024·北京卷、2023·北京卷、2023·全国甲卷、2023·天津卷、2023·全国新Ⅰ卷、2022·浙江卷、2022·北京卷、2021·全国甲卷常以关联的知识点作为命题背景,考查充分条件与必要条件,难度随载体而定。

考点6全称量词与存在量词(10年4考)2024·全国新Ⅱ卷、2020·全国新Ⅰ卷、2016·浙江卷、2015·浙江卷、2015·全国卷、2015·湖北卷全称量词命题和存在量词命题的否定及参数求解是高考复习和考查的重点。

2015高考理科数学集合与常用逻辑用语总复习题(含答案)

2015高考理科数学集合与常用逻辑用语总复习题(含答案)

2015高考理科数学集合与常用逻辑用语总复习题(含答案)A组基础演练•能力提升]一、选择题1.(2013年高考浙江卷)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁RS)∪T=()A.(-2,1]B.(-∞,-4]C.(-∞,1]D.1,+∞)解析:T={x|-4≤x≤1},根据补集定义,∁RS={x|x≤-2},所以(∁RS)∪T ={x|x≤1},选C.答案:C2.(2013年高考辽宁卷)已知集合A={x|0A.(0,1)B.(0,2]C.(1,2)D.(1,2] 解析:0∴集合A={x|1答案:D3.已知集合A=xx-2x≤0,x∈N,B={x|x≤2,x∈Z},则满足条件A⊆C⊆B 的集合C的个数为()A.1B.2C.4D.8解析:由x-2x≤0得0答案:D4.若集合A={x∈Z|20},则A∩(∁RB)所含的元素个数为()A.0B.1C.2D.3解析:∵A={0,1},B={x|x>2或x答案:C5.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}解析:由题意知集合B的元素为1或-1或者B为空集,故a=0或1或-1.故选D.答案:D6.(2013年高考广东卷)设整数n≥4,集合X={1,2,3,…n}.令集合S={(x,y,z)|x,y,z∈X,且三条件xA.(y,z,w)∈S,(x,y,w)∉S B.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)∉S,(x,y,w)∈SD.(y,z,w)∉S,(x,y,w)∉S解析:题目中x答案:B二、填空题7.(2014年武汉模拟)已知A,B均为集合U={1,2,3,4,5,6}的子集,且A∩B ={3},(∁UB)∩A={1},(∁UA)∩(∁UB)={2,4},则B∩(∁UA)=________.解析:依题意及韦恩图得,B∩(∁UA)={5,6}.答案:{5,6}8.已知集合A={x∈R||x+2|解析:A={x∈R||x+2|由A∩B=(-1,n)可知m则B={x|m答案:-119.设集合M=,=+-1+y+3,-52≤y≤3,若(a,b)∈M,且对M中的其他元素(c,d),总有c≥a,则a=________.解析:依题可知,本题等价于求函数x=f(y)=(y+3)•|y-1|+y+3在-52≤y≤3时的最小值.当-52≤y≤1时,x=(y+3)(1-y)+y+3=-y2-y+6=-y+122+254,所以当y=-52时,xmin=94.当1≤y≤3时,x=(y+3)(y-1)+y+3=y2+3y=y+322-94,所以当y=1时,xmin=4.又4>94,因为当y=-52时,x有最小值94,即a=94.答案:94三、解答题10.设集合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求A∪B. 解析:由9∈A,可得x2=9,或2x-1=9,解得x=±3,或x=5.当x=3时,A={9,5,-4},B={-2,-2,9},B中元素重复,故舍去;当x=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,故A∪B={-8,-7,-4,4,9};当x=5时,A={25,9,-4},B={0,-4,9},此时A∩B={-4,9}与A∩B ={9}矛盾,故舍去.综上所述,A∪B={-8,-7,-4,4,9}11.已知集合A={x|x2-2x-3≤0,x∈R},B={x|m-2≤x≤m+2}.(1)若A∩B=1,3],求实数m的值;(2)若A⊆∁RB,求实数m的取值范围.解析:A={x|-1≤x≤3},B={x|m-2≤x≤m+2}.(1)∵A∩B=1,3],∴m-2=1,m+2≥3.得m=3.(2)∁RB={x|xm+2},∵A⊆∁RB,∴m-2>3或m+2∴m>5或m12.(能力提升)设集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m(1)当m(2)若A∪B=A,求实数m的取值范围.解析:∵不等式x2-(2m+1)x+2m(1)当m∴集合B={x|2m(2)若A∪B =A,则B⊆A,∵A={x|-1≤x≤2},①当m此时-1≤2m②当m=12时,B=∅,有B⊆A成立;③当m>12时,B={x|1此时1综上所述,m的取值范围是-12≤m≤1. B组因材施教•备选练习]1.已知集合P={y=x2+1},Q={y|y=x2+1,x∈R},S={x|y=x2+1,x∈R},T={(x,y)|y=x2+1,x∈R},M={x|x≥1},则()A.P=MB.Q=SC.S=TD.Q=M解析:集合P是用列举法表示,只含有一个元素,集合Q是函数y=x2+1的值域,Q={y|y≥1},集合S是函数y=x2+1中x的取值范围R,集合M是不等式的解集{x|x≥1},而集合T的元素是平面上的点,此集合是函数y=x2+1的图象上所有的点组成的集合,故选D.答案:D2.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.解析:A={x|log2x≤2}={x|0答案:43.(2014年合肥模拟)对于任意的两个正数m,n,定义运算⊙:当m,n都为偶数或都为奇数时,m⊙n=m+n2,当m,n为一奇一偶时,m⊙n =mn,设集合A={(a,b)|a⊙b=6,a,b∈N*},则集合A中的元素个数为________.解析:(1)当a,b都为偶数或都为奇数时,a+b2=6⇒a+b=12,即2+10=4+8=6+6=1+11=3+9=5+7=12,故符合题意的点(a,b)有2×5+1=11个.(2)当a,b为一奇一偶时,ab=6⇒ab=36,即1×36=3×12=4×9=36,故符合题意的点(a,b)有2×3=6个.综上可知,集合A中的元素共有17个.答案:174.已知A={(x,y)|y=|x2-1|},B={(x,y)|y=1-x2},则A∩B的真子集个数为________.解析:由题意,知集合A表示函数y=|x2-1|的图象,由y=1-x2,得x2+y2=1(y≥0),该方程表示以原点为圆心,1为半径的半圆,所以集合B表示半圆,所以A∩B中的元素就是函数y=|x2-1|与y=1-x2的图象的交点.因为y=|x2-1|=x2-1,x∈-∞,-1]∪1,+∞,1-x2,x∈-1,,如图所示,作出y=|x2-1|与y=1-x2的图象,可知y=|x2-1|与y=1-x2的图象有三个交点,分别为D(-1,0),E(1,0),C(0,1),即A∩B中有3个元素,故A∩B的子集有23=8(个),真子集个数为8-1=7.答案:7。

【解密高考】2015届高考数学大一轮总复习 集合与常用逻辑用语、基本初等函数、导数及其应用阶段性综合

【解密高考】2015届高考数学大一轮总复习 集合与常用逻辑用语、基本初等函数、导数及其应用阶段性综合

集合与常用逻辑用语、基本初等函数、导数及其应用时间120分钟 满分150分 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·某某河西质量调查)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个解析:由题意得A ∩B ={4,7,9},U =A ∪B ={3,4,5,7,8,9},所以∁U (A ∩B )={3,5,8}. 答案:A2.(2014·某某质检)若集合A ={x ||x +1|=x +1},B ={x |x 2+x <0},则A ∩B =( ) A .(-1,0) B .[-1,0) C .(-1,0]D .[-1,0]解析:因为A ={x |x ≥-1},B ={x |-1<x <0},所以A ∩B ={x |-1<x <0}. 答案:A3.(2014·某某某某十校期末)满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .4解析:由题意得{a 1,a 2}⊆M ⊆{a 1,a 2,a 4}, 所以M ={a 1,a 2}或M ={a 1,a 2,a 4}. 答案:B4.(2014·某某调研)设集合P ={x |x 2-x -2≥0},Q ={y |y =12x 2-1,x ∈P },则P ∩Q=( )A .{m |-1≤m <2}B .{m |-1<m <2}C .{m |m ≥2}D .{-1}解析:P ={x |x ≥2或x ≤-1},又x ∈P 时,y =12x 2-1∈[-12,+∞),故Q ={y |y ≥-12},故P ∩Q ={m |m ≥2}. 答案:C5.(2013·某某)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( )A .2B .1C .0D .-2解析:因f (x )为奇函数,故f (-1)=-f (1)=-(1+1)=-2. 答案:D6.(2014·某某综合测试)设全集I 是实数集R ,M ={x |x 2>4}与N ={x |2x -1≥1}都是I 的子集(如图所示),则阴影部分所表示的集合为( )A .{x |x <2}B .{x |-2≤x <1}C .{x |1<x ≤2}D .{x |-2≤x ≤2}解析:M ={x |x >2或x <-2},N ={x |3-xx -1≥0}={x |1<x ≤3},阴影部分所表示的集合为(∁R M )∩N ={x |-2≤x ≤2}∩{x |1<x ≤3}={x |1<x ≤2}.答案:C7.(2013·某某)“(2x-1)x =0”是“x=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:由(2x -1)x =0可得x =12或0,因为“x=12或0”是“x=0”的必要不充分条件,故答案选B .答案:B8.(2014·东城期末)有下列四个命题: ①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若m≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A∩B=B ,则A B”的逆否命题.其中真命题为( )A .①②B .②③C .④D .①②③解析:①中逆命题为“若x ,y 互为倒数,则xy =1”,为真命题. ②中否命题为“若两三角形面积不相等,则两三角形不全等”,为真命题. ③中x 2-2x +m =0有实数解⇔Δ=4-4m≥0⇔m≤1, 故原命题正确,其逆否命题为真命题.④若A∩B=B ,则B ⊆A ,为假命题,故其逆否命题为假命题. 答案:D9.(2014·某某某某期末)已知命题p :∃x ∈R ,使sin x -cos x =3,命题q :集合{x |x2-2x +1=0,x ∈R }有2个子集,下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是假命题;③命题“(綈p )∨(綈q )”是真命题,正确的个数是( )A .0B .1C .2D .3解析:sin x -cos x =2sin(x -π4)∈[-2,2],而3∉[-2,2],故命题p 是假命题;集合{x |x 2-2x +1=0,x ∈R }={1},故其子集有Ø与{1}两个,故命题q 是真命题,所以命题“p ∧q ”是假命题,命题“p ∧(綈q )”是假命题,命题“(綈p )∨(綈q )”是真命题,②③正确.答案:C10.(2014·某某某某第二次测试)已知函数f (x +1)是偶函数,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)>0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .b <a <cB .c <b <aC .b <c <aD .a <b <c解析:本题主要考查抽象函数的性质.由函数f (x +1)为偶函数知f (x )的对称轴为x =1.当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)>0得到f (x )在(1,+∞)上是递增的, 所以f (-12)=f (52),所以f (2)<f (52)<f (3).即b <a <c .答案:A11.(2014·某某苏北四市第一次调研)若函数y =f (x )在R 上可导且满足不等式xf ′(x )+f (x )>0恒成立,且常数a ,b 满足a >b ,则下列不等式一定成立的是( )A .af (a )>bf (b )B .af (b )>bf (a )C .af (a )<bf (b )D .af (b )<bf (a )解析:由题意设F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x ),则F ′(x )>0,∴F (x )为单调增函数,又a>b,∴F(a)>F(b).∴af(a)>bf(b).答案:A12.(2014·某某调研)定义在R上的函数f(x)满足f(-x)=-f(x+4),当x≥2时,f(x)单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值为( ) A.恒小于0 B.恒大于0C.可能为0 D.可正可负解析:可以由f(x)=-f(4-x)得函数图象关于点(2,0)成中心对称直观解答;也可直接推理,由(x1-2)(x2-2)<0不妨设x1>2,x2<2,由条件得f(x2)=-f(4-x2),故f(x1)+f(x2)=f(x1)-f(4-x2),由x2<2且x1+x2>4⇒x1>4-x2>2,由于函数在[2,+∞)上为增函数,可得f(x1)>f(4-x2),故选B.答案:B第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答。

2015年高考数学(新课标Ⅱ版)分项汇编专题01集合与常用逻辑用语(含解析)理

2015年高考数学(新课标Ⅱ版)分项汇编专题01集合与常用逻辑用语(含解析)理

专题01 集合与常用逻辑用语一.基础题组1. 【2013课标全国Ⅱ,理1】已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N =( ).A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}【答案】:A2. 【2012全国,理2】已知集合A={1,3,},B={1, m},A∪B=A,则m=( )A.0或 B.0或3 C.1或 D.1或3【答案】 B3. 【2015高考新课标2,理1】已知集合,,则()A.B.C.D.【答案】A二.能力题组1.【2014新课标,理1】设集合M={0,1,2},N=,则=( )A. {1}B. {2}C. {0,1}D. {1,2}【答案】D【解析】因为N=,所以,故选D.2. 【2006全国2,理1】已知集合M={x|x<3},N={x|log2x>1},则M∩N等于(A. B.{x|0<x<3} C.{x|1<x<3} D.{x|2<x<3}【答案】:D3. 【2005全国2,理9】已知集合,,则为()(A) 或(B) 或(C) 或(D) 或【答案】A三.拔高题组1. 【2011新课标,理10】已知a与b均为单位向量,其夹角为θ,有下列四个命题:p1: |a+b|>1θ∈[0,)p2:|a+b|>1θ∈(,π]p3:|a-b|>1θ∈[0,)p4:|a-b|>1θ∈(,π]其中的真命题是( )A.p1,p4B.p1,p3C.p2,p3D.p2, p4【答案】A【解析】2. 【2005全国2,理16】下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是______________.(写出所有真命题的编号)【答案】①④。

2015届高考数学文科一轮总复习集合与常用逻辑用语.docx

2015届高考数学文科一轮总复习集合与常用逻辑用语.docx

2015 届高考数学(文科)一轮总复习集合与常用逻辑用语第一篇集合与常用逻辑用语第 1 讲集合及其运算基础巩固题组( 建议用时: 40 分钟 )一、填空题1 .(2013 ?安徽卷改编 ) 已知 A= {x|x + 1> 0} ,B= { - 2,-1,0,1} .则 ( ?RA)∩ B= ________.解析因为 A= {x|x >- 1} ,则 ?RA= {x|x ≤- 1} ,所以( ?RA)∩B= { - 2,- 1} .答案{ -2,- 1}2.已知集合= {1,2,3} ,N= {2,3,4} ,则下列各式不正确的是 ________.①? N;② N? ;③∩ N={2,3} ;④∪ N= {1,4} .解析由已知得∩ N={2,3},故选①②④ .答案①②④3.已知集合={0,1,2,3,4},N= {1,3,5},P=∩N,则P 的子集个数有________.解析P=∩ N= {1,3},故P 的子集共有 4 个.答案44.已知集合 A= {x|x2 -x- 2< 0} ,B= {x| - 1<x< 1} ,则 A 与 B 的关系是 ________.解析集合 A= {x| - 1< x<2} ,B= {x| -1< x< 1} ,则BA.答案BA5.设集合 A= {x|x2 + 2x- 8< 0} , B= {x|x < 1} ,则图中阴影部分表示的集合为 ________.解析阴影部分是A∩ ?RB.集合 A= {x| - 4< x<2} ,?RB={x|x ≥1} ,所以 A∩?RB= {x|1 ≤ x<2} .答案 {x|1 ≤ x< 2}6 .(2013 ?湖南卷 ) 已知集合 U= {2,3,6,8},A={2,3},B= {2,6,8},则( ?UA)∩ B=________.解析由集合的运算,可得 ( ?UA)∩ B={6,8}∩{2,6,8}={6,8} .答案 {6,8}7 .集合A= {0,2 , a} , B= {1 , a2} ,若A∪ B={0,1,2,4,16},则 a 的值为________.解析根据并集的概念,可知{a, a2}= {4,16},故只能是a= 4.答案48.集合 A= {x ∈ R||x - 2| ≤ 5} 中的最小整数为________.解析由 |x- 2|≤ 5,得-5≤ x- 2≤ 5,即-3≤ x≤ 7,所以集合 A 中的最小整数为- 3.答案- 3二、解答题9.已知集合 A= {a2 , a+ 1,- 3} , B={a - 3,a- 2,a2+ 1} ,若 A∩ B={ -3} ,求 A∪ B.解由 A∩B={ -3} 知,- 3∈B.又 a2+ 1≥ 1,故只有 a- 3, a- 2 可能等于- 3.①当 a-3=- 3 时,a= 0,此时 A= {0,1 ,- 3} ,B= { -3,- 2,1} , A∩B= {1 ,- 3} .故 a= 0 舍去.②当 a-2=- 3 时, a=- 1,此时 A={1,0 ,- 3} , B= { - 4,- 3,2} ,满足 A∩B= { - 3} ,从而 A∪ B= { - 4,- 3,0,1,2}.10.设 A= {x|x2 + 4x= 0} , B= {x|x2+ 2(a +1)x + a2-1=0} ,(1)若 B? A,求 a 的值;(2)若 A? B,求 a 的值.解(1)A = {0 ,- 4} ,①当 B=?时,=4(a+1)2-4(a2-1)=8(a+1)<0,解得 a<- 1;②当 B 为单元素集时,a=- 1,此时 B= {0} 符合题意;③当 B=A 时,由根与系数的关系得:-2 a+ 14, a2-1= 0,解得 a=1.综上可知: a≤- 1 或 a= 1.(2)若 A? B,必有 A= B,由 (1) 知 a= 1.能力提升题组( 建议用时: 25 分钟 )一、填空题1 .若集合 A= { - 1,1} ,B= {0,2} ,则集合 {z|z = x+ y,x∈ A, y∈ B} 中的元素的个数为 ________.解析当 x=- 1,y= 0 时, z=- 1;当 x=- 1, y= 2时, z=1;当 x= 1,y= 0 时, z= 1;当 x= 1,y= 2 时, z= 3. 故z 的值为- 1,1,3 ,故所求集合为 { - 1,1,3} ,共含有 3 个元素.答案32.已知集合A= {x∈ R||x+ 2|解析A= {x|- 5答案-113.设g(x) = (axa, b, c+ 1)(cx2为实数,+ bx+1)f(x)=(x.记集合+ a) ?(x2S= {x|f(x)+ bx+ c) ,=0, x∈R}, T= {x|g(x)=0,x∈ R}.若|S|,|T|分别为集合S, T 的元素个数,则下列结论:①|S| = 1 且|T| = 0;② |S| = 1且 |T| =1,③ |S| =2 且 |T| = 2;④ |S| = 2 且 |T| =3,其中不可能成立的是________.解析取 a= 0,b= 0,c= 0,则 S= {x|f(x)=x3=0},|S| = 1,T= {x|g(x)=1≠0},|T|=0.因此①可能成立.取a= 1, b= 0, c=1,则 S= {x|f(x)= (x + 1)(x2 + 1) = 0} ,|S| = 1, T= {x|g(x) = (x + 1)(x2+ 1) =0} , |T| =1,因此②可能成立.取 a=- 1, b= 0, c=- 1,则 S= {x|f(x)=(x - 1)(x2 - 1) = 0} , |S| = 2, T= {x|g(x) = ( - x+1)?( -x2+ 1) =0} ,|T| = 2. 因此③可能成立.对于④,若 |T|= 3,则= b2- 4c> 0,从而导致 f(x)= (x + a)(x2 + bx+c)也有3 解,因此 |S| = 2 且 |T| =3 不可能成立.故④不可能成立.答案④二、解答题4.已知集合A= {y|y= 2x- 1,0< x≤ 1}, B= {x|(x-a)[x- (a + 3)]< 0} .分别根据下列条件,求实数 a 的取值范围.(1)A∩ B=A;(2)A∩ B≠ ?.解因为集合 A 是函数 y= 2x- 1(0 < x≤ 1) 的值域,所以 A= ( - 1,1] , B= (a , a+ 3) .(1)A∩ B=A? A? B? a≤-1,a+3>1,即- 2< a≤- 1,故当 A∩ B=A 时,a 的取值范围是 ( - 2,-1] .(2)当 A∩B= ?时,结合数轴知, a≥ 1 或 a+ 3≤- 1,即a≥ 1 或 a≤- 4.故当 A∩B≠ ?时, a 的取值范围是 ( - 4,1).。

2015年高考数学试题分类汇编A单元 集合与常用逻辑用语

2015年高考数学试题分类汇编A单元  集合与常用逻辑用语

数学A单元集合与常用逻辑用语A1 集合及其运算2.A1[2015·安徽卷] 设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=() A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}2.B[解析] 由∁U B={1,5,6}得A∩(∁U B)={1}.1.A1[2015·广东卷] 若集合M={-1,1},N={-2,1,0},则M∩N=()A.{0,-1} B.{0}C.{1} D.{-1,1}1.C[解析] M∩N={1},故选C.10.A1[2015·湖北卷] 已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A B中元素的个数为() A.77 B.49C.45 D.3010.C[解析] 集合A,集合B”点,集合A B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点(-3,-3),(-3,3),(3,-3),(3,3)之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A B表示如图所示的所有“”点+所有“,共45个.故A B中元素的个数为45.故选C.1.A1[2015·全国卷Ⅰ] 已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B 中元素的个数为()A.5 B.4C.3 D.21.D[解析] 集合A={2,5,8,11,14,17,…},所以A∩B={8,14},所以A∩B中有2个元素.1.A1[2015·全国卷Ⅱ] 已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)1.A[解析] 根据并集的概念可知A∪B={x|-1<x<2}∪{x|0<x<3}={x|-1<x<3}=(-1,3),选A.1.A12015·北京卷若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}1.A[解析] A∩B={x|-5<x<2}∩{x|-3<x<3}={x|-3<x<2},故选A.2.A1[2015·福建卷] 若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()A.{0} B.{1}C.{0,1,2} D.{0,1}2.D[解析] 根据交集的概念得M∩N={0,1}.11.A1[2015·湖南卷] 已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.11.{1,2,3} [解析] ∁U B={2},故A∪(∁U B)={1,3}∪{2}={1,2,3}.1.A1[2015·山东卷] 已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A∩B=()A.(1,3) B.(1,4)C.(2,3) D.(2,4)1.C[解析] ∵B={x|1<x<3},∴A∩B=(2,3).1.A1[2015·陕西卷] 设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]1.A[解析] 由题得集合M={0,1},N=(0,1],所以M∪N=[0,1].1.A12015·四川卷设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}1.A[解析] 集合A=(-1,2),B=(1,3),故A∪B=(-1,3).1.A1[2015·天津卷] 已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩(∁U B)=()A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}1.B[解析] ∁U B={2,5},A∩(∁U B)={2,3,5}∩{2,5}={2,5},故选B.1.A12015·浙江卷已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4) B.(2,3]C.(-1,2) D.(-1,3]1.A[解析] 不等式x2-2x≥3,即x2-2x-3≥0,即(x+1)(x-3)≥0,解得x≤-1或x≥3,即P=(-∞,-1]∪[3,+∞),所以P∩Q=[3,4).1.A1[2015·重庆卷] 已知集合A={1,2,3},B={1,3},则A∩B=()A.{2} B.{1,2}C.{1,3} D.{1,2,3}1.C[解析] 由集合交集的定义,得A∩B={1,3}.1.A1[2015·江苏卷] 已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.1.5[解析] 因为A∪B={1,2,3,4,5},所以A∪B中元素的个数为5.A2 命题及其关系、充分条件、必要条件 3.A2[2015·安徽卷] 设p :x <3,q :-1<x <3,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件3.C [解析] 因为(-1,3)是(-∞,3)的真子集,所以q ⇒p ,但p ⇒/ q ,因此p 是q 的必要不充分条件.5.A2、G3[2015·湖北卷] l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件5.A [解析] 由l 1,l 2是异面直线,可得l 1,l 2不相交,所以p ⇒q ;由l 1,l 2不相交,可得l 1,l 2是异面直线或l 1∥l 2,所以q ⇒/ p .所以p 是q 的充分条件,但不是q 的必要条件.故选A.6.A2,F3[2015·北京卷] 设a ,b 是非零向量.“a·b =|a||b|”是“a ∥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.A [解析] 根据数量积的定义,a ·b =||a ·||b cos θ,由a ·b =||a ·||b 可得cos θ=1,根据向量所成角的范围得到θ=0,所以a ∥b ;若a ∥b ,可得向量a 与向量b 共线,即所成的角为0或π,所以a ·b =±||a ·||b ,故选A. 12.A2、E1[2015·福建卷] “对任意x ∈0,π2,k sin x cos x <x ”是“k <1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12.B [解析] 当x ∈0,π2时,k sin x cos x <x ⇔k <x sin x cos x =2xsin 2x ,令t =2x ∈(0,π),则y =2x sin 2x =tsin t>1,所以k ≤1,故选B. 3.A2[2015·湖南卷] 设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.C [解析] ∵x >1,∴x 3>1,由x 3-1>0得(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件,选C.5.A2[2015·山东卷] 设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤05.D[解析] ∵逆否命题是将原命题的条件与结论互换并分别否定,∴命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.图1-16.A2[2015·陕西卷] “sin α=cos α”是“cos 2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.A[解析] sin α=cos α时,cos 2α=cos2α-sin2α=0,反之,sin α=±cos α,即“sin α=cos α”是“cos 2α=0”的充分不必要条件.4.A2、B7[2015·四川卷] 设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.A[解析] 当a>b>1时,log2a>log2b>0成立;反之也正确.故选A.4.A2、E2[2015·天津卷] 设x∈R,则“1<x<2”是“|x-2|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.A[解析] 由|x-2|<1,解得1<x<3.若1<x<2,则1<x<3,反之不成立,所以“1<x<2”是“|x -2|<1”成立的充分不必要条件.3.A2[2015·浙江卷] 设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.D[解析] 当a=-2,b=3时,a+b>0,而ab<0;当a=-2,b=-3时,ab>0,而a+b<0.故“a+b>0”是“ab>0”的既不充分也不必要条件.2.A2[2015·重庆卷] “x=1”是“x2-2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件2.A[解析] 由x2-2x+1=0,解得x=1,所以“x=1”是“x2-2x+1=0”的充要条件,故选A.A3 基本逻辑联结词及量词3.A3[2015·湖北卷] 命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是()A.∃x0∈(0,+∞),ln x0≠x0-1B.∃x0∉(0,+∞),ln x0=x0-1C .∀x ∈(0,+∞),ln x ≠x -1D .∀x ∉(0,+∞),ln x =x -13.C [解析] 特称命题的否定是全称命题,且注意否定结论,故原命题的否定是“∀x ∈(0,+∞),ln x ≠x -1”.故选C.A4 单元综合 4.[2015·沈阳二中模拟] 下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题D .命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1<0”4.C [解析] 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以选项A 不正确.由x =-1,能够得到x 2-5x -6=0,反之,由x 2-5x -6=0,得到x =-1或x =6,所以“x =-1”是“x 2-5x -6=0”的充分不必要条件,所以选项B 不正确.命题“若x =y ,则sin x =sin y ”为真命题,所以其逆否命题也为真命题,所以选项C 正确.命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,所以选项D 不正确.6.[2015·重庆一中模拟] “x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.B [解析] ∵x <0,∴x +1<1,∴当x +1>0时,ln(x +1)<0;∵ln(x +1)<0,∴0<x +1<1,∴-1<x <0,∴x <0,∴“x <0”是“ln(x +1)<0”的必要不充分条件.9.[2015·佛山一中模拟] 若a =2x ,b =log 12x ,则“a >b ”是“x >1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.B [解析] 如图所示,当x =x 0时,a =b .若a >b ,则得到x 00b 不一定得到x >1,∴“a >b ”不是“x >1”的充分条件;若x >1,则由图像得到a >b ,∴“a >b ”是“x >1”的必要条件.故“a >b ”是“x >1”的必要不充分条件. 13.[2015·杭州二中模拟] 给出下列说法: ①“若p ,则q ”的否命题是“若綈 p ,则綈 q ”; ②“∀x >2,x 2-2x >0”的否定是“∃x 0≤2,x 20-2x 0≤0”; ③“p ∧q 是真命题”是“p ∨q 是真命题”的充分不必要条件;④若“b =0,则函数f (x )=ax 2+bx +c 是偶函数”的逆命题是真命题. 其中,错误说法的序号是________.13.② [解析] 根据命题与否命题的关系知①正确;“∀x >2,x 2-2x >0”的否定是“∃x 0>2,x 20-2x 0≤0”,②错误;若“p ∧q ”是真命题,则p ,q 均为真命题,所以“p ∨q ”是真命题,反之,若“p ∨q ”是真命题,则p ,q 可能是一真一假或都为真,则“p ∧q ”不一定是真命题,所以③正确;若f(x)=ax2+bx+c为偶函数,则f(x)=f(-x),解得b=0,所以④正确.。

全国名校高考数学试题分类汇编(12月 第四期)A单元集合

全国名校高考数学试题分类汇编(12月 第四期)A单元集合

【备考2015】2015届全国名校数学试题分类汇编(12月 第四期)A单元集合与常用逻辑用语(含解析)目录A1 集合及其运算 ........................................................ - 1 - A2 命题及其关系、充分条件、必要条件 ..................................... - 4 - A3 基本逻辑联结词及量词 ............................................... - 12 - A4 单元综合 ........................................................... - 13 -A1 集合及其运算【数学理卷·2015届黑龙江省大庆市铁人中学高三12月月考(期中)(201412)】1.设集合A ={x |y =3x -x 2},B ={y |y =2x,x >1},则A ∩B 为( )A .[0,3]B .(2,3]C .[3,+∞) D.[1,3] 【知识点】集合及其运算A1 【答案】B【解析】A ={x |0≤x 3≤},B={y |y >2}则A ∩B=(2,3] 【思路点拨】先分别求出A ,B 再求交集。

【数学理卷·2015届重庆市巴蜀中学高三12月月考(201412)】5.已知()(){}3,3,,202y M x y N x y ax y a x ⎧-⎫===++=⎨⎬-⎩⎭且∅=⋂N M ,则a =( )A.-6或-2B.-6C.2或-6D.2【知识点】两个集合交集是空集的条件. A1【答案】【解析】A 解析:若∅=⋂N M ,则3232aa ⎧-=⎪⎪⎨⎪-≠-⎪⎩或32260a a a ⎧-≠⎪⎨⎪++=⎩,解得a= -6或a= -2,故选A.【思路点拨】要使∅=⋂N M ,需使:缺少点(2,3)的直线y-3=3(x-2)与直线ax+2y+a=0平行,或者直线ax+2y+a=0过点(2,3),但不与直线y-3=3(x-2)重合即可.【数学理卷·2015届重庆市巴蜀中学高三12月月考(201412)】1.已知集合A={1,3,4,6,7,8},B={1,2,4,5,6}则集合A ∩B 有()个子集 A.3 B.4 C.7 D.8【知识点】集合运算;子集的概念. A1【答案】【解析】D 解析:∵A ∩B={1,4,6},∴A ∩B 有328=个子集,故选D. 【思路点拨】求得A ∩B ,再用公式求其子集个数.【数学理卷·2015届河北省唐山一中高三12月调研考试(201412)】1.设集合1122M x x ⎧⎫=-<<⎨⎬⎩⎭,{}2N x x x =≤,则M N =I ( )A .1[0,)2B .C .1[1,)2-D .1(,0]2-【知识点】集合及其运算A1 【答案】A【思路点拨】解一元二次不等式求得N ,再根据两个集合的交集的定义求得M∩N.【数学理卷·2015届江苏省扬州中学高三上学期质量检测(12月)(201412)】1.已知集合},2|{},1|{≤=->=x x B x x A 那么=⋃B A _________.【知识点】并集及其运算.A1【答案】【解析】R 解析:由并集的运算律可得=⋃B A R ,故答案为R 。

(2021年整理)2015年高考数学试题分类汇编常用逻辑用语

(2021年整理)2015年高考数学试题分类汇编常用逻辑用语

2015年高考数学试题分类汇编常用逻辑用语编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015年高考数学试题分类汇编常用逻辑用语)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015年高考数学试题分类汇编常用逻辑用语的全部内容。

题十一 常用逻辑用语1.(15北京理科)设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥"是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】试题分析:因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件。

考点:1.空间直线与平面的位置关系;2。

充要条件。

2。

(15年安徽文科)设p :x 〈3,q :-1〈x 〈3,则p 是q 成立的( )(A )充分必要条件 (B)充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件【答案】C【解析】试题分析:∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C.考点:充分必要条件的判断.3.(15年新课标1理科)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N , 2n 〉2n (B )∃ n ∈N , 2n ≤2n(C)∀n ∈N , 2n ≤2n (D )∃ n ∈N , 2n =2n【答案】C【解析】p ⌝:2,2n n N n ∀∈≤,故选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届高考数学集合、常用逻辑用语专题汇编1.(2013·高考新课标全国卷Ⅰ文)已知集合A={1,2,3,4},B={x|x=n2,x∈A},则A∩B =()A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:选A.∵A={1,2,3,4},B={x|x=n2,x∈A},∴B={1,4,9,16},∴A∩B={1,4}.2.(2013·高考新课标全国卷Ⅰ理)已知集合A={x|x2-2x>0},B={x|-5<x<5},则() A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B.∵A={x|x>2或x<0},B={x|-5<x<5},∴A∩B={x|-5<x<0或2<x<5},A∪B=R.3.(2013·高考新课标全国卷Ⅱ理)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}解析:选A.集合M={x|-1<x<3,x∈R},∴M∩N={0,1,2},故选A.4.(2013·高考新课标全国卷Ⅱ文)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}解析:选C.M∩N={-2,-1,0},故选C.5.(2013·高考大纲全国卷理)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4C.5 D.6解析:选B.由题意可知,集合M={5,6,7,8},共4个元素.6.(2013·高考大纲全国卷文)设全集U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.∅解析:选B.∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5}.7.(2013·高考山东卷理)已知集合A={0,1,2},则集合B={x-y |x∈A, y∈A}中元素的个数是()A.1 B.3C.5 D.9解析:选C.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.8.(2013·高考山东卷文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4}C.{3,4} D.∅解析:选A.∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.9.(2013·高考浙江卷理)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=() A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)解析:选C.因为S={x|x>-2},所以∁R S={x|x≤-2}.而T={x|-4≤x≤1},所以(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.10.(2013·高考浙江卷文)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=() A.[-4,+∞) B.(-2,+∞)C.[-4,1] D.(-2,1]解析:选D.S∩T={x|x>-2}∩{x|-4≤x≤1}={x|-2<x≤1}.11.(2013·高考北京卷理)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=() A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}解析:选B.∵A={-1,0,1},B={x|-1≤x<1}且1∉B,∴A∩B={-1,0}.12.(2013·高考天津卷理)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=() A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]解析:选D.由已知得A={x|-2≤x≤2},于是A∩B={x|-2≤x≤1}.13.(2013·高考福建卷文)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为() A.2 B.3C.4 D.16解析:选C.A∩B={1,3},其子集有∅,{1},{3},{1,3},共4个.14.(2013·高考辽宁卷文)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:选B.B={x||x|<2}={x|-2<x<2},A∩B={0,1}.15.(2013·高考辽宁卷理)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=() A.(0,1) B.(0,2]C.(1,2) D.(1,2]解析:选D.因为A={x|0<log4x<1}={x|1<x<4},B={x|x≤2},所以A∩B={x|1<x<4}∩{x|x≤2}={x|1<x≤2}.16.(2013·高考湖南卷文)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=________.解析:∵U={2,3,6,8},A={2,3},∴∁U A={6,8}.∴(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}17.(2013·高考江西卷理)已知集合M={1,2,z i},i为虚数单位,N={3,4},M∩N={4},则复数z=()A.-2i B.2iC.-4i D.4i解析:选C.因为M={1,2,z i},N={3,4},由M∩N={4},得4∈M,所以z i=4,所以z=-4i.18.(2013·高考江西卷文)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=() A.4 B.2C.0 D.0或4解析:选A.当a=0时,方程化为1=0,无解,集合A为空集,不符合题意;当a≠0时,由Δ=a2-4a=0,解得a=4.19.(2013·高考湖北卷理)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x | ⎝⎛⎭⎫12x ≤1,B ={x |x 2-6x +8≤0},则A ∩∁R B =( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}解析:选C.A =⎩⎨⎧⎭⎬⎫x | ⎝⎛⎭⎫12x ≤1={x |x ≥0},B ={x |x 2-6x +8≤0}={x |2≤x ≤4},所以∁R B ={x |x <2或x >4},于是A ∩∁R B ={x |0≤x <2或x >4}.20.(2013·高考湖北卷文)已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3,4},则B ∩∁U A =( )A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}解析:选B.∵U ={1,2,3,4,5},A ={1,2},∴∁U A ={3,4,5},∴B ∩∁U A ={2,3,4}∩{3,4,5}={3,4}21.(2013·高考四川卷文)设集合A ={1,2,3},集合B ={-2,2},则A ∩B =( )A .∅B .{2}C .{-2,2}D .{-2,1,2,3}解析:选B.A ∩B ={1,2,3}∩{-2,2}={2},故选B.22.(2013·高考四川卷理)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .∅解析:选A.∵A ={x |x +2=0},∴A ={-2}.∵B ={x |x 2-4=0},∴B ={-2,2}.∴A ∩B ={-2}.故选A.23.(2013·高考重庆卷文)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}解析:选D.∵A ={1,2},B ={2,3},∴A ∪B ={1,2,3},∴∁U (A ∪B )={4}.24.(2013·高考重庆卷理)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}解析:选D.∵A ={1,2},B ={2,3},∴A ∪B ={1,2,3},∴∁U (A ∪B )={4}.25.(2013·高考广东卷)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}解析:选D.集合M ={0,-2},N ={0,2},故M ∪N ={-2,0,2},故选D.26.(2013·高考广东卷文)设集合S ={x |x 2+2x =0,x ∈R },T ={x |x 2-2x =0,x ∈R },则S ∩T =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}解析:选A.集合S ={0,-2},T ={0,2},故S ∩T ={0},故选A.27.(2013·高考安徽卷文)已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}解析:选A.因为集合A ={x |x >-1},所以(∁R A )={x |x ≤-1},则(∁R A )∩B ={x |x ≤-1}∩{-2,-1,0,1}={-2,-1}.28.(2013·高考新课标全国卷文Ⅰ)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .綈p ∧qC .p ∧綈qD .綈p ∧綈q解析:选B.当x =0时,有2x =3x ,不满足2x <3x ,∴p :∀x ∈R,2x <3x 是假命题.如图,函数y =x 3与y =1-x 2有交点,即方程x 3=1-x 2有解,∴q :∃x ∈R ,x 3=1-x 2是真命题.∴p ∧q 为假命题,排除A.∵綈p 为真命题,∴綈p ∧q 是真命题.选B.29.(2013·高考山东卷理)给定两个命题p 、q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈pq ,其逆否命题为p ⇒綈q 但綈q p ,∴p 是綈q 的充分不必要条件. 30.(2013·高考山东卷文)给定两个命题p 、q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p q ,其逆否命题为p ⇒綈q 但綈q p ,∴p 是綈q 的充分不必要条件.31.(2013·高考浙江卷理)已知函数f (x )=A co s (ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.若f (x )是奇函数,则f (0)=0,所以co s φ=0,所以φ=π2+k π(k ∈Z ),故φ=π2不成立;若φ=π2,则f (x )=A co s (ωx +π2)=-As in(ωx ),f (x )是奇函数.所以f (x )是奇函数是φ=π2的必要不充分条件.32.(2013·高考浙江卷文)若α∈R ,则“α=0”是“s in α<co s α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.若α=0,则s in α=0,co s α=1,所以s in α<co s α,即α=0⇒s in α<co s α;但当α=-π2时,有s in α=-1<0=co s α,此时α≠0.所以α=0是s in α<co s α的充分不必要条件.33.(2013·高考北京卷文)“φ=π”是“曲线y =s in(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.当φ=π时,y =s in(2x +φ)=s in(2x +π)=-s in 2x ,此时曲线y =s in(2x +φ)必过原点,但曲线y =s in(2x +φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y =s in(2x +φ)过坐标原点”的充分而不必要条件.34.(2013·高考天津卷文)设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件解析:选A.由不等式的性质知(a -b )·a 2<0成立,则a <b 成立;而当a =0,a <b 成立时,(a -b )·a 2<0不成立,所以(a -b )·a 2<0是a <b 的充分而不必要条件.35.(2013·高考天津卷理)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是( )A .①②③B .①②C .①③D .②③解析:选C.对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确. 36.(2013·高考福建卷文)设点 P (x ,y ),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.37.(2013·高考福建卷理)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.38.(2013·高考陕西卷文)设全集为R, 函数f (x )=1-x 的定义域为M, 则∁R M 为( )A .(-∞,1)B .(1,+∞)C .(-∞,1]D .[1,+∞)解析:选B.函数f (x )的定义域M =(-∞,1],则∁R M =(1,+∞).39.(2013·高考湖南卷)“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.设A ={x |1<x <2},B ={x |x <2},∴A B ,即当x 0∈A 时,有x 0∈B ,反之不一定成立.因此“1<x <2”是“x <2”成立的充分不必要条件.40.(2013·高考辽宁卷)下面是关于公差d>0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列{a n n}是递增数列;p 4:数列{a n +3n d}是递增数列. 其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4解析:选D.因为d>0,所以a n +1>a n ,所以p 1是真命题.因为n +1>n ,但是a n 的符号不知道,所以p 2是假命题.同理p 3是假命题.由a n +1+3(n +1)d -a n -3n d =4d>0,所以p 4是真命题.41.(2013·高考陕西卷理)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)解析:选D.由1-x 2≥0,知-1≤x ≤1,∴M =[-1,1],∴∁R M =(-∞,-1)∪(1,+∞).42.(2013·高考湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:选A.依题意得綈p :“甲没有降落在指定范围”,綈q :“乙没有降落在指定范围”,因此“至少有一位学员没有降落在指定范围”可表示为(綈p )∨(綈q ).43.(2013·高考四川卷)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉BB .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B 解析:选D.命题p 是全称命题:∀x ∈A,2x ∈B ,则綈p 是特称命题:∃x ∈A,2x ∉B .故选D. 44.(2013·高考重庆卷理)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0 解析:选D.因为“∀x ∈M ,p (x )”的否定是“∃x ∈M ,綈p (x )”,故“对任意x ∈R ,都有x 2≥0”的否定是“存在x 0∈R ,使得x 20<0”.45.(2013·高考安徽卷)“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.当x =0时,显然(2x -1)x =0;当(2x -1)x =0时,x =0或x =12,所以“(2x -1)x =0”是“x =0”的必要不充分条件.46.(2013·高考陕西卷)设a ,b 为向量,则“|a·b |=|a||b|”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.若|a ·b |=|a ||b |,若a ,b 中有零向量,显然a ∥b ;若a ,b 均不为零向量,则|a ·b |=|a ||b ||co s 〈a ,b 〉|=|a ||b |,∴|co s 〈a ,b 〉|=1,∴〈a ,b 〉=π或0,∴a ∥b ,即|a ·b |=|a ||b |⇒a ∥b .若a ∥b ,则〈a ,b 〉=0或π,∴|a ·b |=||a ||b |co s 〈a ,b 〉|=|a ||b |,其中,若a ,b 有零向量也成立,即a ∥b ⇒|a ·b |=|a ||b |.综上知,“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件.47.(2013·高考江苏卷理)集合{-1,0,1}共有________个子集.解析:由于集合中有3个元素,故该集合有23=8(个)子集.答案:848.(2013.高考湖南卷)对于E ={a 1,a 2,...,a 100}的子集X ={a i 1,a i 2,...,a i k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中x i 1=x i 2=...=x i k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________.(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99;E 的子集Q 的“特征数列” q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98,则P ∩Q 的元素个数为________.解析:(1)子集{a 1,a 3,a 5}的“特征数列”中共有3个1,其余均为0,该数列为1,0,1,0,1,0,0,…,0.故该数列前3项的和为2.(2)E 的子集P 的“特征数列”p 1,p 2,…,p 100中,由于p 1=1,p i +p i +1=1(1≤i ≤99),因此集合P 中必含有元素a 1.又当i =1时,p 1+p 2=1,且p 1=1,故p 2=0.同理可求得p 3=1,p 4=0,p 5=1,p 6=0,….故E 的子集P 的“特征数列”为1,0,1,0,1,0,1,0,…,1,0,即P ={a 1,a 3,a 5,a 7,…,a 99}.E 的子集Q 的“特征数列”q 1,q 2,…,q 100中,由于q 1=1,q j +q j +1+q j +2=1(1≤j ≤98),因此集合Q 中必含有元素a 1.又当j =1时,q 1+q 2+q 3=1,当j =2时,q 2+q 3+q 4=1,当j =3时,q 3+q 4+q 5=1,…,故q 1=1,q 2=q 3=0,q 4=1,q 5=q 6=0,q 7=1,….所以E 的子集Q 的“特征数列”为1,0,0,1,0,0,1,0,0,…,0,1,即Q ={a 1,a 4,a 7,a 10,…,a 100}.因为100=1+(n -1)×3,故n =34.所以集合Q 中有34个元素,其下标为奇数的有17个.因此P ∩Q ={a 1,a 7,a 13,a 19,…,a 97},共有17个元素.答案:(1)2 (2)1749.(2013·高考重庆卷)对正整数n ,记I n ={1,2,…,n },P n =⎩⎨⎧⎭⎬⎫m k m ∈I n ,k ∈I n . (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.解:(1)当k =4时,⎩⎨⎧⎭⎬⎫m k m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n ⊇I n .不妨设I ∈A ,则因为1+3=22,故3∉A ,即3∈B .同理,6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求.当k =1时,⎩⎨⎧⎭⎬⎫m k m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集合⎩⎨⎧⎭⎬⎫m k m ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可求解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集合⎩⎨⎧⎪⎪m k ⎭⎬⎫m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133, B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集合C =⎩⎨⎧⎭⎬⎫m k m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上可知,所求n 的最大值为14.注:对P 14的分析方法不是唯一的.。

相关文档
最新文档