通信原理实验报告2

合集下载

通信原理实验报告2

通信原理实验报告2

通信原理实验报告课程名称:通信原理实验三:二进制数字信号调制仿真实验实验四:模拟信号数字传输仿真实验姓名:学号:班级:2012年12 月实验三二进制数字信号调制仿真实验一、实验目的1.加深对数字调制的原理与实现方法;2.掌握OOK、2FSK、2PSK功率谱密度函数的求法;3.掌握OOK、2FSK、2PSK功率谱密度函数的特点及其比较;4.进一步掌握MATLAB中M文件的调试、子函数的定义和调用方法。

二、实验内容1. 复习二进制数字信号幅度调制的原理2. 编写MATLAB程序实现OOK调制;3. 编写MATLAB程序实现2FSK调制;4. 编写MATLAB程序实现2PSK调制;5. 编写MATLAB程序实现数字调制信号功率谱函数的求解。

三、实验原理在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。

数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢程度。

由于数字符号是按码元间隔不断产生的,经过将数字符号一一映射为响应的信号波形后,就形成了数字调制信号。

根据映射后信号的频谱特性,可以分为基带信号和频带信号。

通常基带信号指信号的频谱为低通型,而频带信号的频谱为带通型。

调制信号为二进制数字基带信号时,对应的调制称为二进制调制。

在二进制数字调制中,载波的幅度、频率和相位只有两种变化状态。

相应的调制方式有二进制振幅键控(OOK/2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)。

下面分别介绍以上三种调制方法的原理,及其MATLAB实现:本实验研究的基带信号是二进制数字信号,所以应该首先设计MATLAB程序生成二进制数字序列。

根据实验一的实践和第一部分的介绍,可以很容易的得到二进制数字序列生成的MATLAB程序。

假定要设计程序产生一组长度为500的二进制单极性不归零信号,以之作为后续调制的信源,并求出它的功率谱密度,以方便后面对已调信号频域特性和基带信号频域特性的比较。

通信原理实验报告

通信原理实验报告

实验一、PCM编译码实验实验步骤1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。

2. PCM串行接口时序观察(1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。

分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。

(2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。

分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。

3. PCM编码器(1)方法一:(A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。

(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。

分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。

分析为什么采用一般的示波器不能进行有效的观察。

(2)方法二:(A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。

此时由该模块产生一个1KHz的测试信号,送入PCM编码器。

(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。

分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。

4. PCM译码器(1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。

此时将PCM输出编码数据直接送入本地译码器,构成自环。

通信原理实训报告

通信原理实训报告

一、实训背景随着信息技术的飞速发展,通信技术在各个领域都发挥着越来越重要的作用。

为了使学生更好地理解通信原理,提高实践能力,我们选择了通信原理实训课程。

通过本次实训,我们深入学习了通信系统的基本原理、信号传输与处理技术,以及通信设备的使用与维护。

二、实训目的1. 理解通信系统的基本原理,掌握通信系统各组成部分的功能。

2. 熟悉通信设备的使用与维护方法,提高实际操作能力。

3. 培养团队协作精神,提高解决实际问题的能力。

三、实训内容本次实训主要包括以下内容:1. 通信系统基本原理:学习通信系统的基本概念、组成、工作原理等,了解通信系统的发展历程和趋势。

2. 信号传输与处理技术:学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。

3. 通信设备的使用与维护:学习通信设备的操作方法、维护技巧以及故障排除方法。

四、实训过程1. 通信系统基本原理实训(1)通过课堂讲解和实验演示,了解通信系统的基本组成和功能。

(2)学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。

(3)通过实验验证通信系统的基本原理,如模拟通信系统的调制解调、数字通信系统的编码解码等。

2. 信号传输与处理技术实训(1)学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。

(2)通过实验验证信号传输与处理技术的实际应用,如AM、FM、PM调制解调、数字信号编码解码等。

3. 通信设备的使用与维护实训(1)学习通信设备的操作方法、维护技巧以及故障排除方法。

(2)通过实际操作,掌握通信设备的操作方法,如调制解调器、路由器、交换机等。

(3)学习故障排除方法,提高实际解决问题的能力。

五、实训成果1. 理解通信系统的基本原理,掌握通信系统各组成部分的功能。

2. 熟悉通信设备的使用与维护方法,提高实际操作能力。

3. 培养团队协作精神,提高解决实际问题的能力。

六、实训总结通过本次通信原理实训,我们收获颇丰。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。

就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。

在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。

抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。

(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。

(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。

(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。

2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。

P09 测试点可用于抽样脉冲的连接和测量。

该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。

3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。

通信原理2DPSK调制与解调实验报告

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告一. 2DPSK基本原理1.2DPSK信号原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。

现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。

图1.1 2DPSK信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。

如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。

所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。

定义∆Φ为本码元初相与前一码元初相之差,假设:∆Φ=0→数字信息“0”;∆Φ=π→数字信息“1”。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:0 π π 0 π π 0 π 0 0 π或:π 0 0 π 0 0 π 0 π π 02. 2DPSK信号的调制原理一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。

2DPSK 信号的的模拟调制法框图如下图 1.2.1,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法2DPSK信号的的键控调制法框图如下图1.2.2,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。

选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。

图1.2.2 键控法调制原理图3. 2DPSK信号的解调原理2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。

(1) 2DPSK信号解调的极性比较法它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。

通信原理实验2

通信原理实验2

①以9号模块“NRZ-I”为触发,观测“I”;以9号模块 “NRZ-Q”为触发,观测“Q”。
②以9号模块“基带信号”为触发,观测“调制输出”。 ③以9号模块的“基带信号”为触发,观测13号模块的 “SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复 出载波。 ④以9号模块的“基带信号”为触发观测“DBPSK解调输 出”,多次单击13号模块的“复位”按键。观测“DBPSK解 调输出”的变化。
⑤以信号源的CLK为触发,测9号模块LPF-FSK,观测眼 图。
实验项目三 2PSK调制及解调实验
1、实验原理框图
256K
信号源
PN15
载波1 基带信号
256K
载波2
BPSK解调 输出
门限
低通
判决 LPF-BPSK 滤波
9# 数字调制解调模块
反相
I NRZ_I
取反
NRZ_Q Q
相干载波
13# 载波同步及位同步模块
模块9:TH4(调制输出) 模块13:TH2(载波同步输入) 载波同步信号输入
模块13:TH1(SIN)
模块9:TH10(相干载波输入) 用于解调的载波
模块9:TH4(调制输出) 模块9:TH7(解调输入)
解调信号输入
模块9:TH12(BPSK输出) 模块13:TH7(锁相环输入) 锁相环信号输入
模块13:TH5(BS2)
(4)波形观测 ①示波器CH1接9号模块TH1基带信号,CH2接9号模块 TH4调制输出,以CH1为触发对比观测FSK调制输入及输出, 验证FSK调制原理。 ②将PN序列输出频率改为64KHz,观察载波个数是否发 生变化。 ③尝试以学号作为基带信号,观测调制输出波形。
④以9号模块TH1为触发,用示波器分别观测9号模块 TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、 TH8(FSK 解调输出),验证FSK解调原理。

通信原理实验报告.

通信原理实验报告.

《通信原理》实验报告地点通信实验室学院信息工程学院专业班级通信082姓名同组成员学号指导教师2010年 12月实验2 模拟信号源实验一、实验目的1.了解本模块中函数信号产生芯片的技术参数;2.了解本模块在后续实验系统中的作用;3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。

二、实验仪器1.时钟与基带数据发生模块,位号:G2.频率计1台3.20M双踪示波器1台4.小电话单机1部五、实验内容及步骤1.插入有关实验模块:在关闭系统电源的条件下,将“时钟与基带数据发生模块”,插到底板“G”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。

注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.加电:打开系统电源开关,底板的电源指示灯正常显示。

若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

3. 非同步函数信号源测试:频率计和示波器监测P03测试点,按上述设置测试非同步函数信号源输出信号波形,记录其波形参数。

4.同步正弦波信号源测试:频率计和示波器监测P04测试点,按上述设置测试同步正弦波信号源输出信号波形,记录其波形参数。

5.用户电话测试:1)电话模块接上电话单机,说话或按住某个数字键不放,用示波器测试其发端波形。

2)用信号连接线连接P03与P06/P08两铆孔,即将函数信号送入电话的接收端,调节信号的频率和幅度,听听筒中发出的声音。

6. 关机拆线:实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

六、实验报告要求1.记录非同步、同步函数信号的幅度、频率、直流分量等参数,画出测试的波形图。

(1).非同步函数信号源测试:三角波: T=0.8s, Vp-p=1.3v 正弦波: T=0.52ms,Vp-p=1.2v方波:T=0.56ms,VP-P=2.2v同步正弦:T=0.5ms,Vp-p=0.52v2.记录电话数字键波形,了解电话拨号的双音多频的有关技术。

数字键波形记录:1: 2:3: 4:5: 6:7: 8:9: 0:实验2 集成乘法器幅度调制电路一、实验目的1.通过实验了解振幅调制的工作原理;2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系;3.掌握用示波器测量调幅系数的方法。

通信原理实验报告答案(3篇)

通信原理实验报告答案(3篇)

第1篇一、实验目的1. 理解通信系统的基本原理和组成。

2. 掌握通信系统中的调制、解调、编码、解码等基本技术。

3. 熟悉实验仪器的使用方法,提高动手能力。

4. 通过实验,验证通信原理理论知识。

二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。

2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。

3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。

三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。

2. 信号源:提供调制、解调所需的信号。

3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。

四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。

(2)将信号源信号输入调制器,观察调制后的信号波形。

(3)调整解调器参数,如解调方式、解调频率等。

(4)将调制信号输入解调器,观察解调后的信号波形。

2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。

(2)将调制信号输入解调器,观察解调后的信号波形。

(3)调整调制器参数,如调制方式、调制频率等。

(4)将解调信号输入调制器,观察调制后的信号波形。

3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。

(2)将信息信号输入编码器,观察编码后的数字信号。

(3)设置解码器参数,如解码方式、解码长度等。

(4)将编码信号输入解码器,观察解码后的信息信号。

4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。

(2)将信号源信号输入传输线路,观察传输过程中的信号变化。

(3)调整传输线路参数,如衰减、反射等。

(4)观察传输线路参数调整对信号传输的影响。

五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。

2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信原理实验报告课程名称:通信原理实验三:二进制数字信号调制仿真实验实验四:模拟信号数字传输仿真实验姓名:学号:班级:2012年12 月实验三二进制数字信号调制仿真实验一、实验目的1.加深对数字调制的原理与实现方法;2.掌握OOK、2FSK、2PSK功率谱密度函数的求法;3.掌握OOK、2FSK、2PSK功率谱密度函数的特点及其比较;4.进一步掌握MATLAB中M文件的调试、子函数的定义和调用方法。

二、实验内容1. 复习二进制数字信号幅度调制的原理2. 编写MATLAB程序实现OOK调制;3. 编写MATLAB程序实现2FSK调制;4. 编写MATLAB程序实现2PSK调制;5. 编写MATLAB程序实现数字调制信号功率谱函数的求解。

三、实验原理在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。

数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢程度。

由于数字符号是按码元间隔不断产生的,经过将数字符号一一映射为响应的信号波形后,就形成了数字调制信号。

根据映射后信号的频谱特性,可以分为基带信号和频带信号。

通常基带信号指信号的频谱为低通型,而频带信号的频谱为带通型。

调制信号为二进制数字基带信号时,对应的调制称为二进制调制。

在二进制数字调制中,载波的幅度、频率和相位只有两种变化状态。

相应的调制方式有二进制振幅键控(OOK/2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)。

下面分别介绍以上三种调制方法的原理,及其MATLAB实现:本实验研究的基带信号是二进制数字信号,所以应该首先设计MATLAB程序生成二进制数字序列。

根据实验一的实践和第一部分的介绍,可以很容易的得到二进制数字序列生成的MATLAB程序。

假定要设计程序产生一组长度为500的二进制单极性不归零信号,以之作为后续调制的信源,并求出它的功率谱密度,以方便后面对已调信号频域特性和基带信号频域特性的比较。

整个过程可用如下程序段实现:%定义相关参数clear all;close all;A=1fc=2; %2Hz;N_sample=8;N=500; %码元数Ts=1; %1 Baud/sdt=Ts/fc/N_sample; %波形采样间隔t=0:dt:N*Ts-dt;Lt=length(t);%产生二进制信源 d=sign(randn(1,N));%dd=sigexpand((d+1)/2,fc*N_sample); N1=length((d+1)/2);dd=zeros(fc*N_sample,N1); dd(1,:)=(d+1)/2;dd=reshape(dd,1,fc*N_sample*N1); gt=ones(1,fc*N_sample);%NRZ 波形 figure(1)subplot(221);%输入NRZ 信号波形(单极性) d_NRZ=conv(dd,gt);plot(t,d_NRZ(1:length(t)));axis([0 10 0 1.2]); ylabel ('输入信号'); subplot(222);%输入NRZ 频谱 dt=t(2)-t(1); T=t(end); df=1/T;N=length(d_NRZ(1:length(t))); f=-N/2*df:df:N/2*df-df;d_NRZf=fft(d_NRZ(1:length(t))); d_NRZf=T/N*fftshift(d_NRZf);plot(f,10*log10(abs(d_NRZf).^2/T));axis([-2 2 -50 10]);ylabel('输入信号功率谱密度(dB/Hz)');3.2 OOK 调制二进制振幅键控(OOK/2ASK)是利用载波的幅度变化来传递数字信息的,而其频率和初始相位保持不变。

在2ASK 中,载波的幅度只有两种变化状态,分别对应二进制信息“0”和“1”。

2ASK 信号的一般表达式为:()t t s t e c ωcos )(2ASK =其中,∑-=n s n nT t g a t s )()(。

所以,要进行OOK 调制,定义完二进制数字序列和载波参量后,将之相乘即可。

相关的MATLAB 指令如下:ht=A*cos(2*pi*fc*t); s_2ask=d_NRZ(1:Lt).*ht; subplot(223) plot(t,s_2ask);axis([0 10 -1.2 1.2]); ylabel('OOK');要对OOK 调制之前与之后信号的频域特性进行比较,可以通过比较两者的功率谱密度曲线来实现。

也就是求出OOK 调制信号s_2ask 的功率谱密度函数,并将之与3.1中求得的基带信号的功率谱密度函数进行比较。

根据《通信原理》的学习,可以知道,求解某信号功率谱密度的过程就是先求出该信号的傅立叶变换,再求该傅立叶变换的幅值的绝对值的平方的过程。

如何求功率谱密度函数在实验二中已经详细介绍过了,本处不再赘述。

根据前面的介绍,我们已经知道要求得某信号的傅立叶变换,可以通过调用实验一附录中的T2F 子函数实现,也可以直接编程实现。

实验二中使用的都是子函数调用的方式,下面给出直接编程实现傅立叶变换的MATLAB 程序:dt=t(2)-t(1); T=t(end); df=1/T;N=length(s_2ask);f=-N/2*df:df:N/2*df-df; s_2askf=fft(s_2ask);s_2askf=T/N*fftshift(s_2askf); subplot(224)plot(f,10*log10(abs(s_2askf).^2/T)); axis([-fc-4 fc+4 -50 10]);ylabel('OOK 功率谱密度(dB/Hz )');通过以上程序,我们将基带信号波形及其功率谱密度曲线,OOK 调制信号及其功率谱密度曲线分别画在了同一个图的四个子图中,以方便对调制前后信号的频域特性进行比较。

3.3 2FSK 调制频移键控是利用载波的频率的变化来传递数字信息的。

在2FSK 中,载波的频率随二进制基带信号在f 1和f 2两个频率点间变化。

故其表达式为:⎩⎨⎧++=”时发送“”时发送“0),cos(A 1),cos(A )(212FSK n n t t t e θωϕω《通信原理》中已经介绍过,2FSK 信号的调制可通过两个方法实现,一是将2FSK 信号理解为两路不同频率的ASK 信号相加的结果;二是将2FSK 信号表示成如下的形式:()cos(22())C n S n s t A f t h a g t nT ππ∞=-∞=+-∑第一种方法实现起来相当简单,直接参照3.2中ASK 信号的产生方法,产生两路不同频率的ASK 信号,将之相加即可得到2FSK 信号,这种方法留待同学们课后自己实现。

下面我们介绍用第二种方法产生2FSK 信号的MATLAB 程序设计过程。

首先,为了使2FSK 信号不至覆盖了前面产生的信号,新建一个图,其指令为: figure(2)然后,在这个图上画2FSK 信号的波形,及其功率谱密度曲线波形。

%2FSK%s_2fsk=A*cos(2*pi*fc*t+int(2*d_NRZ-1)); sd_2fsk=2*d_NRZ-1;s_2fsk=A*cos(2*pi*fc*t+2*pi*sd_2fsk(1:length(t)).*t); subplot(223) plot(t,s_2fsk);axis([0 10 -1.2 1.2 ]); xlabel('t'); ylabel('2FSK') subplot(224)求出2FSK 调制信号的功率谱密度函数:%[f,s_2fsk]=T2F(t,s_2fsk); dt=t(2)-t(1); T=t(end); df=1/T;N=length(s_2fsk);f=-N/2*df:df:N/2*df-df; s_2fsk=fft(s_2fsk);s_2fsk=T/N*fftshift(s_2fsk);plot(f,10*log10(abs(s_2fsk).^2/T)); axis([-fc-4 fc+4 -50 10]);xlabel('f'); ylabel('2FSK 功率谱密度(dB/Hz)');3.4 2PSK 调制相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。

以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制绝对相移键控(2PSK)。

其时域表达式为:)cos(A )(2PSK n c t t e ϕω+=与2ASK 信号的产生方法相比较,2PSK 和2ASK 只是对s(t)的要求不同,在2ASK 中s(t)是单极性的,而在2PSK 中s(t)是双极性的基带信号。

除此之外,所有的设计流程都是相似的。

参考程序如下:%2PSK 信号d_2psk=2*d_NRZ-1;s_2psk=d_2psk(1:Lt).*ht; subplot(221) plot(t,s_2psk);axis([0 10 -1.2 1.2]); ylabel('2PSK'); subplot(222)求出2PSK 调制信号的功率谱密度函数:%[f,s_2pskf]=T2F(t,s_2psk); dt=t(2)-t(1); T=t(end); df=1/T;N=length(s_2psk);f=-N/2*df:df:N/2*df-df; s_2pskf=fft(s_2psk);s_2pskf=T/N*fftshift(s_2pskf);plot(f,10*log10(abs(s_2pskf).^2/T)); axis([-fc-4 fc+4 -50 10]);ylabel('PSK 功率谱密度(dB/Hz )'); 四、实验内容(1)按照如上介绍的方法,分别产生一组长度为500的二进制单极性不归零信号和归零信号,存档名为Q3_1。

并求分别求出它们的功率谱密度。

请写出相应的MATLAB 程序,将不归零信号波形及功率谱和归零信号波形及功率谱分别画在同一图形的四个子图中,将结果图保存,贴在下面的空白处。

程序:clear all;close all;A=1fc=2; %2Hz;N_sample=8;N=500; %码元数Ts=1; %1 Baud/sdt=Ts/fc/N_sample; %波形采样间隔t=0:dt:N*Ts-dt;Lt=length(t);%产生二进制信源d=sign(randn(1,N));%dd=sigexpand((d+1)/2,fc*N_sample);N1=length((d+1)/2);dd=zeros(fc*N_sample,N1);dd(1,:)=(d+1)/2;dd=reshape(dd,1,fc*N_sample*N1);gt=ones(1,fc*N_sample);%NRZ 波形gt2=ones(1,fc*N_sample/2)%RZboxing/////figure(1)subplot(221);%输入NRZ信号波形(单极性)d_NRZ=conv(dd,gt);plot(t,d_NRZ(1:length(t)));axis([0 10 0 1.2]); ylabel ('输入信号');subplot(222);%输入NRZ频谱dt=t(2)-t(1);T=t(end);df=1/T;N=length(d_NRZ(1:length(t)));f=-N/2*df:df:N/2*df-df;d_NRZf=fft(d_NRZ(1:length(t)));d_NRZf=T/N*fftshift(d_NRZf);plot(f,10*log10(abs(d_NRZf).^2/T));axis([-2 2 -50 10]);ylabel('输入信号功率谱密度(dB/Hz)');%/////////subplot(223);%输入NRZ信号波形(单极性)d_RZ=conv(dd,gt2);plot(t,d_RZ(1:length(t)));axis([0 10 0 1.2]); ylabel ('输入信号');subplot(224);%输入NRZ频谱dt=t(2)-t(1);T=t(end); df=1/T;N=length(d_RZ(1:length(t))); f=-N/2*df:df:N/2*df-df;d_RZf=fft(d_RZ(1:length(t))); d_RZf=T/N*fftshift(d_RZf);plot(f,10*log10(abs(d_RZf).^2/T));axis([-2 2 -50 10]);ylabel('输入信号功率谱密度(dB/Hz)'); 图形:05100.51输入信号-2-1012-40-200输入信号功率谱密度(d B /H z )5100.51输入信号-2-112-40-200输入信号功率谱密度(d B /H z )ZX AND LZ(2)对刚才产生的长度为500的不归零波形对载波频率为2Hz ,幅度为1的余弦信号进行OOK 调制,并求出调制信号的功率谱密度。

相关文档
最新文档