数值分析论文 (8)
数值分析论文2

数值分析在水文地质中的应用摘要:本文通过运用数值分析中线性方程组的直接解法,解决水文地质中具体的问题,本文将地下水的流动的情况通过数学模型将其演示出来,再运用MATLAB 求出地下水的各个参数。
关键词:地下水;追赶法 ;MATLAB 。
1序言数值分析是研究各种数学问题求解的数值计算方法,许多实际问题都需要运用数值分析的各种算法来求解,同时联系计算机各种软件来实现解答。
在水文地质中,地下水的流动很难描述,通过地下水的数值模拟将河流描述,运用数值分析的方法运用MATLAB 实现。
2实际问题描述考察通过x=0和x=L 处的长且直的河流为界的承压含水层,如下图,该含水层均质各向同性,顶底板水平,上覆弱透水层,垂向补给强度为W (x ),两河流边界的水位分别为ψ1和ψ2,且不随时间变化。
首先,沿河流的方向取单宽作为计算区,并对计算区进行剖分,即江河间距L 剖分成N 等分,则空间步长为Δx=L/N 。
其次,在网格分割线上任取一点作为节点,节点编号由左向右依次为0,1,……i ,……N 。
任一节点i 的坐标为i Δx ,水位为H i ,已知节点0的水位为ψ1,节点N 的水位为ψ2。
L=800m, ψ1=10m, ψ2=5m,W=0.004m/d,T=100m 2/d.若取Δx=100m 即N=L/Δx=8,则共有9个节点,编号依次为0,1,……8,其中节点1,2,……7的水头是待求值。
从而求1122)2(2)(ϕϕϕ++-+-=TWLL x T W x H3数学模型的建立建立数学模型:⎪⎪⎩⎪⎪⎨⎧==≤≤=+∂∂==21022)()()0(0)(ϕϕL x x x H x H L x x W x HT 以剖分为基础,针对节点i 建立差分方程:())()(2)()()(22x O x x H x x H x x H x H ∆+∆-∆-+∆+=)()()()(2)(2222x O x x x H x H x x H x H x∆+∆∆++-∆-=∂∂ 式中:H (x+Δx )、H(X)、H (x+Δx )在这里分别相当于节点i-1、i 、i+1的水头,用H i-1、H i 、H i+1表示,则)()(2221122x O x H H H x H i i i x∆+∆+-=∂∂+-这里将舍去余项)(2x O ∆,并以i H _表示节点i 的水头H i 的近似值,则有21__1_22)(2x H H H x H i i i x∆+-=∂∂+- 成立。
数值分析毕业论文

数值分析毕业论文数值分析毕业论文数值分析是一门研究利用计算机和数学方法解决实际问题的学科。
在现代科学和工程领域中,数值分析扮演着重要的角色。
数值分析毕业论文是数值分析专业学生完成学业的重要组成部分,也是展示他们研究能力和学术水平的重要机会。
一、选题数值分析毕业论文的选题是非常重要的。
一个好的选题能够体现学生的研究兴趣和专业知识,并且具备一定的研究价值和实际应用意义。
选题应该能够解决实际问题或者填补学术空白,同时也要符合自身的研究能力和时间限制。
二、文献综述在开始撰写毕业论文之前,进行文献综述是必不可少的。
文献综述可以帮助学生了解当前研究的最新进展和研究方向,从而确定自己的研究方向和方法。
通过对相关文献的阅读和分析,学生可以了解前人的研究成果和不足之处,为自己的研究提供借鉴和启示。
三、问题陈述在毕业论文中,学生需要清晰地陈述自己研究的问题和目标。
问题陈述应该明确、简洁,并且具备一定的可行性和独创性。
学生需要解释为什么选择这个问题,并且说明解决这个问题的重要性和意义。
问题陈述是整个毕业论文的基础,也是读者了解研究内容的入口。
四、理论分析在毕业论文中,学生需要对所研究的问题进行理论分析。
理论分析是通过数学模型和方法来解决问题的过程。
学生需要运用数值分析的理论知识和方法,对问题进行建模和分析,并且给出相应的数学推导和证明。
理论分析是毕业论文的核心部分,也是学生研究能力的体现。
五、数值实验除了理论分析,毕业论文还需要进行数值实验。
数值实验是通过计算机模拟和仿真来验证理论分析的结果和方法的有效性。
学生需要编写相应的数值算法和程序,进行计算和分析,并且对结果进行解释和讨论。
数值实验是将理论知识应用到实际问题中的过程,也是毕业论文的重要组成部分。
六、结果讨论在毕业论文中,学生需要对数值实验的结果进行讨论和分析。
学生应该解释结果的意义和影响,并且与前人的研究成果进行比较和对比。
学生还可以提出自己对结果的解释和看法,并且指出研究中存在的不足之处和改进的方向。
数值分析论文

齐齐哈尔大学《模糊数学》课程作业题目学院理学院专业班级信息与计算科学121班学生姓名杨志鹏课程作业成绩:2014年12月20日摘要高等学校助学金等级主要依据对学生家庭经济困难认定来评定的。
随着我国经济的发展,国家对高等学校贫困生助学金资助力度和覆盖面的加大,出现了给与不给助学金相差悬殊。
此外,家庭经济困难学生认定工作包含了太多的因素,而当前我国高校已经有的认定方法主要是定性的而不是定量的方法,这种方法存在一定程度的主观因素过强、信息不对等问题,不能解决出现的新问题。
目前各高校对贫困生认定方法主要有三类,横向比较界定法、消费水平界定方法和最低生活保障线比照界定法。
基于我国高校实践,共有十种具体认定方法,分别为三级证明法、相关困难证件法、班主任和辅导员评判、班委会选举产生、通过家庭经济情况直接认定、消费水平和饭卡监控法、居民最低生活保障线界定、根据贫困程度区分、署期家访和家庭问卷调研、设定贫困认定组、定期复查和抽查确立地方高等院校奖助学金评定中贫困生认定的量化模式,即在奖助学金评定中设定家庭贫困程度、学习成绩、德育表现和生活节俭程度四个指标,并对指标进行量化,然后对指标进行综合,该贫困生认定资助量化模式克服了评定人员的主观偏差,其操作简单易行、结果客观公正,具有较好的适用和推广价值。
关键词:助学金;模糊评价法;评定;应用模型的建立通过数学模型的方法帮助解决贫困生等级评定问题,将贫困生等级评定问题由定性转化为定量以使贫困生等级界定易于区分、评定工作易于实施,使资助政策更好地落实,充分体现“公平、公开、公正”的原则。
基于此,贫困生等级的判定可归为两大问题,问题一是建立合理的数学模型,定量化求出因素集中每个因素的影响程度,即因子权重矩阵。
因子权重的计算可以使用层次分析法,但是在本文中涉及的数据较多,考虑到本题中数据数据量大,可以从中随机抽样,随机抽样所得的数据近似服从正态分布,然后对样本进行直觉法评定样本中的贫困生等级,评定结果主要是用模糊数学统计法计算因素集的隶属度,与最后贫困生等级综合评定无关。
数值分析论文

《数值分析与科学计算概述》研究第一章对象描述一、数值分析与科学计算的概念科学计算即数值计算,科学计算是指应用计算机处理科学研究和工程技术中所遇到的数学计算。
在现代科学和工程技术中,经常会遇到大量复杂的数学计算问题,这些问题用一般的计算工具来解决非常困难,而用计算机来处理却非常容易。
科学计算是一门工具性、方法性、边缘性的学科,发展迅速,它与理论研究和科学实验成为现代科学发展的三种主要手段,它们相辅相成又互相独立,在实际应用中导出的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型求其数值解,如将复杂的非线性模型忽略一些因素而简化为可以求出精确解的线性模型,但这样做往往不能满足近似程度的要求,因此使用数值方法直接求解做较少简化的模型,可以得到满足近似程度要求的结果,使科学计算发挥更大的作用。
自然科学规律通常用各种类型的数学方程式表达,科学计算的目的就是寻找这些方程式的数值解。
这种计算涉及庞大的运算量,简单的计算工具难以胜任。
在计算机出现之前,科学研究和工程设计主要依靠实验或试验提供数据,计算仅处于辅助地位。
计算机的迅速发展,使越来越多的复杂计算成为可能。
利用计算机进行科学计算带来了巨大的经济效益,同时也使科学技术本身发生了根本变化:传统的科学技术只包括理论和试验两个组成部分,使用计算机后,计算已成为同等重要的第三个组成部分。
数值分析也称计算方法,它与计算工具发展密切相关。
是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。
为计算数学的主体部分。
在电子计算机出现以前,计算工具只有算盘,算图,算表和手摇及电动计算机。
计算方法只能计算规模较小的问题。
数值分析的任务是研究求解各类数学问题的数值方法和有关理论的学科。
数值分析的过程为构造算法、使用算法、分析算法。
数值分析是研究数值问题的算法,概括起来有四点:第一,面向计算机,要根据计算机的特点提供切实可行的计算方法。
《数值分析论》word版

成绩评定表课程设计任务书现如今几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如计算物理、计算化学、计算生物学、计算地质学、计算气象学和计算材料学等,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。
我们知道,计算能力是计算工具和计算方法的效率的乘积,提高计算方法的效率与提高计算机硬件的效率同样重要。
科学计算已用到科学技术和社会生活的各个领域中。
数值分析也称计算科学,是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及理论与软件实现,用计算机求解科学技术问题通常经历一下步骤:1、根据实际问题建立数学模型2、由数学模型给出数值计算方法3、根据计算方法编制算法程序(数学软件)在计算机上算出结果数值计算方法是一种利用计算机解决数学问题的数值近似解方法,特别是无法用人工过计算器计算的数学问题。
数值计算方法常用于矩阵高次代数方程矩阵特征值与特征向量的数值解法,插值法,线性方程组迭代法,函数逼近,数值积分与微分,常微分方程初值问题数值解等。
通过数值计算方法与实验将有助于我们理解和掌握数值计算方法基本理论和相关软件的掌握,熟练求解一些数学模和运算。
并提高我们的编程能力来解决实际问题,论文用到了LU分解法,拉格朗日数值法求解,龙贝格求积公式,Runge-Kutta方法,最小二乘法。
关键词:数值分析;LU分解法;最小二乘法实验一 LU解法解线性方程组 (1)1.1实验目的与要求 (1)1.2实验基本原理 (1)1.3数据来源与求解 (2)1.4实验结论 (5)实验二拉格朗日插值法数值求解 (5)2.1实验目的与要求 (5)2.2实验的基本原理 (5)2.3数据来源与求解 (6)2.4实验结论 (7)实验三龙贝格求积公式求数值积分 (7)3.1实验目的与要求 (7)3.2实验基本原理 (7)3.3数据来源与求解 (8)3.4实验结论 (10)实验四用Runge-Kutta方法求常微分方程数值解 (11)4.1实验目的与要求 (11)4.2实验基本原理 (11)4.3数据来源与求解 (12)4.4实验结论 (13)实验五最小二乘法拟合温度问题 (14)5.1实验目的 (14)5.2实验原理 (14)5.3数据来源与求解 (15)5.4实验结论 (16)心得体会 (17)参考文献 (18)实验一 LU 解法解线性方程组1.1实验目的与要求1了解LU 解法以及求解线性方程组的基本原理 2了解什么样的问题可以用LU 分解求解 3在MATLAB 软件上实现LU 分解的过程 4能够用LU 分解法求解现实问题1.2实验基本原理1.若一个线性方程组系数矩阵为n 阶方阵A 且各阶顺序主子式均不为0则A 的LU 分解存在且唯一。
数值分析小论文

基于ABAQUS软件的混凝土柱的有限元分析摘要:有限元法是工程分析中广泛应用的数值计算方法,由于它的通用性和有效性,受到工程技术界的高度重视。
ABAQUS 软件是国际上公认的最好的CAE大型通用分析软件之一。
本文对有限单元法进行简单介绍并采用ABAQUS软件分析一混凝土柱的受力问题。
关键词:ABAQUS,混凝土柱,有限元分析1 有限元理论概述1.1 有限元法基本思想有限元法的基本思想是将连续的求解区域离散为一组有限个、且按一定方式相互联结在一起的单元组合体。
由于单元能按不同的联结方式进行组合,且单元本身可以有不同形状,因此可以模型化几何形状复杂的求解区域。
有限元法作为数值分析方法的一个重要特点是利用在每一个单元内假设的近似函数,分片地表示全求解域上待求的未知场函数,单元内的近似函数通常由未知场函数或其导数在单元的各个节点的数值和其插值函数表达。
这样,一个问题的有限元分析中,未知场函数或其导数在各个节点上的数值就成为新的未知量(即自由度),从而使一个连续的无限自由度问题变成离散的有限自由度问题。
一经求解出这些未知量,就可通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。
显然,随着单元数目的增加,即单元尺寸的缩小,或者随着单元自由度的增加及插值函数精度的提高,解的近似程度将不断改进,如果单元是满足收敛要求的,近似解最后将收敛于精确解。
1.2 有限元法分类1.2.1 线弹性有限元法线弹性有限元法以理想弹性体为研究对象,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应变与位移也是线性关系。
线弹性有限元问题归结为求解线性方程组问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力分析与线弹性动力分析两个主要内容。
学习这些内容需具备材料力学、弹性力学、结构力学、数值方法、矩阵代数、算法语言、振动力学、弹性动力学等方面的知识。
数值分析论文

数值分析论文数值分析课程总结姓名:吴玉武学号:13121524 班级:数研1301目录第一章数值分析的历史背景 (2)1、背景 (2)2、发展历程 (3)第二章数值积分的主要方法 (3)1、牛顿-柯特斯求积公式 (3)2、梯形求积公式 (5)(1)梯形公式 (5)(2)复合梯形公式 (5)3、辛普森求积公式 (6)(1)辛普森公式 (6)(2)复合辛普森公式 (6)4、龙贝格求积公式 (6)(1)算法的基本思想 (6)(2)递推公式 (7)5、高斯求积公式 (7)(1)高斯型求积公式 (7)(2)常用的高斯型求积公式 (7)6、自适应求积方法 (8)7、振荡函数的积分方法 (8)8、奇异函数的积分 (9)(1)一个奇异点的函数 (9)(2)多个奇异点的函数积分方法10 第三章数值积分的应用 (10)第四章在学习过程中遇到的问题 (12)参考文献 (14)第一章 数值分析的历史背景 1、背景数值积分方法发展的前提是在17世纪以牛顿和莱布尼茨为首的一批数学家发展起来的微积分。
在最初的研究中,求解积分的方法便是找到求解原函数的方法,得到原函数,以此为基础解决其他问题。
但是在深入的研究中,逐渐发现一些函数的原函数求解极其困难,甚至无法表示出来,是超越函数,还有的根本没有原函数,比如对于延拓函数:sin ,0()1,0xx f x xx ⎧≠⎪=⎨⎪=⎩无法求出它的原函数,这时要求它的积分就无法使用牛顿-莱布尼茨公式了,解决积分的问题便受到阻碍。
这种情况下就需要寻求一种新的求积分的方法来解决这些问题了。
数值积分方法便在数学家们的需求下发展起来。
2、发展历程等距节点的多项式插值求积法的观点最早是1676年出现在Newton 给Leibniz 的一封信中。
1711年,Cotes在总结了牛顿的观点后,系统归纳了小于10个节点的插值求积方法,并发表了一篇相关论文。
1743年,Simpson发表他所研究的求积方法。
数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。
线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。
在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。
高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。
高斯消元法的主要步骤包括消元、回代和得到方程组的解。
消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。
在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。
回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。
回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。
高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。
但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。
另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。
在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。
列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。
LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。
综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。
高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。
在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿迭代法及其应用[摘要]本文研究应用泰勒展开式构造出牛顿迭代法,论证了它的局部收敛性和收敛阶。
分别讨论了单根情形和重根情形,给出了实例应用。
最后给出了离散牛顿法的具体做法。
[关键词] 关键词:泰勒展开式,牛顿迭代法及其收敛性,重根,离散牛顿法。
1.牛顿法及其收敛性求方程f(x)=0的根,如果已知它的一个近似,可利用Taylor展开式求出f(x)在附近的线性近似,即,ξ在x与之间忽略余项,则得方程的近似右端为x的线性方程,若,则解,记作,它可作为的解的新近似,即(2.4.1)称为解方程的牛顿法.在几何上求方程的解,即求曲线y=f(x)与x轴交点.若已知的一个近似,通过点(,f())作曲线y=f(x)的切线,它与x轴交点为,作为的新近似,如图1所示图1关于牛顿法收敛性有以下的局部收敛定理.定理1设是f(x)=0的一个根,f(x)在附近二阶导数连续,且,则牛顿法(2.4.1)具有二阶收敛,且(2.4.2)证明由式(2.4.1)知迭代函数,,,而,由定理可知,牛顿迭代(2.4.1)具有二阶收敛,由式可得到式(2.4.2).证毕.定理表明牛顿法收敛很快,但在附近时才能保证迭代序列收敛.有关牛顿法半局部收敛性与全局收敛定理.此处不再讨论.例1用牛顿法求方程的根.,牛顿迭代为取即为根的近似,它表明牛顿法收敛很快.例2设>0,求平方根的过程可化为解方程.若用牛顿法求解,由式(2.4.1)得(2.4.3)这是在计算机上作开方运算的一个实际有效的方法,它每步迭代只做一次除法和一次加法再做一次移位即可,计算量少,又收敛很快,对牛顿法我们已证明了它的局部收敛性,对式(2.4.3)可证明对任何迭代法都是收敛的,因为当时有即,而对任意,也可验证,即从k=1开始,且所以{}从k=1起是一个单调递减有下界的序列,{}有极限.在式(2.4.3)中令k→∞可得,这就说明了只要,迭代(2.4.3)总收敛到,且是二阶收敛.在例2.4的迭代法(3)中,用式(2.4.3)求只迭代3次就得到=1.732 051,具有7位有效数字.求非线性方程f(x)=0的根x*,几何上就是求曲线y=f(x)与x轴交点x*,若已知曲线上一点过此点作它的切线。
方程为此切线与x轴交点记作,它就是(2,4,1)给出的牛顿迭代法,由图2-3看到牛顿法求根就是用切线近似曲线,切线与x轴交点xk+1作为方程f(x)=0根x*的新近似。
根据定理2.3可以证明牛顿法是二阶收敛的,这就是定理4.1给出的结果,牛顿法由于收敛快,它是方程求根最常用和最重要的方法,在计算机上用牛顿法解方程的计算步骤:算法如下:(牛顿法)步0:给初始近似,计算精度最大迭代步数N,0→k.步1:计算f(x)→f,若,转步4,否则做步2:计算,若y=0,转步4,否则步3:若,步4,否则,若,转步4,否则转步1步4:打印x,f,y,k计算停止。
此算法给出了4个停止准则,保证计算在有限步结束,其中y=0及均属非正常结束,,说明用牛顿法求根得不到结果,步2中y=0实际使用时可改为(可取)。
计算例子见例2.6及例2.7,例2.7得到的计算的牛顿法程序(2.4.3)是计算机中计算开方的最有效算法,它对任意初值都能使序列收敛于,且为平方收敛,一般只要迭代3-5次就可达到7-9位有效数字,因此计算量很省。
2.重根情形当,则为方程(2.1.1)的重根,此时,牛顿法的迭代函数,,故牛顿法仍收敛,但只是线性收敛.若迭代函数改为,则,故迭代法(2.4.5)具有二阶收敛.对重根还可构造另一种迭代法,令若是的m重根,则所以是的单根,对它用牛顿法,迭代函数为从而可构造迭代法(2.4.6)它也是二阶收敛的.例3方程的根是二重根,试用牛顿法及(2.4.5)、(2.4.6)三种迭代法各计算3步.解方法(1):牛顿迭代,方法(2):迭代法(2.4.5),方法(3):迭代法(2.4.6),三种方法均取=1.5计算结果如下:方法(1)方法(2)方法(3)1.458 3333331.436 607 1431.425 497 619 1.416 666 6671.414 215 6861.414 213 5621.411 764 7061.414 211 4381.414 213 562方法(2)与方法(3)均达到精确度,而方法(1)只有线性收敛,要达到相同精度需迭代30次.当x*是f(x)=0的重根时,用牛顿法计算,只有线性收敛,如果已知x*是m 重根则使用迭代法(2.4.5),否则可使用(2.4.6),见例43.离散牛顿法求解方程的牛顿法(2.4.1)要计算,如果导数计算不方便,通常可用计算函数差商近似,即将它代入式(2.4.1)则得离散牛顿法:(2.4.7)这种迭代法与式(2.2.2)不同,它要给出两个初始近似,才能逐次计算出.因此称为多点(两点)迭代,迭代(2.4.7)称为割线法,其几何意义是,用曲线上两点的割线与x轴交点作为=0根的新近似,即的根x,记作,它就是方程(2.1.1)根的新近似,如图2所示.图2由于割线法与单点迭代法(2.2.2)不同,其收敛性要复杂一些.但可以证明割线法(2.4.7)是超线性收敛的,且收敛阶,故割线法收敛也是很快的.用牛顿法时,若f'(x)不好计算,可改用离散牛顿法(2.4.7),它也称为弦截法或割线法,它的几何意义是用两点与的连线近似曲线,以直线方程的根近似的根x*,得到的迭代公式(2.4.7)与前面讨论的迭代法不同,必须给出两个初始近似才能逐次计算出这种迭代法称为两点迭代,它具有超线性收敛,其收敛阶p=1.618例4割线法求方程的根,设取由(2.4.7)计算结果为与例2.6用牛顿法计算3步得到的结果相当,说明此方法收敛也是很快的。
小结:1.用迭代法求方程f(x)=0的根,首先要能正确使用二分法,不动点迭代法和牛顿法求出方程的根,并避免计算错误。
作为迭代法选取合适的初始近似或有根区间是很重要的。
二分法既是求方程实根x*的一种简单迭代法,又是求方程一个足够好近似根的有效算法。
当为有限区间,每次二分迭代可使有根区间缩减一半且n次迭代Xn的误差因收敛较慢,故它常作为提供迭代法初值的算法。
2.重点是构造收敛的迭代法及牛顿法,首先必须掌握判断不动点迭代法收敛性的条件,只有收敛的迭代法才能用于球方程的根。
判断收敛性要分清是在区间,上整体收敛还是已知方程的根x,只证明它的局部收敛性。
对于前者主要根据收敛定理,证明,且在上,则{x k}收敛于根x*。
对于局部收敛性只需用定理证明即可。
3.对收敛的迭代序列{x k},还要知道收敛快慢,首先要掌握收敛的定义,并能熟练应用定理,确定或证明迭代序列{x k}的收敛阶p,其中计算往往要用洛必达法则求极限。
P越大则{x k}收敛越快,在p=1则由判断收敛快慢,a越小则序列收敛越快。
4.对收敛慢或不收敛的迭代序列要通过加速迭代法,加速其收敛。
5.牛顿迭代法是求方程f(x)=0最重要的迭代法。
(1)用牛顿法求根公式求方程的根,要了解用此方法必须,且方法是局部收敛,一般要求初始近似x0与跟x*靠近,如x0选择不合适,可用牛顿下山法求根。
(2)牛顿迭代法是2阶收敛的,当x0选择合适时计算几步即可达到精度要求,对牛顿迭代由可以证明具体迭代序列的收敛性。
(3)重根情形下,f´(x*)=0,但f ´(x k)≠0仍然可用牛顿法求根,但它只是线性收敛,为提高收敛速度应使用具有2阶收敛的迭代法(2.4.5)及(2.4.6)求重根。
例如:设a>0,x>0,证明迭代公式x k+1=x k(x2k+3a)/(3x2k+a)是计算的3阶方法,并求这题目主要用到收敛阶的概念,它可以直接利用定义,也可以利用定理的结论证明。
下面先证明迭代序列的收敛性。
证明:显然,当a>0,x>0时,x>0(k=1,2。
)令则}的极限是a,则有a=a(a+3a)/(3a+a),对,即迭代收敛,设{xk解得a=0,a=± a ,取,下面只要求故迭代序列是3阶收敛的上面是由定义直接得到的结果,如用定理由于由定理可知迭代序列是3阶收敛的。
且这与前面直接用定义证明是一致的。
又如证明求 a 的牛顿迭代法对且{xk}是单调递减序列证明:因,故xk>0(k=1,2…)对即对一切k≥1,xk≥ a ,从而故xk+1≤xk即{x}是单调递减序列,它是整体收敛的参考文献:[1]陈纪修,於崇华,金路.数学分析(上册)[M].北京:高等教育出版社,2004:193-194.[2]施吉林,刘淑珍,陈桂芝.计算机数值方法[M].北京:高等教育出版社,2003:237-242,245-246.[3]李红,徐长发.数值分析学习辅导习题解析[M].武汉:华中科技大学出版社,2005:234-235,253-254,257-258,268270.[4]杨泮池,乔学军,林芳,等.计算方法要点与解题[M].西安:西安交通大学出版社,2006:23,34.[5]何旭初,苏煜城,包雪松.计算数学简明教程[M].北京:高等教育出版社,1986:203-205.。