控制科学与工程专业介绍

合集下载

控制科学与工程学科构成

控制科学与工程学科构成

控制科学与工程学科构成
控制科学与工程学科是一个涵盖面广泛、跨学科的领域,其构成包括多个分支学科。

以下是控制科学与工程学科的主要构成及其简要介绍:
控制理论:控制理论是控制科学与工程学科的核心,主要研究如何通过反馈和优化方法来控制动态系统。

它包括线性控制、非线性控制、最优控制、自适应控制、鲁棒控制等领域。

控制系统工程:控制系统工程是控制科学与工程学科的重要分支,主要研究各种工业控制系统和复杂系统的建模、分析、优化和实现。

它包括过程控制、制造系统控制、网络控制系统等领域。

智能控制:智能控制是控制科学与工程学科的一个重要分支,主要研究如何利用智能技术实现自动化和智能化控制。

它包括模糊控制、神经网络控制、专家系统等领域。

模式识别与图像处理:模式识别与图像处理是控制科学与工程学科的另一个分支,主要研究如何从图像或信号中提取有用的信息并进行分类和识别。

它包括图像处理、计算机视觉、机器学习等领域。

系统工程:系统工程是控制科学与工程学科的另一个重要分支,主要研究如何对复杂系统进行建模、分析和优化。

它包括系统分析、系统设计、系统管理等领域。

生物信息学与医学信息学:生物信息学与医学信息学是控制科学与工程学科在生命科学和医学领域的应用分支,主要研究生物和医学信息的获取、处理和管理。

它包括基因组学、蛋白质组学、医学影像技术等领域。

这些分支学科相互交叉、相互渗透,形成了控制科学与工程学科的完整体系。

通过深入研究各个分支学科的理论和实践,可以为解决实际问题和推动相关领域的发展做出重要贡献。

清华大学控制科学与工程专业介绍

清华大学控制科学与工程专业介绍

控制科学与工程专业介绍“控制科学与工程”学科是一门研究控制的理论、方法、技术及其工程应用的学科。

它是20世纪最重要和发展最快的学科之一,其各阶段的理论发展及技术进步都与生产和社会实际需求密切相关。

《本人》自动化系研究生专业包括本学科下设的七个二级学科:“控制理论与控制工程”、“检测技术与自动装置”、“系统工程”、“模式识别与智能系统”、“导航、制导与控制”、“企业信息化系统与工程”和“生物信息学”。

各二级学科的主要研究范畴及相互联系如下。

控制理论与控制工程以工程领域内的控制系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、优化、设计和实现的理论、方法和技术。

本学科培养从事控制理论与控制工程领域的研究、设计、开发和系统集成等方面的高级专门人才。

本专业方向主要研究线性与非线性控制、自适应控制、变结构控制、鲁棒控制、智能控制、模糊控制、神经元控制、预测控制、推理控制、容错控制、多变量控制、量子控制、系统辨识、过程建模与优化、故障诊断与预报、离散事件动态系统、复杂系统的优化与调度、智能优化与智能维护、复杂性理论研究、高性能调速与伺服、运动体导航与制导、机器人与机器视觉、多传感器集成与融合,多自主体合作与对抗、嵌入式系统、传感器网络、软测量技术、电力电子技术、现场总线技术、系统集成技术、网络控制与流媒体技术,以及将上述技术与方法加以集成的综合自动化技术等。

系统工程是为了解决日益复杂的社会实践问题而形成的从整体出发合理组织、控制和管理各类系统的综合性的工程技术学科。

本学科培养从事系统工程领域的研究、开发、设计等方面工作的高级专门人才。

本专业方向主要研究:非线性系统建模、人工神经网络和复杂系统自组织理论方法的研究和应用,高速公路和城市智能交通系统基础理论、智能技术和集成技术的研究与应用,电子商务系统研究、开发与应用,企业管理信息系统与决策支持系统的研究与开发,宏观社会经济系统综合发展和区域开发规划等。

哈工大控制科学与工程介绍

哈工大控制科学与工程介绍

哈工大控制科学与工程介绍
哈尔滨工业大学控制科学与工程专业是一门综合性强的学科,主
要涉及控制理论和工程、计算机应用、电子技术等学科。

它主要以研
究控制系统的基本原理和工程应用为主要内容,涉及了从传感器到执
行机构的电子、机械和软件子系统,因此它既是电子信息、机械制造
和计算机科学等学科的综合体,也是工程技术与实践的重要基础。

控制科学与工程专业的课程主要包括数学、物理、电路基础、信
号与系统、微机原理与接口技术、数字信号处理、电子设计自动化、
计算机程序设计、控制理论及其应用等。

学生通过理论学习及工程实践,能够熟悉掌握电机控制、机器人控制、航空航天控制、自动化生
产控制等领域的知识和技术,能够从事控制系统设计、实施和维护等
工作。

此外,该专业要求学生具有较强的数学、物理基础和计算机技术,能够独立思考、分析问题和解决问题,具备创新的能力和综合运用工
程知识的能力,能够适应新技术和新工艺的变化,这些素质都是控制
科学与工程领域人才所需要的。

控制科学与工程介绍

控制科学与工程介绍

控制科学与工程介绍1. 简介控制科学与工程是一门应用数学和工程学的交叉学科,旨在研究如何通过系统的设计和控制来实现对于物理、化学、生物等各种工程系统或自然系统的目标控制。

它涉及到信号处理、模型建立、控制器设计以及系统优化等多个领域,广泛应用于工业自动化、机器人技术、航空航天、生物医药等众多领域。

2. 历史发展控制科学与工程起源于20世纪初,最早的研究对象是机械系统的稳定性和振动问题。

随着电子技术和计算机技术的发展,控制理论逐渐成为一个独立的学科,并在实际应用中取得了巨大成功。

20世纪50年代,随着信息论和现代控制理论的出现,控制科学与工程进入了一个全新的阶段。

这一时期出现了许多重要的理论和方法,如状态空间法、最优控制理论、自适应控制等。

这些理论和方法极大地推动了控制科学与工程的发展,并被广泛应用于实际工程中。

近年来,随着人工智能和大数据技术的快速发展,控制科学与工程进入了一个新的时代。

通过引入深度学习、强化学习等技术,控制系统的性能和鲁棒性得到了进一步提升。

同时,控制科学与工程也开始与其他领域进行深入交叉,如网络控制、生物控制等。

3. 主要内容3.1 控制系统建模控制系统建模是控制科学与工程的基础。

它包括对被控对象进行数学描述,并建立数学模型。

常见的方法有传递函数法、状态空间法等。

通过建立准确的数学模型,可以更好地理解和分析系统行为,并为后续的控制器设计提供依据。

3.2 控制器设计在控制系统中,控制器是实现目标控制的核心部分。

根据系统模型和性能要求,可以设计不同类型的控制器,如比例积分微分(PID)控制器、最优控制器、自适应控制器等。

这些方法通过对输入信号进行调整来实现对输出信号的稳定控制。

3.3 信号处理与滤波在实际应用中,系统通常会受到各种噪声和干扰的影响。

信号处理与滤波是控制科学与工程中的重要内容之一。

通过对输入信号进行滤波、降噪等处理,可以提高系统的鲁棒性和稳定性。

3.4 系统优化与鲁棒性分析在控制系统设计过程中,优化和鲁棒性分析是非常重要的环节。

控制科学与工程专业介绍

控制科学与工程专业介绍

控制科学与工程专业介绍控制科学与工程是一门研究控制的理论、方法、技术及其工程应用的学科。

它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。

11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。

到18世纪,近代工业采用了蒸汽机调速器。

但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。

此后,经典控制理论继续发展并在工业中获得了广泛的应用。

在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。

60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。

在控制科学发展的过程中,模式识别和人工智能与控制相结合的研究变得更加活跃;由于对大系统的研究和控制学科向社会、经济系统的渗透,形成了系统工程学科。

特别是近20年来,非线性及具有不确定性的复杂系统向“控制科学与工程”提出了新的挑战,进一步促进了本学科的迅速发展。

目前,本学科的应用已经遍及工业、农业。

交通、环境、军事、生物、医学、经济、金融、人口和社会各个领域,从日常生活到社会经济无不体现本学科的作用。

控制科学以控制论、信息论、系统论为基础,研究各领域内独立于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。

它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。

本学科的这一特点,使它对相关学科的发展起到了有力的推动作用,并在学科交叉与渗透中表现出突出的活力。

例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。

与社会学、经济学的结合使研究的对象进入到社会系统和经济系统的范畴中。

与生物学、医学的结合更有力地推动了生物控制论的发展。

控制科学与工程专业介绍

控制科学与工程专业介绍

控制科学与工程专业介绍
控制科学与工程专业是理学、工学双学位专业。

它由控制系统、系统
分析、传感器技术、模拟技术、计算机硬件和软件组成,是以控制理论、
系统分析理论、传感技术、信号处理理论和信息系统技术为基础的综合技
术应用学科。

控制科学与工程专业的教学内容,以活动和实验实践为主,另外涉及
以下几方面:①控制原理和技术:控制系统的模型建立、系统性能的分析、建模、控制及状态变量的估计等;②模块技术:介绍传感器技术,计算机
硬件及软件,计算机网络技术,系统仿真技术,虚拟实验技术;③实践技能:在实验室中的控制系统设计、编程、实施,以及控制系统的维护和管理;④常用控制系统和模拟技术:介绍常用控制系统的基本原理,如模型
控制、PID控制和模糊控制等;介绍模拟技术的基本原理,如模拟信号处理、模拟控制和模拟系统等;⑤PLC技术:介绍PLC硬件及软件,及如何
进行PLC编程,故障诊断及维护;。

控制科学与工程本科专业

控制科学与工程本科专业

控制科学与工程本科专业控制科学与工程本科专业是一门涵盖多个学科领域的学科,旨在培养学生掌握控制系统的原理和设计技术,具备解决实际工程问题的能力。

本文将从该专业的培养目标、学科特点、就业前景和发展趋势等方面进行分析和探讨。

控制科学与工程本科专业的培养目标是培养具备扎实的数学、物理和工程基础知识,熟悉现代控制理论和技术,具备控制系统设计和工程实施能力的高级工程技术人才。

学生在该专业的学习过程中,将系统学习工程数学、信号与系统、控制理论、控制工程技术等方面的知识,并通过实验和实践课程培养实际动手能力和问题解决能力。

控制科学与工程本科专业的学科特点主要体现在以下几个方面。

首先,该专业涉及的学科领域广泛,包括控制理论、控制工程技术、信号处理、电子技术等多个学科,使得学生在学习过程中能够全面了解和掌握相关知识。

就业前景方面,控制科学与工程本科专业的毕业生在相关领域具有广阔的就业前景。

毕业生可以选择从事自动化控制、智能控制、工业控制、机器人技术、信息技术等方面的工作。

随着科技的不断发展和应用的广泛推广,控制科学与工程专业的需求将会越来越大。

毕业生可以在制造业、电力系统、交通运输、航空航天、能源等领域找到工作机会,并且有很好的晋升空间和发展前景。

控制科学与工程本科专业的发展趋势主要体现在以下几个方面。

首先,随着信息技术和互联网的快速发展,智能化控制技术将成为该专业的重要发展方向。

人工智能、大数据分析和机器学习等技术的应用将使得控制系统更加智能化和自动化。

其次,新能源和可持续发展也将对该专业带来新的挑战和机遇。

控制科学与工程专业需要与新能源领域相结合,开发智能化的能源控制系统,提高能源利用效率和减少环境污染。

最后,跨学科的融合也将成为该专业的发展趋势。

控制科学与工程专业需要与计算机科学、电子工程、机械工程等学科进行跨学科的交叉,共同解决复杂的工程问题。

控制科学与工程本科专业是一门涵盖多个学科领域的学科,具有广阔的就业前景和发展空间。

控制科学与工程学系概况介绍

控制科学与工程学系概况介绍

控制科学与工程学系概况介绍控制科学与工程学系(简称控制系)始建于1956年,经过50多年的传承和发展,已建成从本科、硕士、博士到博士后的完善人才培养体系,成为我国控制科学的研究基地、自动化技术的开发基地、自动化领域高水平复合型人才的培养基地。

控制系下设自动化一个本科专业。

学科背景控制系的学科领域涵盖“控制科学与工程”一级学科及下属的全部五个二级学科:控制理论与控制工程、检测技术与自动化装置、模式识别与智能系统、系统工程、导航制导与控制。

我校控制科学与工程学科是全国重点学科一级学科,拥有自动化学科领域全国唯一的“工业控制技术国家重点实验室”和“工业自动化国家工程研究中心”。

科学研究具有强大的科学研究实力。

在先进过程控制、机器人智能控制、成套自动化装备、模式识别与智能系统、自动检测系统、新型传感器与传感器网络、导航制导与控制、故障诊断与监控、系统工程、智能交通等多个方向开展了高水平的研究工作。

办学特色经过50多年的探索和积累,自动化专业构建了宽口径、开放式、个性化的新型创新教学体系,尤其重视实践教学,连续3年成功立项国家大学生创新实验计划。

2001年,依托“工业控制技术”国家重点实验室,建成了“浙江大学机器人科技实践基地”,以创新、协作、多学科交叉为立足点,采用实践教学与竞赛、科研相结合的方式,在寓教于乐中培养学生的创新能力、理论与实践相结合能力、多学科综合能力以及团队协作精神。

以2008年为例:基地获得中国机器人大赛暨RoboCup公开赛仿真救援组冠军和小型组冠军,Robocup机器人世界杯技术挑战赛冠军、仿真救援组冠军和小型组竞赛第四名。

主要课程自动化专业对数学、物理、计算机、外语、电子技术和信息处理等基础知识有较高的要求。

除通识和大类课程外,主要专业课程包括:⑴专业基础课――电路原理、电子技术基础、信号与系统、微机原理与接口技术、软件技术基础、数字信号处理、计算机网络等。

⑵专业核心课――自动控制原理、过程控制工程、现代传感技术、过程检测系统、计算机控制系统与软件、计算机控制装置及仪表、电气控制技术等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制科学与工程专业介绍控制科学与工程是一门研究控制的理论、方法、技术及其工程应用的学科。

它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。

11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。

到18世纪,近代工业采用了蒸汽机调速器。

但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。

此后,经典控制理论继续发展并在工业中获得了广泛的应用。

在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。

60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。

在控制科学发展的过程中,模式识别和人工智能与控制相结合的研究变得更加活跃;由于对大系统的研究和控制学科向社会、经济系统的渗透,形成了系统工程学科。

特别是近20年来,非线性及具有不确定性的复杂系统向“控制科学与工程”提出了新的挑战,进一步促进了本学科的迅速发展。

目前,本学科的应用已经遍及工业、农业。

交通、环境、军事、生物、医学、经济、金融、人口和社会各个领域,从日常生活到社会经济无不体现本学科的作用。

控制科学以控制论、信息论、系统论为基础,研究各领域内独立于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。

它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。

本学科的这一特点,使它对相关学科的发展起到了有力的推动作用,并在学科交叉与渗透中表现出突出的活力。

例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。

与社会学、经济学的结合使研究的对象进入到社会系统和经济系统的范畴中。

与生物学、医学的结合更有力地推动了生物控制论的发展。

同时,相邻学科如计算机、通信、微电子学和认知科学的发展也促进了控制科学与工程的新发展,使本学科所涉及的研究领域不断扩大。

本学科下设五个二级学科:控制理论与控制工程,检测技术与自动化装置,系统工程,模式识别与智能系统,导航、制导与控制。

各二级学科的主要研究范畴及相互联系如下。

“控制理论与控制工程”学科以工程领域内的控制系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、设计和实现的理论、技术和方法。

“检测技术与自动化装置”是研究被控对象的信息提取、转换、传递与处理的理论、方法和技术的一门学科。

它的理论基础涉及现代物理、控制理论、电子学、计算机科学和计量科学等,主要研究领域包括新的检测理论和方法,新型传感器,自动化仪表和自动检测系统,以及它们的集成化、智能化和可靠性技术。

“系统工程”是为了解决日益复杂的社会实践问题而形成的从整体出发合理组织、控制和管理各类系统的综合性的工程技术学科。

系统工程以工业、农业、交通、军事、资源。

环境、经济、社会等领域中的各种复杂系统为主要对象,以系统科学、控制科学、信息科学和应用数学为理论基础,以计算机技术为基本工具,以优化为主要目的,采用定量分析为主、定性定量相结合的综合集成方法,研究解决带有一般性的系统分析、设计、控制和管理问题。

“模式识别与智能系统”主要研究信息的采集、处理与特征提取,模式识别与分析,人工智能以及智能系统的设计。

它的研究领域包括信号处理与分析,模式识别,图象处理与计算机视觉,智能控制与智能机器人,智能信息处理,以及认知、自组织与学习理论等。

“导航、制导与控制”是以数学、力学、控制理论与工程、信息科学与技术、系统科学、计算机技术、传感与测量技术、建模与仿真技术为基础的综合性应用技术学科。

该学科研究航空、航天、航海、陆行各类运动体的位置。

方向、轨迹、姿态的检测、控制及其仿真,是国防武器系统和民用运输系统的重要核心技术之一。

自动控制已经成为高技术的重要组成部分。

当前,我国的经济建设正在蓬勃发展,各行各业的经济效益提高和技术的进步都与本学科密切相关。

因此,加强本学科的建设,更多更好地培养本学科高层次综合型人才,是我国社会主义建设的迫切需要。

控制理论与控制工程一、学科概况本学科以工程领域内的控制系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、设计和实现的理论、技术和方法。

控制理论是控制科学及其工程应用的重要基础和核心内容之一。

随着控制理论的发展和技术水平的提高,控制工程也迅速拓宽领域,丰富内容,并促进控制理论的研究不断扩展和深化。

控制理论及控制工程的应用基础是准确可靠的检测技术和自动化装置;自动控制系统规模和应用范围的不断扩大,促进了系统工程学科的迅速发展;对难以用传统数学方法描述的控制问题、模式识别与智能系统的研究将发挥越来越重要的作用。

二、培养目标本学科培养从事自动控制理论研究,工程及相关领域内各种控制技术与方法研究和控制系统开发与设计等方面的高级专门人才。

1.博士学位应掌握坚实宽广的自动控制基础理论和系统深入的专门知识;了解本学科最新研究成果和发展趋势;具有独立从事控制理论研究或解决重要工程控制问题的能力,并在理论研究或系统分析与设计方面取得创造性成果;至少掌握一门外国语,能熟练地阅读本专业的外文资料,具有一定的写作能力和进行国际学术交流的能力。

2.硕士学位应掌握坚实的自动控制基础理论和系统的专门知识;了解本学科最新研究成果;具有从事控制理论研究或解决实际工程控制问题的能力,并在理论研究或系统设计中取得有意义的结果;能用一门外国语熟练阅读专业资料及撰写科研论文。

三、业务范围1.学科研究范围控制理论研究,如线性系统理论、非线性控制系统理论、离散事件动态系统与混杂系统理论、大系统理论、随机系统滤波与控制、分布参数系统控制、自适应控制、鲁棒控制、智能控制、最优控制、系统辨识与建模、故障诊断与容错控制、计算机辅助控制系统设计等;工程控制问题,如工业生产过程的建模与控制、工厂综合自动化、先进生产机械的控制系统设计、机器人控制、电气传动自动化、计算机仿真技术等;以及其它相关领域中的控制和自动化问题。

2.课程设置矩阵论,泛函分析,线性系统理论,优化理论与最优控制,非线性控制系统理论,智能控制,自适应控制,鲁棒控制,系统辨识与建模,随机过程与随机控制,离散事件系统理论,控制系统的计算机辅助设计与仿真,机器人控制等。

四、主要相关学科模式识别与智能系统,检测技术与自动化装置,导航、制导与控制,系统工程,运筹学与控制论,系统分析与集成,机械制造及其自动化,机械电子工程,电力系统及其自动化,农业电气化与自动化等。

检测技术与自动化装置一、学科概况“检测技术与自动化装置”是运用现代物理。

控制理论、电子学、计算机科学和计量科学,研究被控对象的信息提取、转换、传送与处理的理论、方法和技术的一门学科,是“控制科学与工程”学科的重要组成部分。

检测技术研究如何将各种反映被测对象特性的参数按照一定的对应关系转换为易于传递的信号,并提供给自动控制系统;自动化装置涉及控制系统中的传感器、变送器、控制器、执行机构等,包括它们的集成化、智能化技术和可靠性技术。

二、培养目标本学科培养从事各种检测技术与自动化装置的研究、开发、设计等方面工作的高级专门人才。

1.博士学位应具有自动控制理论、电子技术、计算机技术、应用物理及计量科学等方面坚实宽广的理论基础和系统深入的本学科专门知识;了解本学科现状及发展趋势;能够运习先进的技术手段完成本学科领域内的理论研究或技术开发,并取得创造性成果;至少掌握一门外国语,能熟练地阅读本专业的外文资料,具有一定的写作能力和进行国际学术交流的能力;有严谨求实的科学作风;具有独立从事科学研究工作的能力。

2.硕士学位应具有自动控制理论。

电子技术、计算机技术、应用物理及计量科学等方面坚实的理论基础和系统的本学科专门知识;了解本学科的进展和研究动态;能够进行本学科领域内的研究与开发工作;较为熟练地掌握一门外国语;具有严谨求实的科学作风。

三、业务范围1.学科研究范围检测信号的获取和处理技术,新的检测理论、方法与技术的研究及其应用,新型传感器、自动化仪表和自动检测系统的研究与集成,仪表智能化技术,可靠性与抗干扰技术,现场总线技术,先进控制理论在自动化装置中的实现与应用。

2.课程设置矩阵分析,数学物理方程,误差分析,现代控制理论,近代物理基础,电磁场理论,检测理论,信号处理,传感器与自动检测技术,自动测试与故障诊断技术,仪表智能化技术,仪表可靠性技术,工业计算机网络和集散控制系统,过程模型化与软测量技术等。

四、主要相关学科控制理论与控制工程,模式识别与智能系统,仪器科学与技术,电子科学与技术,信号上信息处理,计算机应用技术。

系统工程一、学科概况系统工程是为了解决日益复杂的社会实践问题而形成的从整体出发合理组织、控制和管理各类系统的综合性的工程技术学科。

系统工程技术的出现,大大提高了人类认识世界和改造世界的能力。

随着社会的发展,它的作用将更加重要和突出。

系统工程以工业、农业、交通、军事、资源、环境、经济、社会等领域中的各种复杂系统为主要对象,以系统科学、控制科学信息科学和应用数学为理论基础,以计算机技术为基本工具,以优化为主要目的,采用定量分析为主、定性定量相结合的综合集成方法,研究解决带有一般性的系统分析、设计、控制和管理问题。

系统工程与控制科学、管理科学、信息科学、经济学和计算机科学有密切的联系。

二、培养目标本学科培养从事系统工程领域的研究、开发、设计等方面工作的高级专门人才。

1.博士学位应具有系统科学、运筹学、控制论及信息论等方面坚实宽广的基础理论和系统深入的本学科专门知识;有较强的计算机应用能力;至少掌握一门外国语,能熟练地阅读本专业的外文资料,具有一定的写作能力和进行国际学术交流的能力;对系统工程领域的一个研究方向的学科前沿状况有较深刻的了解;能运用系统工程理论和技术,独立从事科学研究工作并取得有创造性的成果。

2.硕士学位应具有坚实的系统工程基础理论和系统的专门知识;有较强的计算机应付能力;掌握一门外国语,能熟练阅读专业文献并撰写论文摘要;具备运用系统工程理论和技术从事科学研究或实际工程工作的能力。

三、业务范围1.学科研究范围系统工程理论与方法,大系统理论与方法,复杂系统行为分析,系统建模与仿真,决策与决策支持系统,最优化理论与应用,人一机系统综合集成。

2.课程设置数理统计及随机过程,矩阵论,最优化理论与方法,系统工程导论,系统工程方法论,管理信息系统与决策支持系统,信息工程,系统建模与仿真,现代控制理论基础,智能控制,计算机网络理论与技术,复杂系统分析,经济系统分析(宏观和微观)等。

相关文档
最新文档