尺规作图题专题复习
尺规作图(专题复习)

C
10
点拨:利用原题中的三个数据,列举出所
有与原三角形全等的各种情况。
A1
A4
3.5cm
3cm
B1 3.5cm
5cm A2
C1
B4
36 B2
5cm
C2
B5
A3
3cm
44
B3
5cm
C 3 整理pBpt 6
36
5cm A5
44 C4
3cm
36 3.5cm
44 C5
A6
36
44
11C 6
A
B
A
B
整理ppt
24
三.应用——格点问题
1、正方形网格中的每个小正方形边长都是1,每个 小格的顶点叫做格点,以格点为顶点分别按下列 要求画三角形。
(1)使三角形的三边长分别为3,2 2, 5
(2)使三角形为钝角三角形且面积为4
整理ppt
25
2.如图,在10×10正方形网格中,每个小正方形的边 长均为1个单位.将⊿ABC向下平移4个单位,得到 ⊿A1B1C1 ,再⊿A1B1C1把绕点C1顺时针旋转90°, 得到⊿A2B2C2,请你画出⊿A1B1C1和⊿A2B2C 2(不 要求写画法).
整理ppt
8
利用“角边角”能作出与原来全 等的三角形。
整理ppt
9
3、在△ABC,a=5cm,b=3cm,c=3.5cm,
∠B=360,∠C=440 . 请你从中选择适当的数
据,作与△ABC全等的三角形。(不写作
法,但要在所作的三角形中标出用到的数
据)
A
3.5cm
3cm
B 36
44
5c m 整理ppt
《尺规作图》专题复习

尺规作图专题训练【复习回顾】A.SSSB.SASC.AASD. ASAA.20B.18C.16D.12A. ①②③B. ①②④C. ①③④D. ②③④4.到三角形三条边距离相等的点在( )的交点上. A.三条中点 B.三条角平分线 C.三条高线 D.三条垂直平分线第1题图目标一:根据题目的要求,尺规作图作垂线例1. 对于直线l ,点P 在直线外,点Q 在直线上,用尺规作图法分别过点P 、Q 作直线l 的垂线.(不写作图方法,保留作图痕迹)练习1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8.(1) 用尺规作图作出AB 边上的高线CD ,垂足为D.(2) 求CD 的长.目标二:根据题目要求,用尺规作图作角平分线例2. 如图,在∠ABC 内部,用尺规作图法找一条射线BP ,使得射线BP 上任意一点到BA 和BC 的距离都相等.(保留作图痕迹,不写作法)目标三:用尺规作图作出线段的垂直平分线练习3.(番禺执信段测题23)如图在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.根据要求作图,并在图中标明相应字母.(1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF. 判断四边形AECF 的形状并加以证明.目标四:学会复制自己涂脏的图形有时候,解几何题过程中,我们把图形画脏,又或者题目图形不够标准,那么我们需要学会自己复制图形,重新画出来。
例4 如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB与点E,若AC=6,(1)求DE的长.(2)求△ADB的面积.练习4:请根据例4的题意,自己绘制题目中涂脏的图形,并将图形放大.。
中考专题复习《尺规作图》巩固练习(真题)含答案

中考专题复习《尺规作图》巩固练习(真题)含答案一、单选题1、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段2、下列画图语句中,正确的是()A、画射线OP=3cmB、连接A , B两点C、画出A , B两点的中点D、画出A , B两点的距离3、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个30°的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段4、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b5、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图6、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm7、按下列条件画三角形,能唯一确定三角形形状和大小的是()A、三角形的一个内角为60°,一条边长为3cmB、三角形的两个内角为30°和70°C、三角形的两条边长分别为3cm和5cmD、三角形的三条边长分别为4cm、5cm和8cm8、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段9、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b10、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图11、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm12、下列作图语句中,不准确的是()A、过点A、B作直线ABB、以O为圆心作弧C、在射线AM上截取AB=aD、延长线段AB到D ,使DB=AB二、填空题13、所谓尺规作图中的尺规是指:________.14、尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法________15、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是________.16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P ,连接AP并延长交BC于点D ,则∠ADB=________°.17、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P ,连结AP并延长交BC于点D ,则下列说法①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;正确的个数是________个三、作图题18、已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .19、如图所示,已知△ABC:①过A画出中线AD;②画出角平分线CE;③作AC边上的高BF20、(2016•兰州)如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)四、解答题21、已知直线l和l上一点P ,用尺规作l的垂线,使它经过点P .你能明白小明的作法吗?你是怎样作的?22、如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)答案解析部分一、单选题1、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.【分析】根据尺规作图的定义分别分析2、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.射线没有长度,错误;B.连接A , B两点是作出线段AB ,正确;C.画出A , B两点的线段,量出中点,错误;D.量出A , B两点的距离,错误选B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论3、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析4、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案5、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析7、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.三角形的一个内角为60°,一条边长为3cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm ,能唯一确定三角形形状和大小,符合题意选:D.【分析】根据基本作图的方法,及唯一确定三角形形状和大小的条件可知8、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析9、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案10、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析12、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论二、填空题13、【答案】没有刻度的直尺和圆规【考点】作图—尺规作图的定义【解析】【解答】由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规【分析】本题考的是尺规作图的基本概念14、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS ,即边边边公理【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理15、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等【分析】①以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;②任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E ,交O'A'于点C';③以C'为圆心,CD长为半径画弧,交弧C'E于点D';④过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等16、【答案】125【考点】作图—基本作图【解析】【解答】由题意可得:AD平分∠CAB ,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°【分析】根据角平分线的作法可得AD平分∠CAB ,再根据三角形内角和定理可得∠ADB的度数17、【答案】3【考点】作图—基本作图【解析】【解答】①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB ,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD【分析】根据角平分线的作法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确三、作图题18、【答案】解: 如图所示:【考点】作图—基本作图【解析】【分析】①以点B为圆心,较大的长为半径画弧,交直线AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,两弧相交于一点,过点B和这点作射线,交直线AC于点D , BD就是所求的AC边上的高;②以点C为圆心,任意长为半径画弧,交CA , CB于两点,分别以这两点为圆心,以大于这两点的距离的一半为半径画弧,两弧相交于一点,做过点C和这点的射线交AB于点E , CE即为所求的角平分线19、【答案】解答:如图所示:【考点】作图—复杂作图【解析】【分析】(1)首先找出BC的中点,然后画线段AD即可;(2)利用量角器量出∠BCA的度数,再除以2,算出度数,然后画出线段CE即可;(3)利用直角三角板,一个直角边与AC重合,令一条直角边过点B ,画线段BF即可20、【答案】解:如图所示,四边形ABCD即为所求:【考点】正多边形和圆,作图—复杂作图【解析】【分析】画圆的一条直径AC,作这条直径的中垂线交⊙O于点BD,连结ABCD就是圆内接正四边形ABCD.本题考查的是复杂作图和正多边形和圆的知识,掌握中心角相等且都相等90°的四边形是正四边形以及线段垂直平分线的作法是解题的关键.四、解答题21、【答案】解:明白.作法:①以点P为圆心,以任意长为半径画圆,与直线l相交于点A , B;②分别以AB为圆心,以任意长为半径画圆,两圆相交于点MN ,连接MN即可得出直线l的垂线【考点】作图—复杂作图【解析】【分析】根据线段垂直平分线的作法即可得出结论.22、【答案】【解答】如图所示,△A′B′C′即为△ABC关于直线m对称的图形.【考点】作图—尺规作图的定义,作图—基本作图,作图—复杂作图,轴对称图形【解析】【分析】找出点A、B、C关于直线m的对称点的位置,然后顺次连接即可.。
尺规作图专题复习

尺规作图专题复习1.下面是小东设计的“过圆外一点作这个圆的切线”的尺规作图过程.已知:⊙O 及⊙O 外一点P .求作:直线PA 和直线PB ,使PA 切⊙O 于点A ,PB 切⊙O 于点B .作法:如图,①作射线PO ,与⊙O 交于点M 和点N ;②以点P 为圆心,以PO 为半径作⊙P ;③以点O 为圆心,以⊙O 的直径MN 为半径作圆,与⊙P 交于点E 和点F,连接OE 和OF ,分别与⊙O 交于点A 和点B ;④作直线PA 和直线PB .所以直线PA 和PB 就是所求作的直线.(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接PE 和PF ,∵OE=MN ,OA=OM=12MN,∴点A 是OE 的中点.∵PO=PE,∴PA ⊥OA 于点A ()(填推理的依据).同理PB ⊥OB 于点B.∵OA ,OB 为⊙O 的半径,∴PA ,PB 是⊙O 的切线.()(填推理的依据).2.如图,A 是O 上一点,过点A 作O 的切线.(1)①连接OA 并延长,使AB=OA;②作线段OB 的垂直平分线;使用直尺和圆规,在图中作OB 的垂直平分线l(保留作图痕迹);(2)直线l 即为所求作的切线,完成如下证明.证明:在O 中,∵直线l 垂直平分OB ∴直线l 经过半径OA 的外端,且__________,∴直线l 是O 的切线()(填推理的依据).3.下面是小石设计的“过圆上一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O 及⊙O 上一点P .求作:直线PQ ,使得PQ 与⊙O 相切.作法:如图2,①连接PO 并延长交⊙O 于点A ;②在⊙O 上任取一点B (点P ,A 除外),以点B 为圆心,BP 长为半径作⊙B ,与射线PO 的另一个交点为C ;③连接CB 并延长交⊙B 于点Q ;④作直线PQ .所以直线PQ 就是所求作的直线.根据小石设计的尺规作图的过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵CQ 是⊙B 的直径,∴CPQ ∠=°()(填推理的依据).∴OP PQ ⊥.又∵OP 是⊙O 的半径,∴PQ 是⊙O 的切线()(填推理的依据).4.已知:如图1,在△ABC 中,AB =AC .求作:⊙O ,使得⊙O 是△ABC 的外接圆.图1图2作法:①如图2,作∠BAC 的平分线交BC 于D ;②作线段AB 的垂直平分线EF ;③EF 与AD 交于点O ;④以点O 为圆心,以OB 为半径作圆.∴⊙O 就是所求作的△ABC 的外接圆.根据上述尺规作图的过程,回答以下问题:(1)使用直尺和圆规,依作法补全图2(保留作图痕迹);(2)完成下面的证明.图2图1证明:∵AB =AC ,∠BAD =∠DAC ,∴.∵AB 的垂直平分线EF 与AD 交于点O ,∴OA =OB ,OB =OC .()(填推理的依据)∴OA =OB =OC .∴⊙O 就是△ABC 的外接圆.()(填推理的依据)5.下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程.已知:如图1,ABC △.求作:直线BD ,使得BD ∥AC .作法:如图2,①分别作线段AC ,BC 的垂直平分线1l ,2l ,两直线交于点O ;②以点O 为圆心,OA 长为半径作圆;③以点A 为圆心,BC 长为半径作弧,交 AB 于点D ;④作直线BD .所以直线BD 就是所求作的直线.根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接AD ,∵点A ,B ,C ,D 在⊙O 上,AD BC =,∴ AD =.∴DBA CAB ∠=∠()(填推理的依据).∴BD AC ∥.6.《元史·天文志》中记载了元朝著名天文学家郭守敬主持的一次大规模观测,称为“四海测验”.这次观测主要使用了“立杆测影”的方法,在二十七个观测点测量出的各地的“北极出地”与现在人们所说的“北纬”完全吻合.利用类似的原理,我们也可以测量出所在地的纬度.如图1所示.①春分时,太阳光直射赤道.此时在M 地直立一根杆子MN,在太阳光照射下,杆子MN 会在地面上形成影子.通过测量杆子与它的影子的长度,可以计算出太阳光与杆子MN 所成的夹角α;②由于同一时刻的太阳光线可以近似看成是平行的,所以根据太阳光与杆子MN 所成的夹角α可以推算得到M 地的纬度,即MOB ∠的大小.图2(1)图2是①中在M 地测算太阳光与杆子MN 所成夹角α的示意图.过点M 作MN 的垂线与直线CD 交于点Q,则线段MQ 可以看成是杆子MN 在地面上形成的影子.使用直尺和圆规,在图2中作出影子MQ(保留作图痕迹);(2)依据图1完成如下证明.证明:∵AB CD ∥,∴MOB ∠=_________α=(___________________________)(填推理的依据)∴M 地的纬度为α.7.下面是小玟同学设计的“作一个角等于已知角”的尺规作图过程.已知:在△ABC 中,AB=BC ,BD 平分∠ABC 交AC 于点D .求作:∠BPC ,使∠BPC=∠BAC .作法:①分别以点B 和点C 为圆心,大于的长为半径作弧,两弧交于点E 和点F ,连接EF 交BD 于点O ;②以点O 为圆心,OB 的长为半径作⊙O ;③在劣弧AB 上任取一点P (不与点A 、B 重合),连接BP 和CP .所以∠BPC=∠BAC .根据小玟设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OA、OC .∵AB=BC ,BD 平分∠ABC ,∴BD ⊥AC 且AD=CD .∴OA=OC .∵EF 是线段BC 的垂直平分线,∴OB=.∴OB=OA .()12BC∴⊙O为△ABC的外接圆.∵点P在⊙O上,∴∠BPC=∠BAC()(填推理的依据).8.(2020•北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC()(填推理的依据).∴∠ABP=12∠BAC.9.问题:如图,AB是⊙O的直径,点C在⊙O内,请仅用无刻度的直尺,作出△ABC中AB边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长AC交⊙O于点D,延长BC交⊙O于点E;②分别连接AE,BD并延长相交于点F;③连接FC并延长交AB于点H.所以线段CH即为△ABC中AB边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵AB是⊙O的直径,点D,E在⊙O上,∴∠ADB=∠AEB=________°.()(填推理的依据)∴AE⊥BE,BD⊥AD.∴AE,________是△ABC的两条高线.∵AE,BD所在直线交于点F,FK∴直线FC 也是△ABC 的高所在直线.∴CH 是△ABC 中AB 边上的高.10.在数学课上,老师布置了一项作图任务,如下:已知:如图18-1,在△ABC 中,AC AB =,请在图中的△ABC 内(含边),画出使45APB ∠=︒的一个点P (保留作图痕迹),小红经过思考后,利用如下的步骤找到了点P :(1)以AB 为直径,做⊙M ,如图18-2;(2)过点M 作AB 的垂线,交⊙M 于点N ;(3)以点N 为圆心,NA 为半径作⊙N ,分别交CA、CB 边于F、K ,在劣弧上任取一点P 即为所求点,如图18-3.问题:在(2)的操作中,可以得到∠ANB=_______°(依据:)在(3)的操作中,可以得到∠APB =_______°(依据:)11.已知:A ,B 是直线l 上的两点.求作:△ABC ,使得点C 在直线l 上方,且AC =BC ,30ACB ∠=︒.作法:1分别以A ,B 为圆心,AB 长为半径画弧,在直线l 上方交于点O ,在直线l 下方交于点E ;2以点O 为圆心,OA 长为半径画圆;3作直线OE 与直线l 上方的⊙O 交于点C ;4连接AC ,BC .△ABC 就是所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OA ,OB .∵OA =OB =AB ,18-118-218-3∴△OAB 是等边三角形.∴60AOB ∠=︒.∵A ,B ,C 在⊙O 上,∴∠ACB =12∠AOB;(___________________________________________________)(填推理的依据).∴30ACB ∠=︒.由作图可知直线OE 是线段AB 的垂直平分线,∴AC =BC (____________________________________________________)(填推理的依据).∴△ABC 就是所求作的三角形.12.(2021中考)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点处立一根杆,在地面上沿着杆的影子的方向取一点,使两点间的距离为10步(步是古代的一种长度单位),在点处立一根杆;日落时,在地面上沿着点处的杆的影子的方向取一点,使两点间的距离为10步,在点处立一根杆.取的中点,那么直线表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点的位置如图所示.使用直尺和圆规,在图中作的中点(保留作图痕迹);(2)在如图中,确定了直线表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线表示的方向为南北方向,完成如下证明.证明:在中,,是的中点,(填推理的依据).∵直线表示的方向为东西方向,∴直线表示的方向为南北方向.13.如图1是博物馆展出的古代车轮实物,《周礼·考工记》记载:“……故兵车之轮六尺有六寸,田车之轮六尺有三寸……”据此,我们可以通过计算车轮的半径来验证车轮类型,请将以下推理过程补充完整.图1图2如图2所示,在车轮上取A 、B 两点,设 AB 所在圆的圆心为O ,半径为r cm.作弦AB 的垂线OC ,D 为垂足,则D 是AB 的中点.其推理的依据是:.经测量,AB =90cm,CD =15cm,则AD =cm;用含r 的代数式表示OD ,OD =cm.在Rt△OAD 中,由勾股定理可列出关于r 的方程:2r =,解得r =75.通过单位换算,得到车轮直径约为六尺六寸,可验证此车轮为兵车之轮.14.“化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:⊙O (纸片),其半径为r .求作:一个正方形,使其面积等于⊙O 的面积.作法:①如图1,取⊙O 的直径AB ,作射线BA ,过点A 作AB 的垂线l ;②如图2,以点A 为圆心,OA 为半径画弧交直线l 于点C ;③将纸片⊙O 沿着直线l 向右无滑动地滚动半周,使点A ,B 分别落在对应的A ',B '处;④取CB '的中点M ,以点M 为圆心,MC 为半径画半圆,交射线BA 于点E ;⑤以AE 为边作正方形AEFG .正方形AEFG 即为所求.图1图2根据上述作图步骤,完成下列填空:(1)由①可知,直线l 为⊙O 的切线,其依据是________________________________.(2)由②③可知,AC r =,AB r π'=,则MC =_____________,MA =____________(用含r 的代数式表示).(3)连接ME ,在Rt △AME 中,根据222AM AE EM +=,可计算得2AE =_________(用含r 的代数式表示).由此可得正方形o AEFG S S = .。
专题复习尺规作图

专题复习 尺规作图1.(2013四川乐山,18,9分)如图,已知线段AB 。
(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l 上任意取两点M 、N (线段AB 的上方),连接AM 、AN 。
BM 、BN 。
求证:∠MAN =∠MBN 。
2 (2013浙江杭州,18,6)四条线段a ,b ,c ,d 如图,a :b :c :d =1:2:3:4.(1)选择其中的三条线段为边作一个三角形(尺规作图,要求保留作图痕迹,不必写出作法);(2)任取三条线段,求以它们为边能作出三角形的概率.3.(2013四川遂宁,10,4分)如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.4(2013福建福州,8,4分)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( ) A .2.5cm B .3.0cm C .3.5cm D .4.0cm5.(2013兰州,22,8分)如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路OA 、OB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论)6.(2013·鞍山,21,6分)如图,已知线段a 及∠O ,只用直尺和圆规,求做△ABC ,使BC =a ,∠B =∠O ,∠C =2∠B (在指定作图区域作图,保留作图痕迹,不写作法)7. (2013重庆市潼南,19,6分)画△ABC,使其两边为已知线段a 、b ,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法). AB19题图abβ8. 2013•嘉兴12分)小明在做课本“目标与评定”中的一道题:如图1,直线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC ∥a ,量出直线b 与PC 的夹角度数,即直线a ,b 所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P 为圆心,任意长为半径画圆弧,分别交直线b ,PC 于点A ,D ;②连结AD 并延长交直线a 于点B ,请写出图3中所有与∠PAB 相等的角,并说明理由;(3)请在图3画板内作出“直线a ,b 所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.9(2013山西,21,8分) 如图,在△ABC 中,AB =AC ,D 是BA 延长线上的一点,点E 是AC 的中点。
中考数学专题复习第31章 尺规作图(含解析)

第三十一章尺规作图1.(浙江省绍兴,7,3分)如图,AD为⊙O直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:对于甲、乙两人的作法,可判断()A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确【解析】将圆三等分,依次连结各等分点,即可作出圆内接正三角形.【答案】A【点评】本题主要考查圆内接正三角形的作法和判定以及圆的有关知识.19.( 山东德州中考,19,8,)有公路同侧、异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇,的距离必须相等,到两条公路,的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)AB19.【解析】分析此题的条件可知,要想到A 、B 两点的距离相等,可知点C 必在AB 的垂直平分线上;要想到两公路的距离相等,必须在两公路夹角的角平分线上.作出二者的交点即为所求.注意两公路夹角的角平分线不止一条.解:根据题意知道,点C 应满足两个条件,一是在线段的垂直平分线上;二是在两条公路夹角的平分线上,所以点C 应是它们的交点. ⑴ 作两条公路夹角的平分线或;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点,就是所求的位置.…………………(8分)注:本题学生能正确得出一个点的位置得6分,得出两个点的位置得8分.【点评】此题综合考查了角平分线的性质和线段垂直平分线的性质,解答此类题不要漏电所有符合条件的点,要注意在角的外部也有符合条件的点.(2)( 贵州铜仁,19(2),5分)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M 的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)ABFGDOE 19(2)题图【分析】根据垂直平分线上的点到两个端点的距离相等,连接AB 并作AB 的垂直平分线,然后以C 点为圆心,以AB 的长度一半为圆心画弧,与垂直平分线交于一点,即为所求的点M 位置 【解析】作图1、连结AB2、作出线段AB 的垂直平分线3、以C 点为圆心,以AB 的长度一半为圆心画弧,与垂直平分线交于一点M4、 在矩形中标出点M 的位置【点评】此题看出来图形设计作图与实际应用,本题主要利用垂直平分线的作法,属于基本作图,应牢固掌握。
中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()共32页,第1页4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形共32页,第2页7、如图,在ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DABB.AD=DHC.DH=BCD.CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:尺规作图,过圆外一点作圆的切线.已知:⊙O和点P求过点P的⊙O的切线小涵的主要作法如下:如图,(1)连结OP,作线段OP的中点A;(2)以A为圆心,OA长为半径作圆,交⊙O于点B,C;(3)作直线PB和PC.共32页,第3页所以PB和PC就是所求的切线.老师说:“小涵的做法正确的.”请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.EF11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若共32页,第4页AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC 边上的A1处,当AB=1时,求△A1DC的面积.共32页,第5页16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.共32页,第6页(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.共32页,第7页22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);共32页,第8页(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB 的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;共32页,第9页(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.共32页,第10页33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC 边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).共32页,第11页37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)共32页,第12页41、如图,AE∥BF,AC平分∠BA E,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.共32页,第13页45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作②以的垂直平分线,交为圆心,于点,交于点;.为半径作圆,交的延长线于点⑵在⑴所作的图形中,解答下列问题.①点②若与的位置关系是_____________;(直接写出答案),,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC 绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)共32页,第14页理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)共32页,第15页参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2)B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、m244、(1)如图;(2)45、(1)作图见解析;(2)①点B在⊙O上;②5.47、见解析48、见解析49、见46、解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P 到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH=BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
320国道
.
5 题 . 学习必备
欢迎下载
一、尺规基本作图归纳
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作角的平分线;
4、作线段的中垂线;
5、已知三边,两边和其夹角或两角和其夹边作三角形;
6、已知底边和底边上的高作等腰三角形;
7、过直线上一点作直线的垂线;
8、过直线外一点作直线的垂线.
题 1、如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定 这个圆形零件的半径.
2、 如图:107 国道 OA 和 320 国道 OB 在某市相交于点 O,在∠AOB 的内部有工厂 C 和 D,现要修建一个货站 P ,使 P 到 OA 、OB 的距离相等且 PC=PD ,用尺规作出货站 P 的位置(不写作法,保留作图痕迹,写出结论)
A
D
A
107国道
C
C
B
O
B
3、 三条公路两两相交,交点分别为 A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加 油站地址有几种情况?
B
A
A
O
A
C
B
C
4、 过点 C 作一条线平行于 AB ;
5、过不在同一直线上的三点 A 、B 、C 作圆 O ;
6、过直线外一点 A 作圆 O 的切线。
二、几何画图:1 只利用一把有刻度的直尺,用度量的方法,按下列要求画图: 1)画等腰三角形 ABC 的对称轴: 2)画∠AOB 的对称轴
2 有一个未知圆心的圆形工件.现只允许用一块三角板(注:不允许用三角板上的刻度)画出该工件表面上的一条直径 并定出圆心.要求在图上保留画图痕迹,写出画法.
3 某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花卉,请你帮助设计至少三种不同 的方案,分别画在下面正方形图形上(用尺规作图或画图均可,但要尽可能准确些、美观些)
4 某村一块若干亩土地的图形是ΔABC ,现决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供至少两 种分法。
要求:画出图形,并简要说明分法。
5.如图所示,在正方形网格上有一个三角形 ABC.①作△ABC 关于直线 MN 的对称图形(不写作法); ②若网格上的最小正方形的边长为 △1.求 ABC 的面积. M
P
A
A
甲 乙 丙 丁
C
C
B
D
Q
B
C
A
B
6 题
7 题
N 6 如图,方格纸中每个小方格都是边长为 1 的正方形,我们把以格点连线为边的多边形称为“格点多边形” 如图(一)
中四边形 ABCD 就是一个“格点四边形”.
①求图中四边形 ABCD 的面积;②在图中方格纸上画一个格点△EFG ,使△EFG 的面积等于四边形 ABCD 的面积且为
A
C
A
B
14、问题探究(1)请在图①的正方形 ABCD 内,画出使 ∠APB = 90°的一个点 P ,并说明理由. (2)请在图②的正方形 ABCD 内(含边),画出使 ∠APB = 60°的所有的点 P ,并说明理由.
①
学习必备
欢迎下载
轴对称图形.
7 如图,若 A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点 R 应是甲、乙、丙、 丁四点中的( ) A. 甲 B. 乙 C. 丙 D. 丁 8.某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛。
(1)若要使花坛面积最大,请你在这块公共区域(如图)内确定圆形花坛的圆心P ; (2)若这个等边三角形的边长为 18 米,请计算出花坛的面积。
9 如图,平行四边形纸条 ABCD 中,E 、F 分别是边 AD 、BC 的中点。
张老师请同学们将纸条的下半部分平行四边形 ABEF 沿 EF 翻折,得到一个 V 字形图案。
(1)请你在原图中画出翻折后的图形平行四边形 A1B1FE ;(用尺规作图,不写画法,保留作图痕迹)
(2)已知∠A=63°,求∠B1FC 的大小。
D
B
E
F
B
C
O
A
8 题
9 题
10 题
10 如图,已知方格纸中的每个小方格都是全等的正方形,∠AOB 画在方格纸上,请用利用格点和直尺(无刻度)作出 ∠AOB 的平分线。
11 小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方
案(要求用尺规作图,保留作图痕迹)
C
C
11题图
A
12题图1
B
A B
12题图2
12 某公园有一个边长为 4 米的正三角形花坛,三角形的顶点 A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成 一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程
中画图工具不限.
A (1)按圆形设计,利用图 1 画出你所设计的圆形花坛示意图;
(2)按平行四边形设计,利用图 2 画出你所设计的平行四边形花坛示意图;
(3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由 .
13、作一个半圆,使圆心在直角三角形 ABC 直角边 AC 上,且与斜边 AB 直角边 BC 都相切 C
13题图
B
..
..
问题解决(3)如图③,现在一块矩形钢板 ABCD ,AB = 4,BC = 3 . 工人师傅想用它裁出两块全等的、面积最大的△ A PB 和 △CP 'D 钢板,且 ∠APB = ∠CP 'D = 60°.请你在图③中画 出符合要求的点 P 和 P ' ,并求出 △ A PB 的面积(结果保留根号).
D
C D C D C
A
B A
B A
B
②
③
(第 14 题图)
,∴AC=AB2+BC2=5.∴BG=
AB BC
在Rt△A BG中,AB=4,∴AG=AB2-BG2=.
在Rt△BPG中,∠BPA=60°,∴PG=BG
+
=1
AP BG=⨯ ⎪
⎪⨯
学习必备欢迎下载
14.(本题满分12分)
解:(1)如图①,
连接AC、BD交于点P,则∠APB=90°.
∴点P为所求.············································(3分)(2)如图②,画法如下:D
A
P
C
B
1)以AB为边在正方形内作等边△A BP;
2)作△A BP的外接圆⊙O,分别与AD、BC交于点E、F.在⊙O中,弦AB所对的APB上的圆周角均为60°D
E
①
P C
F
∴EF上的所有点均为所求的点P.···············(7分)
(3)如图③,画法如下:
1)连接AC;A O
②
E
B
2)以AB为边作等边△A BE;
3)作等边△A BE的外接圆⊙O,交AC于点P;4)在AC上截取AP'=CP.
则点P、P'为所求.····································(9分)D
A P'
G
O
P C
B
(评卷时,作图准确,无画法的不扣分)
过点B作BG⊥AC,交AC于点G.在Rt△A BC中,AB=4,BC=3.
③
(第14题答案图)12
=.(10分)
AC5
16
5
123431643
=⨯=.∴AP=AG+PG=.tan60°53555
∴S
1⎛1643⎫1296+243
+=.··························(12分)22⎝55⎭525。