八年级数学下册 20.2 数据的波动程度1 新人教版

合集下载

人教版数学八年级下册第二十章《20.2 数据的波动程度》课件

人教版数学八年级下册第二十章《20.2 数据的波动程度》课件

方差公式
文字叙述式: 方差就是各数据与它们的平均数的差的平方的平
均数。 方差越大,数据的波动越大(越不稳定); 方差越小,数据的波动越小(越稳定).
讲授新课
P124“问题”中,两组数据的方差分别是:
显然
,即说明甲种甜玉米的波动较大,这与我们从产量分布图看
到的结果一致.
据样本估计总体的统计思想,种乙种甜玉米产量较稳定.
新人教版八年级下册
第二十章 数据的分析
20.2 数据的波动程度
经历方差的形成过程,了解方差的意义。
掌握方差的计算方法并会初步运用方差 解决实际问题。 体会用样本估计总体的数学思想。
讲授新课
产量波 动较大
方差 阅读课(本介P绍1概2念4内,板容书公式)
产量波 动较小
甲种甜玉米的产量
乙种甜玉米的产量
先计算样本数据平均数,当两组数据的平均数相等或相近时,再利用样本方 差来估计总体数据的波动情况.
课堂小结
利用样本方差估 计总体方差
公式: 方差的作用:比较数据的稳定性 利用样本方差估计总体方差
谢谢
例:求数据5、6、7、8、9的方差。
思考
结论:
当堂练习
计算并比较它们的平均数和方差,体会方差是怎样刻画数据的波动程度的. (1)6 6 6 6 6 6 6; (1)平均数:6;方差:0 (2)5 5 6 6 6 7 7; (2)平均数:6;方差: (3)3 3 4 6 8 9 9; (3)平均数:6;方差: (4)3 3 3 6 9 9 9. (4)平均数:6;方差:
当堂练习
2.如图是甲、乙两射击运动员的10 次射击训练成绩的折线统计图.观察图 形,甲、乙这10 次射击成绩的方差哪个大?
【答】乙的射击成绩波动大,所以乙的方差大.

20.2数据的波动 课件(人教版八年级下册) (1)

20.2数据的波动 课件(人教版八年级下册) (1)
第1 次 甲成绩 乙成绩 9 7 第2次 4 5 第3 次 7 7 第4 次 4 a 第5 次 6 7
甲、乙两人射箭成绩折线图
(1)a=_______, x乙 =________. (2)请完成图1中表示乙变化情况的折线. (3)①请观察图1可看出_________的成绩比较稳定(填“甲”或 “乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你 的判断.
成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估
计这两人中的新手是
.
【解析】根据方差的意义,方差是用来衡量一组数据波动大小 的量,方差越大,波动越大,数据越不稳定.根据图中的信息可知, 小李的成绩波动性大,则这两人中的新手是小李. 答案:小李
题组二:方差的应用
1.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进
数据的波动程度 第1课时
1.了解方差的定义和计算公式.(重点)
2.会用方差比较两组数据的波动大小.(重点、难点)
1.方差的概念: 差 的_____ 平方 的_______ 平均数 , 方差:各个数据与平均数___
2 2 2 1 [ x1 x x 2 x x n x ] 2 s =________________________________. n
棉农甲
棉农乙
.
69
69
68
69
70
71
72
71
71
70
【解析】甲的平均产量 x 1 =(68+70+72+69+71)÷5=70, 乙的平均产量 x 2 =(69+71+71+69+70)÷5=70, s12= 1 [(68-70)2+(70-70)2+(72-70)2+(69-70)2+(71-70)2]

人教版八年级下册数学教案:20.2数据的波动程度

人教版八年级下册数学教案:20.2数据的波动程度

20.2数据的波动程度教学目标1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点难点重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.教学设计一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如下表所示.上面两组数据的平均数分别是x甲≈7.54,x乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s2,那么我们用s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01,s乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002.显然s甲2>s乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算.解:根据公式可得x甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3)=10+18×0=10x乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1)=10+18×0=10s甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2]=18(0.01+0.09+…+0.09)=18×0.44=0.055s乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2]=18(0.04+0+…+0.01)=18×0.84=0.105从s甲2<s乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.教学反思本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。

20.2数据的波动程度——方差+课件+2023-2024学年人教版数学八年级下册

20.2数据的波动程度——方差+课件+2023-2024学年人教版数学八年级下册
乙:9.9,10.1,10.0,9.8,10.2.
(1)求甲被抽取的5个零件直径的方差;
解:

1
2
甲 = ×(10.0+10.3+9.7+10.1+9.9)=10.0(mm),甲
5
1
= ×[(10.0 - 10.0)2 +(10.3 - 10.0)2+(9.7 - 10.0)2+(10.1 - 10.0)2
甲班
a
96
96
乙班
95
b
c
(2)已知乙班学生竞赛成绩的方差为11.2,请计算甲班学生竞赛成绩的
方差,并回答哪个班的学生竞赛成绩更稳定.
1
解 : 甲 班 学 生 竞 赛 成 绩 的 方 差 为 ×[(92 - 95)2 + (94 - 95)2 + (96 -
5
95)2×2+(97-95)2]=3.2.
∵乙班学生竞赛成绩的方差为11.2,11.2>3.2,∴甲班学生竞赛成绩更
稳定.
基础训练
1.某校篮球队队员中最高队员的身高是192 cm,最矮队员的身高是174
18
cm,则队员身高的极差是____cm.
11
3
8
2.数据5,6,10,8,9,10的平均数为___,方差为____.
3.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们
6
2
1
2
2
2
2
乙 = ×[2×(10-9) +2×(8-9) +2×(9-9) ]= .
6
3
2
(2)你认为谁的成绩比较稳定?请说明理由.
解:乙的成绩比较稳定,因为乙的方差较小.
4.某轮滑队所有队员的年龄(岁)只有12,13,14,15,16五种情况,其中部

人教版八年级数学下册课件20.2数据的波动程度

人教版八年级数学下册课件20.2数据的波动程度

生活中的数学
例2 某快餐公司的香辣鸡腿很受消费者欢迎.现 有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两 家鸡腿的价格相同,品质相近.快餐公司决定通过检查 鸡腿的质量来确定选购哪家的鸡腿.
(1)可通过哪些统计量来关注鸡腿的质量? 每个鸡腿的质量;鸡腿质量的稳定性.
(2)如何获取数据? 抽样调查.
引入
Байду номын сангаас引入
引入
为了选拔一名同学参加某市中学生射击竞赛,
某校对甲、乙两名同学的射击水平进行了测试,
两人在相同条件下各射靶10次.
中位数 众数
甲成绩
(环数) 7 7 6 8 6 5 9 10 7 5 X甲 = 7 7 7
乙成绩 (环数) 9 5 7 8 7 6 8 6 7 7
X乙 = 7 7
7
大家想想,我们应选甲还是乙,能否用你 前面学的知识解决一下?
找到啦!有区别了!
想一想
上述各偏差的平方和的大小还与什么有关? ——与射击次数有关!
所以要进一步用各偏差平方的平均数来衡量数据的稳定性 设一组数据x1、x2、…、xn中,各数据与它们的平均数 的差的平方分别是(x1-x)2、(x2-x)2 、… (xn-x)2 , 那么我们用它们的平均数,即用
S2=
解:样本数据的方差分别是:
s 甲 2 = ( 7 4 - 7 5 ) 2 + ( 7 4 - 7 5 ) 2 + 1 5 + ( 7 2 - 7 5 ) 2 + ( 7 3 - 7 5 ) 2 3
s 乙 2 = ( 7 5 - 7 5 ) 2 + ( 7 3 - 7 5 ) 2 + 1 5 + ( 7 1 - 7 5 ) 2 ( 7 5 - 7 5 ) 2 8

初二数学20.2 数据的波动程度(1)课件

初二数学20.2 数据的波动程度(1)课件
甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
根据这些数据估计,农科院应该选择哪种甜玉米种 子呢?
探究新知
甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
(2)如何考察一种甜玉米产量的稳定性呢? ①请设计统计图直观地反映出甜玉米产量的分布情况.
甲种甜玉米的产量
产量波动较大
乙种甜玉米的产量
产量波动较小
探究新知
②统计学中常采用下面的做法来量化这组数据的波动大 小:
设有n个数据x1,x2,…,xn,各数据与它们的平均
数 x 的差的平方分别是(x1-x)2,(x2 -x)2, ,(xn -x)2 ,
来判断它们的波动情况.
课后作业
作业:教科书第128页复习巩固第1题.
③请利用方差公式分析甲、乙两种甜玉米的波动程度.
两组数据的方差分别是:
s甲2
=(7.65-7.54)2 +(7.50-7.54)2 + 10
0.01
s乙2
=(7.55-7.52)2 +(7.56-7.52)2 + 10
0.002
+(7.41-7.54)2 +(7.49-7.52)2
探究新知
成绩/环
11
10
9
8
7
6


0 1 2 3 4 5 6 7 8 9 10

人教版数学八年级下册20.2数据的波动(第1课时)《方差》教学设计

人教版数学八年级下册20.2数据的波动(第1课时)《方差》教学设计
3.计算方法:详细讲解方差的计算步骤,通过例题和练习,让学生掌握方差计算方法。
4.实践应用:设计实际问题,让学生运用方差分析方法,解决实际问题,提高学生的应用能力。
5.小组讨论:分组讨论方差在实际生活中的应用,培养学生的合作意识和交流能力。
6.总结与拓展:对本节课的内容进行总结,强调方差在数据分析中的重要性,并布置拓展作业,让学生深入研究方差的相关知识。
(2)尝试利用信息技术手段(如Excel、Python等)处理数据并计算方差,提高数据处理能力。
4.思考题:
(1)为什么方差能够描述数据的波动性?它是如何反映数据离散程度的?
(2)在实际问题中,如何根据方差的数值来判断数据的波动情况?方差的大小与数据的质量有何关系?
5.课后阅读:
推荐阅读与方差相关的数学文章或书籍,了解方差在各个领域的应用,拓展知识视野。
3.引入方差:通过分析身高数据的波动情况,引出方差的概念。强调方差在描述数据离散程度方面的重要性。
(二)讲授新知,500字
在导入新课的基础上,教师进行以下内容的讲解:
1.方差的概念:详细讲解方差的定义,解释方差表示数据波动性的意义。
2.方差的计算方法:逐步讲解方差的计算步骤,结合实例进行说明,使学生理解并掌握计算方法。
1.从学生熟悉的生活实例入手,激发学生的学习兴趣,引导学生理解方差的实际意义。
2.通过形象生动的教学手段,如图表、动画等,帮助学生直观地理解方差的计算方法和应用。
3.加强对学生的个别辅导,针对不同学生的掌握情况,给予针对性的指导和鼓励。
4.创设合作学习的氛围,让学生在讨论、交流中提高对方差知识的集一组你感兴趣的数据(如:家庭成员的身高、体重,或一周内的气温变化等),计算其方差,并分析数据的波动情况。

人教版数学八年级下册20.2《数据的波动程度》教案4

人教版数学八年级下册20.2《数据的波动程度》教案4

人教版数学八年级下册20.2《数据的波动程度》教案4一. 教材分析《数据的波动程度》是人教版数学八年级下册第20.2节的内容,主要介绍了方差、标准差的概念及其计算方法,目的是让学生理解数据的波动程度,并掌握用方差、标准差来衡量数据的稳定性。

本节内容是在学生已经掌握了数据的收集、整理、描述的基础上进行的,为后续学习概率和统计奠定了基础。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于数据的收集、整理和描述有一定的了解。

但是,对于方差、标准差的概念及其计算方法可能较为陌生,需要通过实例来引导学生理解和掌握。

此外,学生可能对于抽象的概念理解存在困难,需要教师通过具体的数据和实例来帮助学生理解。

三. 教学目标1.了解方差、标准差的概念,理解它们的意义。

2.学会计算方差、标准差。

3.能够运用方差、标准差来衡量数据的波动程度,判断数据的稳定性。

四. 教学重难点1.重点:方差、标准差的概念及其计算方法。

2.难点:对于方差、标准差的理解和运用。

五. 教学方法采用讲授法、案例教学法、小组合作法等多种教学方法,引导学生通过观察、思考、讨论、操作等活动,理解和掌握方差、标准差的概念及其计算方法,提高学生的数学思维能力和实践能力。

六. 教学准备1.准备相关的数据资料。

2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾数据的收集、整理、描述的过程,为新课的学习做好铺垫。

2.呈现(15分钟)展示一组数据,引导学生观察数据的波动情况。

然后,介绍方差、标准差的概念,并通过计算实例让学生感受方差、标准差在衡量数据波动程度方面的作用。

3.操练(15分钟)让学生分组进行练习,计算给定数据的方差、标准差。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)通过填空、选择题等形式,让学生巩固方差、标准差的概念和计算方法。

5.拓展(10分钟)引导学生思考:如何运用方差、标准差来判断数据的稳定性?举例说明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


方差越大,___波_动__性_____越大;

方差越小,__波_动__性_____越小.
:
方 4.正如用样本的平均数估计总体的平均数一 差 样,也可以用样本的方差来估计__整_体__的_方__差.
三、研读课文
例1 在一次芭蕾舞比赛中,甲、乙两个

芭蕾舞团都表演了舞剧《天鹅湖》,

参加表演的女演员的身高(单位:cm)
2、方差的意义 方差越大,__波_动__性____越大; 方差越小,__波_动__性____越小. 3、学习反思:_____________________
______________________________ ______________________________ .
五、强化训练
B
五、强化训练
二、学习目标
1 了解方差的定义和计算公式;
会用方差的计算公式比较两组数据的 2 波动大小.
三、研读课文
认真阅读课本第124页至第126页的内

容,完成下面练习,并体验知识点的

形成过程。
点 1、方差的定义
一 设有x1,x2, ,xnn个数据,各数据与它们的平均数
:
x 方
的差的平方分别是_(_x_1___x_)_2_, (x2 x),2 …
7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49
7.52 7.58 7.46 7.53 7.49
一、新课引入
根据这些数据估计,农科院应该选择哪种甜 玉米种子呢?
上面两组数据的平均数分别是
x 7 . 54 x 7 . 52
说明在试验田中,甲、乙两种甜玉米的平群产量相差 不大,由此可以估计这种地区种植这两种甜玉米,它们 的产量相差不大。
=_8 ________________________

=__1_._5__8 1 __ 2__( .__1 5___ 6 _1 __) 3 _2 6 _( _1 6 __ 6 _1 __) 5 _2 6 _ _6 _ _(1 ___ 6 1) 8 2 66
s s 2
数据的波动程
一、新课引入
问题 农科院计划为某地选择合适的甜玉米种子. 选择种子时,甜玉米的产量和产量的稳定性 是农科院所关心的问题.为了解甲、乙两种 甜玉米种子的相关情况,农科院各用10块 自然条件相同的试验田进行试验,得到各 试验田每公顷的产量(单位:t)如表所示.
甲 7.65 7.50 7.62 7.59 7.65
一、新课引入
为了可以直观地甲、乙看出这两种玉米的产量情况, 我们根据这两组数据画成下面的图
7.7
7.7
7.6
7.6
7.5
7.5
7.4
7.4
7.3
7.3
7.2
7.2
7.1
7.1
7
7
6.9
6.9
0
2
4
6
8
10
12
0
2
4
6
8
10
12
乙种玉米产量图
甲种玉米产量图
由上图可以看出,甲种甜玉米在试验田的产量的 波动性较大,乙种甜玉米产量在平均值附近。 为了刻画一组数据的波动大小,我们可以采用很多统 计的方法,例如方差。
三、研读课文
解:

x (1) =6

s 2 =0
(3)x =6
s2
=
44 7

二 : 方 差
x (2) =6
s2
=
4 7
x (4) =6
s2
54 =7

方差越大,数据波动越大; 方差越小,数据波动越小

四、归纳小结
1、方差的计算公式
s 2 =____1 n _(_x _1_ _x _)2 _ __(x _2 _ _x _) _2 _ _ __ _(_x _n_ _x _)_2 .______;
3、甲、乙两台编织机纺织一种毛衣,在5天中 两台编织机每天出的合格品数如下(单位:件): 甲:7 10 8 8 7 ; 乙:8 9 7 9 7 . 计算在这5天中,哪台编织机出合格品的波动较小? 解:
因为
所以是乙台编织机出的产品的波动性较小。

如表所示.

甲 163 164 164 165 165 166 166 167


乙 163 165 165 166 166 167 168 168



哪个芭蕾舞团女演员的身高更整齐?

三、研读课文

解:甲、乙两团演员的身高平均数分别是

x
( 1 1 6 1 6 3 1 6 4 1 6 4 1 6 5 1 6 5 1 6 6 ) 6 8 67 甲=___________________________

=__1_6_5_


x 乙=__( 1 ___ _1 _6 __ _1 _6 3 __ _1 6 _5 _ _1 _6 _5 _ _1 _6 6 __ _1 _6 6 __ 1 6 7 ) 8 6 8
=___1_6_6




三、研读课文
方差分别是

s2 甲
1 ( 1 6 1) 3 2 6 ( 1 5 6 1) 4 2 6 5 ( 1 6 1) 7 2 65

_(_x_n___x__)_2,我们用这些值的平均数,来衡量这组数据
s2
波动的大小,并把它叫做这组数据的方差,记做______.
三、研读课文
2、方差的计算公式
s2
1 n(x 1 x )2 (x 2 x )2 (x n x )2 .

=————————————————————

3、方差的意义
2
所以,____甲___<_____乙__.


答:__甲____芭蕾舞团女演员的身高更整齐.

三、研读课文
练一练:
用条形图表示下列各组数据,计算并比较 它们的平均数和方差,体会方差是怎样刻 画数据的波动程度的:
(1)6 6 6 6 6 6 6 (2)5 5 6 6 6 7 7 (3)3 3 4 6 8 9 9 (4)3 3 3 6 9 9 9
相关文档
最新文档