第七讲离心式压气机讲解
离心式压缩机介绍,超详细

一、关于离心式压缩机喘振问题1、什么是离心式压缩机的喘振?离心式压缩机在生产运行过程中,有时会突然产生强烈的振动,气体介质的流量和压力也出现大幅度脉动,并伴有周期性沉闷的"呼叫"声,以及气流波动在管网中引起"呼哧""呼哧〃的强噪声,这种现象称为离心式压缩机的喘振工况。
压缩机不能在喘振工况下长时间运行,一旦压缩机进入喘振工况,操作人员应立即采取调节措施,降低出口压力,或增加进口,或出口流量,使压缩机快速脱离喘振区,实现压缩机的稳定运行。
2、喘振现象的特征是什么?离心式压缩机运行一旦出现喘振现象,则机组和管网的运行具有以下征:1)气体介质的出口压力和人口流量大幅度变化,有时还可能产生气体倒流现象。
气体介质由压缩机排出转为流向入口,这是危险的工况。
2)管网有周期性振动,振幅大,频率低,并伴有周期性的“吼叫”声。
3)压缩机机体振动强烈,机壳,轴承均有强烈的振动,并发出强烈的周期性的气流声,由于振动强烈,轴承润滑条件会遭到破坏,轴瓦会烧坏,甚至轴被扭断,转子与定子会产生摩擦,碰撞,密封元件将遭到严重破坏。
3、如何进行防喘振调节?喘振的危害极大,但至今无法从设计上予以消除,只能在运转中设法避免机组运行进入喘振工况,防喘振的原理就是针对引起喘振的原因,在喘振将要发生时,立即设法把压缩机的流量增大,使机组运行脱离喘振区。
防喘振的方法具体有三种:1)部分气体防空法。
2)部分气体回流法。
3)改变压缩机运行转速法。
4、压缩机运行低于喘振极限的原因?1)出口背压太高。
2)进口管线阀门被节流。
3)出口管线阀门被节流。
4)防喘振阀门有缺陷或者调节不正确。
二、离心式压缩机流量工况及调节方法1、离心式压缩机的最大流量工况?当流量达到最大时的工况即为最大流量工况,造成这种工况有两种可能:一是级中某流道喉部处的气流达到临界状态,这时气体的容积流量已是最大值,任凭压缩机的背压再降低,流量也不可能增加,这种工况也成为“阻塞”工况。
离心式压缩机.课件

3)润滑油冷却器:润滑油冷却器用于返回油箱的油温有所升高的润滑油 冷却,以控制油温升高。油冷器一般配置两台,一台使用,一台备用, 当投用的油冷器冷却效果不能满足要求时,要切换至备用的油冷器, 将停用的油冷器清洗后备用。
3、检查联轴节。 4、拆卸联轴节,检查其不平衡性。 5、检修或更换密封。 6、消除油膜涡动对轴承影响 7、设法使压缩机运行条件偏离喘振点。
8、气体带液体或杂质侵入
8、更换密封、排放积水。
9、叶轮过盈量小,在工作转速下消失。 9、消除叶轮与轴装配过盈小的缺陷。
离心式压缩机故障
压缩机 喘振
1、运行点落入喘振区或离喘 振线太近。
3)工艺系统 按规定时间和路线,检查工艺系统各部位的 温度、压力、液面的指示值,发现偏离及时调节,确保工 艺系统正常运行。
离心式压缩机的使用维护
4)主机 主机是检查维护的主体,要按规定时间,严格检 查各轴承的振动、瓦温、回油情况、转速和轴位移的指示 情况,如发现偏离操作指标规定的范围,要采取有效措施, 排出故障因素,使主机运行正常。
径向轴承是影响其安全工作和 使用率的关键零件之一,常用 可倾瓦轴承,可倾瓦支撑轴承 包括沿中心线 剖分的圆柱形轴承套和五个可 倾斜的扇形轴瓦,瓦块可以使 转子偏心,可以优化轴承瓦块 上的载荷分布情况,并且形成 更好的油楔。
油锲倾斜块式径向轴承
1.瓦块 2.上轴承套3.螺栓4.圆柱销5.下轴承套 6.定位螺钉 7.进油节流圈
移大波动 不好,压比变化大。
离心式压缩机叶轮
2、叶轮 叶轮又称工作轮,是压缩机的最主要的部件。叶轮随主轴高速旋转,对气
离心式压缩机讲解课件ppt课件

内容
离心式压缩机的结构、原理 蒸汽轮机介绍 密封介绍 润滑油系统 离心式压缩机组的开、停步骤 常见事故的处理
ppt课件
2
压缩机简介
压缩机是一种用于压缩气体以提高气体压力或输送气体的机 器,广泛应用于化工企业各部门。压缩机种类繁多,尽管用途 可能一样,但其结构型式和工作原理都可能有很大的不同。气 体的压力取决于单位时间内气体分子撞击单位面积的次数与强 烈程度。
因此,提高气体压力的主要方法就是增加单位容积内气体分 子数目,也就是容积式压缩机(活塞式、滑片式、罗茨式螺杆 式等)的基本工作原理;而利用惯性的方法,通过气流的不断 加速、减速,因惯性而彼此挤压,缩短分子间的距离,来提高 气体的压力,离心式压缩机的工作原理属于这一类。
压缩Байду номын сангаас分类
一、容积式 往复式、滑片式、罗茨式 螺杆式等
量较小,运动件与静止件保持一定的间隙,因而转速较高。 一般离心式压缩机的转速为5000-20000r/min。 (3)结构紧凑——机组重量和占地面积比同一流量的往复式压 缩机小得多。 (4)运行可靠——离心式压缩机运转平稳一般可连续一至三年 不需停机检修,亦可不用备机。排气均匀稳定,故运转可靠, 维修简单,操作费用低。
ppt课件
12
压缩机的型号和含义
3 B CL 52 8 | | | | |__缸内装有8级叶轮
||| | | | | |_____叶轮名义直径520mm
||| | | | ________无叶扩压器
|| | |____________垂直剖分结构
| |______________ 3个进气\出气口
2)压缩比 指压缩机的排出压力和吸入压力之比,有时也称压 比。计算压比时排出压力和吸入压力都要用绝对压力。
离心式压缩机工作原理及结构图

离心式压缩机工作原理及结构图一、工作原理汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。
而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。
气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。
如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。
级间的串联通过弯通,回流器来实现。
这就是离心式压缩机的工作原理。
二、基本结构离心式压缩机由转子及定子两大部分组成,结构如图1所示。
转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。
定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。
在转子与定子之间需要密封气体之处还设有密封元件。
各个部件的作用介绍如下。
1、叶轮叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。
叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。
2、主轴主轴是起支持旋转零件及传递扭矩作用的。
根据其结构形式。
有阶梯轴及光轴两种,光轴有形状简单,加工方便的特点。
3、平衡盘在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。
轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。
平衡盘是利用它两边气体压力差来平衡轴向力的零件。
它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,在平衡盘的外缘需安装气封,用来防止气体漏出,保持两侧的差压。
第8节 离心式压气机

《 航空发动机结构与原理 》
NUM: 28
《 航空发动机结构与原理 》
NUM: 29
《 航空发动机结构与原理 》
NUM: 30
《 航空发动机结构与原理 》
NUM: 31
《 航空发动机结构与原理 》
NUM: 32
《 航空发动机结构与原理 》
NUM: 33
《 航空发动机结构与原理 》
NUM: 34
常见类型:管式扩压器和叶片式扩压器
《 航空发动机结构与原理 》
NUM: 9
《 航空发动机结构与原理 》
NUM: 10
《 航空发动机结构与原理 》
NUM: 11
《 航空发动机结构与原理 》
NUM: 12
《 航空发动机结构与原理 》
NUM: 13
扩压管:通过扩散通道,速度降低压力 升高,并且气流方向由径向转变为周向。 燃烧室出口有整流器,使出口气流流场 更加均匀。
《 航空发动机结构与原理 》
NUM: 6
《 航空发动机结构与原理 》
NUM: 7
2,离心式叶轮的分类及其 连接 分类: ①根据叶轮分: 直流式(图3.67) 前弯式(3.69b) 后弯式 ②单面叶轮和双面叶轮
《 航空发动机结构与原理 》
NUM: 8
3,扩压器
扩压器的气流涵道一般为扩散形,目的是使高速 气流的动能转变为压力能,一般由轴向和径向两段 组成。
NUM: 5
离心式压气机与轴流式压气机的比较:
①离心式压气机进气量小,轴流式压气机进气量 大。
②在进气量小的条件下,由于气流通道尺寸减小, 使得轴流式压气机的漏气损失等等显著增加,压 气机效率大大下降。故小流量离心式压气机效率 高于轴流式压气机效率。
离心压气机讲解

不均匀的,可以看做是相对速度的
平均值与环流速度合成。
叶轮机械原理
——离心压缩机
叶轮出口的相对运动速度 最低,与环流叠加后在压 力面可能出现环负值,气 流分离现象最大可能出现 在叶轮出口压力面上。
叶轮机械原理
——离心压缩机
有限叶片数的影响
叶轮机械原理
——离心压缩机
叶轮机械原理
——离心压缩机
进气系统:
1、保证进气均匀对称 2、流动损失小 3、保证气流能良好的充满 工作轮,并满足预旋规律
叶轮机械原理
——离心压缩机
叶轮机械原理
——离心压缩机
叶轮机械原理
——离心压缩机
叶轮机械原理
——离心压缩机
叶轮机械原理
——离心压缩机
叶轮机械原理
——离心压缩机
叶轮机械原理
——第九章离心压缩机
功率:
叶轮机械原理
——离心压缩机
叶轮几何参数
叶轮机械原理
——离心压缩机
离心压气机叶轮流动理论:
假设条件: 1、气体为理想气体忽略粘性作用; 2、气体为定常流动; 3、同一半径处气体密度为常数。
叶轮机械原理
——离心压缩机
流体微团受力分析: 1、牵连运动惯性力:
dm2r bdnds2r
——离心压缩机
工作过程:
叶轮机械原理
——离心压缩机
径向流道内流体运动分析
哥式加速度:
ac 2w
哥式力垂直于相对运 动速度与旋转角速度, 与叶轮旋转圆周速度 方向相同。
叶轮机械原理
——离心压缩机
速度三角形:
叶轮机械原理
——第九章离心压缩机
离心压气机中由于离心力作用可获得更高的压比
压气机知识

压气机的特性认识通过这学期的课堂学习和近段时间课下查资料学习,使我对压气机的知识有了一定的了解和认识。
压气机是燃气涡轮发动机的重要部件之一,它的作用是给燃烧室提供经过压缩的高压、高温气体。
根据压气机的结构和气流流动特点,可以把它分为两种主要型式:轴流式压气机和离心式压气机。
首先,我们了解下轴流压气机的结构和工作特性。
轴流式压气机由两大部分组成,与压气机旋转轴相联接的轮盘和叶片构成压气机的转子,外部不转动的机匣和与机匣相联接的叶片构成压气机的静子。
转子上的叶片称为动叶,静子上的叶片称为静叶。
每一排动叶和紧随其后的一排静叶构成轴流式压气机的一级。
压气机的效率高,说明压缩过程中的流阻损失小,实际过程接近理想过程。
或者说,压气机效率愈高,达到相同增压比时,所需要外界输入的机械功愈少。
目前,单级轴流压气机的绝热效率可以达到90%以上,高增压比的多级轴流压气机的绝热效率也可以达到85%以上。
高增压比的轴流压气机通常由多级组成,其中每一级在一般情况下都是由一排动叶和一排静叶构成,且每级的工作原理大致相同,因此我们可以通过研究压气机的一级来了解其工作原理。
轴流压气机的基元级由一排转子叶片和一排静子叶片组成,它保留了轴流压气机的基本特征。
为研究方便,可将圆柱面上的环形基元级展开成为平面上的基元级(如图1-1),在二维平面上研究压气机基元级的工作原理。
图1-1展开成平面的基元级速度三角形在研究压气机工作特性中有着重要的作用。
将动叶进口和动叶出口的速度三角形叠加画到一起,就可以得到基元级的速度三角形,如图1-2(a)所示。
在一般亚声速流动的情况下,气流经过基元级的动叶和静叶后,绝对速度的周向分量Cu和相对速度的周向分量Wu变化比较大,而绝对速度的轴向分量Ca和相对速度的轴向分量w a变化不大,可近似地认为Ca1=Ca2=Ca3。
这样,基元级的速度三角形可进一步化简为图1-2(b)所示形式。
通过速度三角形我们就可以对压气机中气体流动情况进行分析。
离心式压气机的工作原理

航空发动机原理压气机的工作原理根据气流在压气机的流动方向,可将压气分为两大类,气流沿离开叶轮中心方向流动的叶做离心式压气机;气流沿与叶轮轴平行方向流动的叫做轴流式压气机。
此外还有轴流式与离心式压气机混合而成的混合式压气机。
目前使用最广泛的是轴流式压气机,以下将作重点介绍。
轴流式压气机的基本组成,由静子和转子组成。
静子由多排叶片组成,这些叶片叫做整流叶片,由一排流叶片组成的圆环叫做整流环,各整流环固定在机匣上。
转子由多排叶轮组成,每一排叶轮上固定了许多工作叶片,压气机叶轮最终能过叶轮轴与涡轮的工作叶轮轴相连,并由涡轮带动高速旋转。
轴流式压气机的叶轮和整流环是交错排列的。
一个叶轮和后面相邻的整流环构成了压气机的一级。
单级压气机增压比不高。
一般约为1.2-1.8。
为了得到更高的增压比,目前用在民航机上的涡扇发动机的轴流式压气机级数常为10-20级,压气机增压比高达30-40。
有些轴流式压气机的进口安装了一排固定的导流叶片,它们所组成的圆环叫做导流环。
空气在压气机中的流动从进气道流入压气机的空气,首先流过导流环,然后依次流过各级的叶轮和整流环,最后从末级整流环流出进入燃烧室。
由于空气在压气机中的流动较为复杂,同时气流在不同半径叶片通道内的流动大体相仿,为了便于分析,我们假想用一条通过各级叶轮平均地半径处的直线绕叶轮旋转,来切割叶轮和整流环叶片,得到压气机——“基本级”,每级压气机可看成是很多基元级相叠加而成。
所以空气在基元级中的流动可看成压气机工作的缩影。
把所得到的基元级切片在平面上展开,就得到——平面叶栅图形。
目前大多数航空燃气轮机都采用轴流式压气机,只有小功率、小流量的涡轴和涡浆发动机上才采用离心式压气机。
在20世纪40年代末和50年代初、涡喷发动机也曾采用离心式压气机。
离心式压气机由导流器, 叶轮, 扩压器, 导气管等部分组成,叶轮和扩压器是其中两个主要部件。
导流器:安装在叶轮的进口处,其通道是收敛形的使气流以一定方向均匀进入工作叶轮, 以减小流动损失,空气在流过它时速度增大,而压力和温度下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位面积的流通能力低, 故迎风面积大, 阻力大
4.1.2 空气在离心式压气机中的流动
空气在导流器中的流动
单面进气的离心式压气机叶轮的进口直接与 进气道的出口相接
双面进气离心式压气机的进气装置一般由预 旋片和分气盆构成
预旋片的作用在于造成工作轮进口有一定规律的 气流切向速度分布
分气盆的作用则在于将经过预旋片的空气分为数 层,以便将空气较均匀地充满工作轮叶片的进口
进气装置中的流道做成略有收敛,使空气经过它 后,速度略有增大,以减少流动损失
图4-5 双面离心式压气机进气装置
气体经过工作叶轮的扩压
离心式压气机静压增加主要在工作叶轮中实 现,增压比为2.5-3.0
离心式压气机的扩压器一般由缝隙扩压 器和叶片扩压器两部分组成。
空气在集气管中的流动中
空气从叶片式扩压器流出之后,流入集 气管
集气管与燃烧室相连,它的作用除了把 空气导入燃烧室之外,还使气流速度继 续降低,进一步提高压力。
为了缩小径向尺寸,常把扩压器和集气 管统一在一起,气流在拐弯中一边扩压, 一边转为轴向。
第4.1节 离心式压气机
离心式压气机的特点及应用
与轴流压气机相比具有迎风面积尺寸大、效率低的 特点
不宜用于高速飞行的大推力发动机上
具有特性平缓、结构简单、工艺性好等优点
在早期中小推力发动机以及近期小型发动机上得到了应用
早期离心式压气机单级增压比为3.0-4.5,效率为 0.75-0.78
使气流变为轴向, 将 空气引入燃烧室
离心压气机中的压力和速度变化
离心式压气机的主要优点
单级增压比高
一级的增压比可达4:1-5:1, 甚至 更高
同时离心式压气机稳定的工作范 围宽
结构简单可靠 重量轻, 所需要的起动功率小
主要缺点
但它的流动损失大, 尤其是级间损失更 大, 不适于用多级, 最多两级
压气机主要功用
对流过它的空气进行压缩, 提高空气的压力, 为燃气膨胀作功创造条件, 以改善发动机的 经济性, 增大发动机的推力
提高空气压力的方法
利用高速旋转的叶片对空气作功, 将功转变 为压力位能和内能
压气机分类
分为离心式压气机和轴流式压气机
第4.1节 离心式压气机
定义:
工作叶轮通道并不是设计成扩张形的
除了在导风轮中的变化之外, 在叶轮中的变化不 大
气体增压主要靠离心增压实现
由于离心力作用,叶轮外径处压强比内径大的多
总之,气体增压有两方面因素
相对速度的变化 圆周速度的变化(占据主导地位)
空气在扩压器中的流动
空气离开工作叶轮时,相对速度并不高, 而绝对速度还是很高的,一般相应的马 赫数为1.1~1.2。因此要有扩压器使空 气的静压进一步提高。
第三章 压气机
主要内容
第3.1节 离心式压气机 第3.2节 轴流式压气机
3.2.1 轴流式压气机的组成 3.2.2 基元级的工作原理 3.2.3 轴流式压气机的叶栅特性 3.2.4 轴流式压气机级的工作原理 3.2.5 多级轴流式压气机 3.2.6 轴流式压气机的参数 3.2.7 压气机的流量特性 3.2.8 压气机的喘振
60年代借助于数值流场计算技术使增压比达到6-8 组合压气机(前面加上1-2级超跨音速轴流压气机),
应用于性能良好的小型风扇发动机
功用
使气流拐弯并以一定方 向均匀进入工作叶轮, 以减小流动损失
此过程中气流加速,防 止出现拐弯分离流
气流参数变化
空气在流过它时速度增 大,而压力和温度下降
图4-2 进气装置
4.1.1 离心式压气机的组成
工ቤተ መጻሕፍቲ ባይዱ叶轮
高速旋转的部件 工作叶轮上叶片间的通道是扩张形的 空气在流过它时, 对空气作功, 加速空气
的流速, 同时提高空气的压力 从结构上叶轮分单面叶轮和双面叶轮两
种
两面进气,这样可以增大进气量 对于平衡作用在轴承上的轴向力也有好处
两级单面叶轮离心式压气机 双轴涡轴发动机
扩压器
位于叶轮的出口处
其通道是扩张形的
空气在流过它时, 速 度下降, 压力和温度 都上升
集气管
空气在工作叶轮内沿 远离叶轮旋转中心的 方向流动
离心式压气机的组成
由进气装置, 工作叶 轮, 扩压器, 集气管 等部分组成
叶轮和扩压器是其中 两个主要部件
图4-1 离心式压气机
典型的离 心式压气 机
4.1.1 离心式压气机的组成
进气装置
安装在叶轮的进口处, 其通道是收敛形的