气体放电理论(一)

合集下载

电介质的电气特性及放电理论-高电压技术考点复习讲义和题库

电介质的电气特性及放电理论-高电压技术考点复习讲义和题库

考点1:电介质的电气特性及放电理论(一)气体电介质的击穿过程气体放电可以分非自持放电和自持放电两种。

20世纪Townsend在均匀电场,低气压,短间隙的条件下进行了放电试验,提出了比较系统的理论和计算公式,解释了整个间隙的放电过程和击穿条件。

1、汤逊放电理论的适用范围:汤逊理论的核心是:(1)电离的主要因素是电子的空间碰撞电离和正离子碰撞阴极产生表面电离;(2)自持放电是气体间隙击穿的必要条件。

汤逊理论是在低气压、Pd值较小的条件下进行的放电实验的基础上建立起来的,这一放电理论能较好的解释低气压短间隙中的放电现象。

因此,汤逊理论的适用范围是低气压短间隙(Pd<26 66kPa.cm)。

在高气压、长气隙中的放电现象无法用汤逊理论加以解释,两者间的主要差异表现在以下几方面:(1) 放电外形根据汤逊理论,气体放电应在整个间隙中均匀连续地发展。

低气压下气体放电发光区确实占据了整个间隙空间,如辉光放电。

但在大气压下气体击穿时出现的却是带有分支的明亮细通道。

(2) 放电时间根据汤逊理论,闻隙完成击穿,需要好几次循环:形成电子崩,正离子到达阴极产生二次电子,又形成更多的电子崩。

完成击穿需要一定的时间。

但实测到的在大气压下气体的放电时间要短得多。

(3) 击穿电压当Pd值较小时,根据汤逊自持放电条件计算的击穿电压与实测值比较一致;但当Pd值很大时,击穿电压计算值与实测值有很大出入。

(4) 阴极材料的影响根据汤逊理论,阴极材料的性质在击穿过程中应起一定作用。

实验表明,低气压下阴极材料对击穿电压有一定影响,但大气压下空气中实测到的击穿电压却与阴极材料无关。

由此可见汤逊理论只适用于一定的Pd范围,当Pd>26 66kPa. cm后,击穿过程就将发生改变,不能用汤逊理论来解释了。

2、流注理论利用流注理论可以很好地解释高气压、长间隙情况下出现的一系列放电现象。

(1) 放电外形 流注通道电流密度很大,电导很大,故其中电场强度很小。

气体放电原理

气体放电原理

气体放电原理气体放电是指在一定条件下,气体中的自由电子受到电场的作用而加速,与气体原子或分子发生碰撞,使其电离并产生电流的现象。

气体放电是一种重要的物理现象,广泛应用于放电灯、气体放电激光器、等离子体物理研究等领域。

气体放电的原理主要包括电离、电子与离子的碰撞、电子能量的损失和复合等过程。

在电场的作用下,气体分子中的自由电子受到电场力的作用而加速,当电子的动能足够大时,就能够克服原子或分子的束缚能而发生电离。

电离过程是气体放电的起始阶段,也是电流的产生阶段。

在电离过程中,产生了大量的自由电子和离子,它们在电场的作用下加速运动,与气体分子发生碰撞,使得气体分子进一步电离,形成电子级联增殖的现象。

在气体放电过程中,电子与离子的碰撞是不可避免的。

当电子与离子碰撞时,它们会相互传递动量和能量,使得电子的能量逐渐损失,而离子的能量逐渐增加。

这种能量的转移和损失导致了电子的能量分布发生变化,形成了电子能谱。

电子能谱的形状和分布对气体放电过程的性质和特性有着重要的影响。

除了电离和碰撞外,电子的能量损失和复合也是气体放电过程中重要的物理过程。

当电子与气体分子碰撞时,它们会失去能量,并使得气体分子电离或激发。

另一方面,电子还会与正离子复合,释放能量并再次形成原子或分子。

这种能量的损失和复合过程是维持气体放电的能量平衡的重要机制。

综上所述,气体放电是一种复杂的物理现象,其原理涉及到电离、碰撞、能量损失和复合等多个过程。

深入理解气体放电的原理,有助于我们更好地应用气体放电技术,推动相关领域的发展。

同时,气体放电的研究也为我们提供了一个认识自然界和探索未知领域的重要途径。

希望本文能够为读者提供一些有益的信息,促进气体放电领域的进一步研究和应用。

气体放电理论

气体放电理论

气体放电理论1)简要论述汤逊放电理论。

当外施电压足够高时,一个电子从阴极出发向阳极运动,由于碰撞游离形成电子崩,则到达阳极并进入阳极的电子数为eas个(α为一个电子在电场作用下移动单位行程所发生的碰撞游离数;s为间隙距离)。

因碰撞游离而产生的新的电子数或正离子数为(eas-1)个。

这些正离子在电场作用下向阴极运动,并撞击阴极.若1个正离子撞击阴极能从阴极表面释放r个(r 为正离子的表面游离系数)有效电子,则(eas-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。

即汤逊理论的自持放电条件可表达为r(eas-1)=1。

2)为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。

随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。

当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。

于是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近的电场,而略为加强了外部空间的电场。

这样,棒极附近的电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。

(2)当棒具有负极性时,阴极表面形成的电子立即进入强电场区,造成电子崩。

当电子崩中的电子离开强电场区后,电子就不再能引起电离,而以越来越慢的速度向阳极运动。

一部份电子直接消失于阳极,其余的可为氧原子所吸附形成负离子。

电子崩中的正离子逐渐向棒极运动而消失于棒极,但由于其运动速度较慢,所以在棒极附近总是存在着正空间电荷。

结果在棒极附近出现了比较集中的正空间电荷,而在其后则是非常分散的负空间电荷。

负空间电荷由于浓度小,对外电场的影响不大,而正空间电荷将使电场畸变。

棒极附近的电场得到增强,因而自持放电条件易于得到满足、易于转入流柱而形成电晕放电。

气体放电物理

气体放电物理

气体放电物理试验原理(一)、气体放电特性及原理气体放电是指电流通过气体煤质时的放电现象。

电闪雷鸣为大气中的放电过程;电焊机也属气体放电。

气体放电种类很多,用得最多的是辉光放电和弧光放电两大类。

各种气体放电灯的基本结构大同小异。

见图一所示:等离子体说明书第7页图一直流放电管电路示意图在支流高压下工作的放电灯,分阴、阳极。

在交流高压下工作的放电灯无阴、阳极之分两极交替的作为阴、阳极之用。

灯内充有气体,它可以是惰性气体、金属或金属化合物的蒸气。

当电极两端加以高压时,灯内的自由电子被外电场加速,则运动的电子将与原子发生碰撞,碰撞后的电子将动能交给原子,原子获得能量后,便受激激发到高能态。

处于高能态(激发态)的原子是不稳定的,在大约810S -数量级的时间,就要自发的返回到基态。

此过程原子会以辐射的形式发射光辐射。

光辐射的频率和能量的关系为:hc E e V h νλ∆=∆== (1)式中V ∆为激发态和激态两能级间的距离,也称发生跃迁的两能级间的电位差,单位是伏特。

λ的单位是nm 。

徐强调的是原字的激发和跃迁在激发态之间也可进行。

(二)、气体放电的全伏安特性由图一可知,改变管压得大小,可得到系列放电电流值。

由管压和放电电流的关系画成的曲线,成为全伏安特性曲线。

见图二所示:图二气体放电伏安特性曲线OA段:在外加电场的作用下,灯观中所存在的带电粒子向电极运动,形成电流。

随电场的增加,带电粒子的运动速度增加,复合减少,是电流增大。

AB段:当电场继续增大时,所有电离产生的带电粒子全部到达电极,电流达饱和状态,形成BC段。

BC段:如果外加电压继续增高,则外电场将使初始的带电离子速度达到很大值.他们在和中性原子碰撞时,使之电离后产生的电子又被电场加速,又和另外的中性原子碰撞电离,形成更多的电子.这一过程会使电子数呈现雪崩式的增加.在BC段将发生汤生放电.CDEF段为为辉光放电区:当电压加大到C点以后管压降突然下降,通过放电管的电流却增加很快.同时在放电管中产生可见光.相应C点成为放电管的着火点,相对应的外加电压称为放电管的着火电压. 在C点以后所发生的各种放电称为自持放电.而在C点以前发生的各种非自持转为自持所需的电压就成为着火电压.自C点以后,无论如何增大外加电压,还是减少回路电阻R使电流增加,管压降基本不变,此段(EF)称为正常辉光放电.发生正常辉光放电时, 管压降维持不变,是因为在此范围内,阴极并没有全部用于发射电子,由于阴极发射的面积正比于发射电流,故此时阴极上的电流密度是一常数.FG段:当整个阴极表面都用于发射电子以后.(既F点以后),如还继续加大电流的话, 阴极电流密度就必须增加会造成管压升高.此时就进入异常辉光放电阶段(FG).当管压升高到一定数值后如(G)点,继续加大放电电流, 由于此时阴极温度升高而转入热电子发射,管压大幅降低,电流迅速增加.在一般情况下,放电管呈现负组效应.此时放电将转入较强的弧光放电区域,既GH 段.从图(1)可知,反常辉光放电的峰值电压就是弧光放电的启动电压,它是反常辉光放电和弧光放电的的转折点. (三)、帕型定律通常将放电管与电阻、电感串联,直接接于220伏的交流电网或其他电源上,放电管是不能发光的.我们必须施加更高的电压(或采用其他的启动方法)才能使放电管(或各种气体放电灯)发光.着火电压的大小与气体的压强、阴极的逸出功、电极间距、气体的种类与成分有关。

第1章 气体放电

第1章 气体放电

第一章 气体放电
2、负棒一正板
第一章 气体放电
a.由于捧极附近积聚起正空间电荷,削弱了电离, 使电晕放电难以形成,造成电晕起始电压提高。
b.由于捧极附近积聚起正空间电荷在间隙深处产生电 场加强了朝向板极的电场,有利于流注发展,故降低了击 穿电压。
第一章 气体放电
结论: 在间隙距离d相同时 虽然UC(+)>UC(-) 但 Ub(+)<Ub(-) 式中 UC——电晕起始电压 Ub——击穿电压 此称为极性效应。
第一章 气体放电
2、当P一定时 ↑→ 要维持足够的电场强度 →必须升高 d d↑→ ↑→要维持足够的电场强度 要维持足够的电场强度→ 电压 反之 ↓→ 当与平均 λ可比拟时 →电子走完全 d d↓→ ↓→当与平均 当与平均λ 可比拟时→ 程中的碰撞次数 ↓→ Ub↑ 程中的碰撞次数↓→ ↓→U
第一章 气体放电
第一节 气体中带电质点的产生与消失 一、气体中带电质点的产生(游离)
1、碰撞游离 自由行程:质点两次碰撞之间的距离。 平均自由行程越大,越容易发生碰撞游离。 平均自由行程与气体间的压力成反比,与绝对温 度成正比。
第一章 气体放电
2、光游离 各种短波长的高能辐射线,如宇宙射线,紫 外线、γ线、X线等才有使气体产生光游离的能力。 由光游离产生的自由电子称为光电子。 3、热游离 在热状态下产生碰撞游离和光游离的综合。 4 、表面游离 包括热电子发射、正离子撞击阴极、短波光 照射效应及强电场发射等,都可以使阴极发射电 子。
第一章 气体放电
二、绝缘的一般分类
1、按存在形式 � 气体介质 � 液体介质 � 固体介质 2、按是否可自行恢复绝缘 � 可恢复绝缘 � 不可恢复绝缘
第一章 气体放电

气体放电理论1修正

气体放电理论1修正

非自持放电
外施电压小于 U0 时,间隙内 虽有电流,但其数值甚小, 通常远小于微安级,因此气 体本身的绝缘性能尚未被破 坏,即间隙还未被击穿。而 且这时电流要依靠外电离因 素来维持,如果取消外电离 因素,那么电流也将消失。
自持放电
当电压达到 U0后,气体中 发生了强烈的电离,电流 剧增。同时气体中电离过 程只靠电场的作用已可自 行维持,而不再继续需要 外电离因素了。因此 U0以 后的放电形式也称为自持 放电。
电极表面带电质点的产生
电极表面电离: 电极表面电离:气体放电中存在阴极发射电子的过程。 逸出功:使阴极释放电子所需的能量。与金属的微观结 逸出功 构和表面状态有关,与温度基本无关。 电极表面电离条件:光子能量大于金属表面逸出功。 电极表面电离条件
正离子碰撞阴极
正离子碰撞阴极,将能量传递给阴极电子。 当正离子能量大于阴极材料表面逸出功2倍以 上时,才可能撞出自由电子。 实际上,平均每100个正离子才能撞出一个有 效自由电子 金属表面逸出功一般小于气体分子电离能,因 此,电极的表面电离对气体放电很重要。
气体放电理论(一) 气体放电理论(
美国俄克拉荷马州塔尔萨市上空出现的闪电奇观
主要内容
气体中带电质点的产生和消失 气体放电的主要形式 非自持放电与自持放电 汤逊放电理论
纯净的中性状态的气体是不导电的,只有在的 气体中出现带点质点以后,才可能导电,并在 电场的作用下,发展为各种形式的气体放电现 象。 气体中带电质点的来源有二:一是气体分子本 气体中带电质点的来源 身发生电离;二是气体中的固体或液体金属发 生表面电离。 通常大气中约有500-1000对离子/cm3, 带电质 点极少,因而,通常情况下空气是良绝缘体。
热电子发射
高温下金属中电子因获得巨大的动能会 从电极表面逸出,称为热电子发射 热电子发射。 热电子发射 热电子发射仅对电弧放电有意义,并在 电子、离子器件中得到应用。 常温下气隙的放电过程中不存在热电子 发射现象。

气体放电原理

气体放电原理

气体放电原理
气体放电是指当气体中的电子和离子获得足够的能量时,发生放电现象的过程。

其原理涉及到气体的电离和电子的碰撞等基本物理过程。

气体电离是指在电场的作用下,气体中的原子或分子失去电子成为正离子和自由电子的过程。

当电场强度足够大时,气体中的原子或分子受到电场的力,电子被加速并获得足够的能量,从而发生电离,形成正离子和自由电子。

电子的碰撞是指在气体中,自由电子与离子或原子之间发生的碰撞过程。

电子在碰撞过程中会失去能量,导致其速度减小。

当碰撞速率和电子再次获得能量的速率达到平衡时,电子的速度将保持稳定。

在气体放电过程中,电子和离子受到电场的作用而产生加速,当它们的能量达到一定程度时,就会引发碰撞电离,进而导致更多的电离。

这种连锁反应会引起电流的流动,形成可见的放电现象,如闪电、辉光灯等。

不同的气体放电现象具有不同的特点和应用。

例如,闪电放电具有极高的能量和电流,可破坏设备和引起火灾。

辉光灯则是通过控制气体放电来产生可见光,用于照明和显示等领域。

总之,气体放电现象是通过电场作用下的电离和碰撞过程实现的。

这一原理在各种领域的应用中发挥着重要的作用,从科学研究到工业应用都有广泛的应用价值。

第2讲 气体放电理论(一)

第2讲 气体放电理论(一)

气体中带电质点的 气体中带电质点的产生
气体分子本身的电离,可由下列因素引起: 气体分子本身的电离,可由下列因素引起: 分子本身的电离
(1)电子或正离子与气体分子的碰撞电离 电子或正离子与气体分子的碰撞电离 与气体分子的碰撞 (2)各种光辐射(光电离) 各种光辐射 光电离) 光辐射( (3)高温下气体中的热能(热电离) 高温下气体中的热能 热电离) 下气体中的热能( (4)负离子的形成 负离子的形成
9
几种气体的 几种气体的第一电离电位 N:14.5 V,N2 :15.5 V 14. 15. O:13.6 V, 13. O2 :12.2 V 12. Cs (铯) :3.88V 88V
10
1、碰撞电离 (撞击电离) 撞击电离)
撞击质点所具有的总能量( 所具有的总能量 必要条件 撞击质点 所具有的 总能量 ( 包 动能和势能)大于被撞击质点在该种状态 括动能和势能)大于被撞击质点在该种状态 所需的 下所需的电离能 需要一定的相互作用的时间和条件 需要一定的相互作用的时间和 相互作用 仅考虑动能, 电场作用下 仅考虑动能 , 在 电场作用 下 , 撞击质点被加 速而获得动能。可能引起碰撞电离 碰撞电离的条件 速而获得动能。可能引起碰撞电离的条件
14
光子, 原称光量子 光子 , 原称 光量子 ( light quantum) 。 光子 是光线中 光量子( quantum ) 光子是光线中 携带带能量的粒子 传递电磁相互作用 携带带能量的粒子,传递电磁相互作用的规范粒子 。 的粒子, 电磁相互作用的 能量、 按照质能方程, 光子具有 能量 、 动量和质量 , 按照质能方程 , 求出 M=hν /C2,光子由于无法静止,所以它没有静止质量。 M= 光子由于无法静止,所以它没有静止质量 没有静止质量。 能量为W= 。 能量为W=hν。 一个光子被分子吸收时 当一个光子被分子吸收时,就有一个电子获得足够的能 量从而从内轨 道跃迁到外轨 量从而从 内轨 道跃迁到 外轨 道 , 该分子就从 基态 变成 内轨道跃迁到 外轨道 该分子就从基态 基态变成 激发态或电离。 了激发态或电离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

eEx Wi
或 Ex Ui
只有那些自由行程超过 xi = Ui / E 的电子,才能与分子发生 碰撞电离
若电子的平均自由行程为,自由行程大于xi的概率为
e xi /
41
在lcm长度内,一个电子的平均碰撞次数为l/ 其中
1

e xi /
是电子自由行程超过xi 而发生的碰撞 ,即电离碰撞次数

带电质点产生以后,在外电场作用下将作定向运动,形 成电流
j envd

在气体放电空间 ,带电质点在一定的电场强度下运动达 到某种稳定状态 ,保持平均速度,即上述的带电质点的 驱引速度 v bE
d

b ——迁移率 电子迁移率比离子迁移率大得多,即使在很弱的电场中 ,电子迁移率也随场强而变
18
32
1、电子崩的形成 ( 过程 )
一个起始电子自电场 获得一定动能后,会碰 撞电离出一个第二代电 子;这两个电子作为新 的第一代电子,又将电 离出新的第二代电子, 这时空间已存在四个自 由电子;这样一代一代 不断增加的过程,会使 电子数目迅速增加,如 同冰山上发生雪崩一样
33

电离系数
一个电子沿着电场方向行经 1cm长度,平均发 生的碰撞电离次数 如设每次碰撞电离只产生一个电子和一个正离 子, 即是一个电子在单位长度行程内新电离 出的电子数或正离子数

x

如果起始有 n0个质点(或一个质点的相继 n0次 碰撞),则其中行过距离 x 后,尚未被碰撞的 质点数(或次数)n(x)应为
n( x) n0 e

x

9
一、气体中带电质点的产生和消失

气体中带电质点的产生
(一)气体分子的电离可由下列因素引起:
(1)电子或正离子与气体分子的碰撞电离 (2)各种光辐射(光电离) (3)高温下气体中的热能(热电离) (4)负离子的形成
29

由非持放电转入自持放电的电压称为起始电压 如电场比较均匀,则间隙将被击穿,此后根据 气压、外回路阻抗等条件形成辉光放电、火花 放电或电弧放电,而起始电压 U0 也就是间隙的 击穿电压Ub

如电场极不均匀,则当放电由非自持转入自持 时,在大曲率电极表面电场集中的区域发生电 晕放电,这时起始电压是间隙的电晕起始电压 ,而击穿电压可能比起始电压高很多
11
光电离

光辐射引起的气体分子的电离过程称为光电离
自然界、人为照射、气体放电过程

当气体分子受到光辐射作用时,如光子能量满足下面条 件,将引起光电离,分解成电子和正离子
h Wi

光辐射能够引起光电离的临界波长(即最大波长)为
hc 1234 0 eUi Ui nm

对所有气体来说,在可见光(400750nm)的作用下, 一般是不能直接发生光电离的
(3)强场发射(冷发射)
当阴极附近所加外电场足够强时,使阴极发射出电子
(4)热电子发射 当阴极被加热到很高温度时,其中的电子获得巨大动 能,逸出金属
16
一、气体中带电质点的产生和消失

气体中带电质点的消失
(一)电场作用下气体中带电质点的运动
(二)带电质点的扩散
(三)带电质点的复合
17
电场作用下气体中带电质点的运动
电离能Wi (eV) 气体 15.6 12.5 15.4 CO2 H2O SF6
激励能We (eV) 10.0 7.6 6.8
电离能Wi (eV) 13.7 12.8 15.6
6
质点的平均自由行程
:一个质点在与气体分子相邻两次碰撞之间自由地通 过的平均行程
电子在其自由行程内从外电场获得动能 ,能量除决定 于电场强度外,还和其自由行程有关


19
带电质点的复合


正离子和负离子或电子相遇,发生电荷的传递而互相 中和、还原为分子的过程
在带电质点的复合过程中会发生光辐射,这种光辐射 在一定条件下又可能成为导致电离的因素 正、负离子间的复合概率要比离子和电子间的复合概 率大得多。通常放电过程中离子间的复合更为重要

一定空间内带电质点由于复合而减少的速度决定于其 浓度
表示折算到每个碰撞阴极表面的正离子,阴极金
属平均释放出的自由电子数
37
从阴极飞出n0个电子,到达阳极后,电子数将增加为
n n0e
正离子数
d
n n0 (e
d
1)
正离子到达阴极,从阴极电离出的电子数
n n0 (e 1)
d
38
3、自持放电条件
设 n0=1 放电有非自持转入自持的条件为
22电弧放电减小外回路中的阻抗,则电流增大,电流增大 到一定值后,放电通道收细,且越来越明亮, 管端电压则更加降低,说明通道的电导越来越 大

电弧通道和电极的温度都很高,电流密度极大 ,电路具有短路的特征
23
火花放电

在较高气压(例如大气压强)下,击穿后总是形 成收细的发光放电通道,而不再扩散于间隙中的 整个空间。当外回路中阻抗很大,限制了放电电 流时,电极间出现贯通两极的断续的明亮细火花 火花放电的特征是具有收细的通道形式,并且放 电过程不稳定
We h
5
原子电离: 原子在外界因素作用下,使其一个或几个电子脱离原子核 的束缚而形成自由电子和正离子的过程称为原子的电离 电离过程所需要的能量称为电离能 Wi(ev),也可用电离 电位Ui(v) 几种气体和金属蒸汽的激励电位和电离电位
气体 N2 O2 H2
激励能We (eV) 6.1 7.9 11.2
带电质点的扩散

带电质点的扩散和气体分子的扩散一样,都是由于热 运动造成,带电质点的扩散规律和气体的扩散规律也 是相似的
气体中带电质点的扩散和气体状态有关,气体压力越 高或者温度越低,扩散过程也就越弱 电子的质量远小于离子,所以电子的热运动速度很高 ,它在热运动中受到的碰撞也较少,因此,电子的扩 散过程比离子的要强得多
n n0 ex
相应的电子电流增长规律为
I I 0 ex
令x=d,得进入阳极的电子电流,此即外回路中的电流
I I 0e
d
36
2、过程

电离系数
正离子在间隙中造成的空间电离过程不可能具有 显著的作用 正离子向阴极移动,依靠它所具有的动能及位能, 在撞击阴极时能引起表面电离,使阴极释放出自 由电子来
7

气体中电子和离子的自由行程是它们和气体分子 发生碰撞时的行程 电子的平均自由行程要比分子和离子的大得多 气体分子密度越大,其中质点的平均自由行程越 小。对于同一种气体,其分子密度和该气体的密 度成正比
T p

8

自由行程的分布: 具有统计性的规律。质点的 自由行程大于x的概率为
f ( x) e
e 1 1
d
在均匀电场中,这也就是间隙击穿的条件,上式具有
清楚的物理意义
39
当自持放电条件得到满足时,就会形成图解中闭环部 分所示的循环不息的状态,放电就能自己维持下去
40
4、击穿电压、巴申定律

根据自持放电条件推导击穿电压 ,先推导 的计算式
设电子在均匀电场中行经距离 x 而未发生碰撞,则此时电子 从电场获得的能量为 eEx,电子如要能够引起碰撞电离, 必须满足条件
3
名词解释

电子平均自由行程


激励
电离
复合
4
原子激励和电离
原子能级
以电子伏为单位 1eV=1V×1. 6×10-19C=1.6×10-19J
原子激励
原子在外界因素作用下,其电子跃迁到能量较高的状态, 所需能量称为激励能We
激励状态恢复到正常状态时,辐射出相应能量的光子,光
子(光辐射)的频率

1

e
x i


1

Bp E
e
U i E
气体温度不变时,1/ =Ap,并令AUi=B,可得
Ape

42

将 的计算式代入自持放电条件
Apde
Bpd Ub
ln( 1)
1

击穿电压Ub
Ub
Bpd Apd ln ln 1 /

温度不变时,均匀电场中气体的击穿电压 Ub 是气体压 强和电极间距离的乘积pd的函数 U b f1 pd
30
三、均匀电场中气体击穿的发展过程


汤逊放电理论
流注放电理论 这两种理论互相补充,可以说明广阔的pd(压
强和极间距离的乘积)范围内气体放电的现象
31
(一)汤逊气体放电理论

汤逊理论认为,当pd较小时,电子的碰撞电 离和正离子撞击阴极造成的表面电离起着主 要作用,气隙的击穿电压大体上是pd的函数
34
设:在外电离因素光辐射的作用下 ,单位时间内阴极单位面积产生 n0 个电子 在距离阴极为 x 的横截面上,单 位时间内单位面积有n个电子飞过 这n个电子行过dx之后,又会产生 dn个新的电子
dn ndx
将此式积分,可得电子的增长规律为
n n0 exp 0 dx
35
x
对于均匀电场, 不随空间位置而变

金属表面电离有多种方式,即可以有多种方法供给电 子以逸出金属所需的能量
(1)正离子碰撞阴极
正离子碰撞阴极时使电子逸出金属(传递的能量要大 于逸出功)。逸出的电子有一个和正离子结合成为原 子,其余的成为自由电子。因此正离子必须碰撞出两 个及以上电子时才能出现自由电子
15
(2)光电效应
金属表面受到光的照射,当光子的能量大于逸出功时 ,金属表面放射出电子
相关文档
最新文档