平行四边形练习题及答案
《平行四边形》习题精选及参考答案

《平行四边形》习题精选及参考答案一、填空题1.过□ABCD的顶点A、C分别作对角线BD的垂直线,垂足为E、F,则四边形AECF是 .2.延长△ABC的中线AD到E,使DE=AD 则四边形ABEC是四边形.3.在四边形ABCD中∠A=50°欲使四边形为平行四边形,则∠B= ,∠C=,∠D= .4.在四边形中,任意相邻两个内角互补,则这个四边形是四边形.5.如图12-1-29,在□ABCD中,E、F为AB、CD的中点,连结DE、EF、BF则图中共有个平行四边形.6.在□ABCD中连结BD作AE⊥BD,CF⊥BD,垂足分别为E、F,连结CE、AF,点P、Q在线段BD上,且BP=DQ,连结AP、CP、AQ、CQ,MN分别交AB、CD于M、N连结AM、CM、NA、NC,那么图中平行四边形(除□ABCD外)有个,它们是 .二、判断题1.平行四边形的对边分别相等()2.平行四边形的对角线相等()3.平行四边形的邻角互补()4.平行四边形的对角相等()5.平行四边形的对角线互相平分一组对角()6.对角线平分平行四边形的四个三角形的面积相等()三、选择题1.能判断四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组对边平行,一组邻角互补D.一组对边相等,一组邻角相等2.能确定平行四边形的大小和形状的条件是()A.已知平行四边形的两邻边B.已知平行四边形的两邻角C.已知平形四边形的两对角线D.已知平行四边形的两边及夹角3.平行四边形一边为32,则它的两条对角线长不可能为()A.20和18 B.40和50C.60和30 D.32和504.如图12-1-30所示,已知□ABCD的对角线的交点是O,直线EF过O点且平行于BC,直线GH过O且平行AB,则图中有()个平行四边形.A.5个B.6个C.7个D.10个5.能判定四边形为平行四边形的是()A.一组对角相等B.两条对角线互相垂直C.两条对角线互相平分 D.一对邻角互补6.以下结论正确的是()A.对角线相等,且一组对角也相等的四边形是平行四边形.B.一边长为5,两条对角线分别是4和6的四边形是平行四边形.C.一组对边平行,且一组对角相等的四边形是平行四边形.D.对角线相等的四边形是平行四边形.7.在□ABCD中,点E、F分别在边BC、AD上,如果点E,F分别由下列各种情况得到的,那么四边形AECF不一定是平行四边形的是()A.AE、CF分别平分∠DAB、∠BCDB.AE,CF使∠BEA=∠CFDC.E、F分别是BC、AD的中点D.BE=BC,AF=AD8.□ABCD对角线交点为O,△OBC的周长为59cm,且AD=28cm,两对角线之差为14cm,则对角线长为()A.12cm和9cm B.24cm 和38cmC.8.5cm和22.5cm D.15.5cm 和29.5cm四、解答题1.如图12-1-31所示,在□ABCD中,AE平分∠BAD,CF平分∠BCD,四边形AECF是平行四边形吗?2.如图12-1-32所示,四边形ABCD中∠B=∠D,∠1=∠2,则四边形ABCD是平行四边形吗?为什么?3.如图12-1-33所示,四边形ABCD的对角线AC、BD相交于点O,E、F分别是OD、OB上一点,若∠ECD=∠FAB,EC=AF,则四边形AECF是平行四边形吗?为什么?4.如图12-1-34所示,四边形ABCD中AB=CD,∠DBC=90°,FD⊥AD于D,求证四边形ABCD 是平行四边形.5.如图12-1-35所示,△ABC中DE在BC边上,N、M在AB、AC上,且EN与DM互相平分,MD ∥AB,NE∥AC求证:BD=DE=CE五、证明题1.已知:如图12-1-18,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF(2)AE∥CF2.已知:如图12-1-19,四边形ABCD为平行四边形,E、F是直线BD延长线上的两点,且DE =BF,求证AE=CF参考答案一、填空题1.平行四边形点拨:由一组对边平行且相等,即可判断2.平行四边形3.130°,50°,130°4.平行四边形点拨:由题意可得两组对边分别平行5.4个点拨:□ABCD,□ADFE,□EFCB,□EDFB6.3个□AECF,□APCQ,□AMCN二、判断题1.√ 2.×点拨:对角线不一定相等,但互相平分3.√ 4.√5.×点拨:对角线不平分一组对角,只是自己互相平分 6.√三、选择题1.B 2.D 3.A 4.D 5.C 6.C 7.B 8.B四、解答题1.解:四边形AECF是平行四边形点拨:由□ABCD知∠BCD=∠BAD,又AE平分∠BAD,CF平分∠BCD,故∠EAF=∠ECF,又∠AF ∥EC,故∠AEC+∠EAF=18O°,即∠AEC+∠ECF=18O°,所以AE∥CF,故四边形AECF是平行四边形.2.解:四边形ABCD是平行四边形由∠1=∠2得DC∥AB,所以∠D+∠DAB=18O°,又∠B=∠D,所以∠DAB+∠B=180°,所以AD∥BC,即四边形ABCD为平行四边形.3.解:是平行四边形点拨:AB∥CD,故∠ACD=∠CAB,又∠ECD=∠FAB,故∠ACD-∠ECD=∠CAB-∠FAB,即∠ACE =∠CAF,所以CE=AF,CE=AF,故AFCE是平行四边形.4.证明:∵BD⊥AD ∴∠BDA=90°∵∠DBC=90°,DC=AB,DB=DB∴△ADB≌△CBD ∴AD=BC∴四边形ABCD是平行四边形5.证明:∵NE,MD互相平分∴四边形MNDE为平行四边形∴MN DE又∵MD∥AB,NE∥AC ∴四边形MNBD、MNEC为平行四边形∵MN=BD,MN=CE ∴BD=DE=CE五、证明题1.证明:∵四边形ABCD为平行四边形∴AB DC ∴∠ABE=∠CDF在△ABE和△CDF中∴△ABE≌△CDF(SAS)∴AE=CF ∴∠AEB=∠CFD∴∠AED=∠BFC(等角的补角相等)∴AE∥CF2.证明:如图(3)所示∵四边形ABCD是平行四边形∴AD∥BC,AD=BC ∴∠1=∠2∵BD是直线∴∠1+∠3=180°,∠2+∠4=180°∴∠3=∠4∴△ADE≌△CBF ∴AE=CF。
平行四边形练习题(含答案)

第十八章平行四边形18.1 平行四边形1.在ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则ABCD的面积为A.6 B.9 C.12 D.182.若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是A.90°B.60°C.120°D.45°3.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是A.6 B.8 C.10 D.164.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°5.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.6.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=22 m,则AB=__________m.7.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=23BC=3DE=12,DG=12AB,求四边形DEFG的周长.8.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P 从点A出发沿射线AD方向以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位长度的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.9.已知ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤810.平行四边形ABCD与等边三角形AEF按如图所示的方式摆放,如果∠B=45°,则∠BAE的大小是A.75°B.80°C.100°D.120°11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,点A,B为定点,定直线l∥AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是A.①②③B.①②⑤C.②③④D.②④⑤13.如图,在△ABC中,∠ACB=90°,AC=3,BC=4,点D是边AB的中点,将△ABC沿着AB平移到△DEF 处,那么四边形ACFB的面积等于__________.14.如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,:DMN CEM S S △△等于_________.15.如图,在ABCD 中,对角线AC ,BD 相交于点O ,OA =5cm ,E ,F 为直线BD 上的两个动点(点E ,F 始终在ABCD 的外面),且DE =12OD ,BF =12OB ,连接AE ,CE ,CF ,AF . (1)求证:四边形AFCE 为平行四边形. (2)若DE =13OD ,BF =13OB ,上述结论还成立吗?由此你能得出什么结论? (3)若CA 平分∠BCD ,∠AEC =60°,求四边形AECF 的周长.16.(2018·贵州黔东南、黔南、黔西南)如图在ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm17.(2018·甘肃兰州)如图,将ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若48ABD ∠=︒,40CFD ∠=︒,则E ∠为A .102︒B .112︒C .122︒D .92︒18.(2018·黑龙江绥化)下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC =D .AB DC =,AD BC =19.(2018·内蒙古呼和浩特)顺次连接平面上A 、B 、C 、D 四点得到一个四边形,从①AB ∥CD ②BC =AD③∠A =∠C ④∠B =∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有 A .5种B .4种C .3种D .1种20.(2018·广西玉林)在四边形ABCD 中:①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有 A .3种B .4种C .5种D .6种21.(2018·四川德阳)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使3FO OC =,连接AB 、AC 、BC ,则在ABC ∆中::ABO AOC BOC S S S △△△A .621∶∶B .321∶∶C .632∶∶D .432∶∶ 22.(2018·安徽)ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是 A .BE =DF B .AE =CF C .AF ∥CED .∠BAE =∠DCF23.(2018·广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =6 cm ,则DE 的长度是__________cm .24.(2018·湖北十堰)如图,已知ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,AB =5,则△OCD的周长为__________.25.(2018·江苏泰州)如图,ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC 的周长为__________.26.(2018·辽宁抚顺)如图,ABCD 中,AB =7,BC =3,连接AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是__________.27.(2018·山东淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.28.(2018·福建)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.29.(2018·广西梧州)如图,在ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.30.(2018·辽宁大连)如图,ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE =DF .31.(2018·湖北孝感)如图,B ,E ,C ,F 在一条直线上,已知AB DE ∥,AC DF ∥,BE CF ,连接AD .求证:四边形ABED 是平行四边形.32.(2018·江苏无锡)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF =∠CDE .33.(2018·湖北恩施州)如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD ,AD 交BE于O .求证:AD 与BE 互相平分.34.(2018·浙江衢州)如图,在ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.35.(2018·江苏宿迁)如图,在ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.36.(2018·青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.;(1)求证:AD BF(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.37.(2018·云南曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.38.(2018·黑龙江大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.1.【答案】C【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△AOD=S△COD=S△BOC=S△AOB.∵△AOB的面积为3,∴ABCD的面积为4×3=12.故选C.2.【答案】B【解析】如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B∶∠C=1∶2,∴∠B=13×180°=60°,故选B.3.【答案】C【解析】∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的316,∴四边形ABCD周长为:6÷316=32,∴AB+BC=12×32=16,∴BC=10.故选C.5.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB【解析】根据AB∥CD可得:△ABC和△ABD的面积相等,△ACD和△BCD的面积相等,则△ACD的面积减去△OCD的面积等于△BCD的面积减去△OCD的面积,即△AOD和△BOC的面积相等.【解析】∵E、F是AC,CB的中点,∴EF是△ABC的中位线,∴EF=12AB,∵EF=22m,∴AB=44m,故答案为44.7.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.8.【解析】(1)作AM⊥BC于M,如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=12BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5–t,∵CE=CQ–QE=2t–2,∴5–t=2t–2,解得:t=73,BQ=BC–CQ=10–2×71633;(2)存在,t=4;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10–2t+2,解得:t=4,∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4.【解析】如图,在平行四边形ABCD中,AO=CO=5,BO=DO=3,∴2<AB<8.故选C.10.【答案】A【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°–∠B=180°–45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD–∠EAF=75°.故选A.11.【答案】D【解析】∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD.∴①正确;∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∴②正确;∵∠A=∠ABD,四边形ABCD是平行四边形,∴AD=BD=BC,∴∠BDC=∠BCD,∵AD∥BC,∴∠ADB=∠DBC,∵∠ADC=∠ADB+∠BDC,∴∠ADC=∠DBC+∠BCD,∴∠ADC–∠DCE=∠DBC+ ∠BCD–∠DCE=∠DBC+∠BCF,∵∠DFC=∠DBC+BCF,∴∠DFC=∠ADC–∠DCE;∴③正确;∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED= S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴④正确;综上得①②③④都正确,故选D.12.【答案】B【解析】∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=12 AB,即线段MN的长度不变,故①正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故②正确;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故③错误;∠APB的大小点P的移动而变化,故④错误.直线MN,AB之间的距离不随点P的移动而变化,故⑤正确;综上所述,随点P的移动而不变化的是①②⑤.故选B.13.【答案】9【解析】∵将△ABC沿AB方向向右平移到△DEF,∴四边形ADFC是平行四边形,四边形ACFB是是梯形.∵∠ACB =90°,AC =3,BC =4,∴22345AB =+=.∵点D 是边AB 的中点,∴AD =BD =15522⨯=,∴CF =AD =12AB 52=, 设AB 边上的高为x .∵AB =5,AC =3,BC =4,AB 边上的高为x ,∴12AC ·BC =12AB ·x ,∴125x =.∴S 梯形ACFB =1512(5)9225⨯+⨯=. 14.【答案】1∶3【解析】如图,作EF AD ∥,M 是DE 的中点,则△DMN ≌△EMF ,得MN =MF ,E 是AC 的中点,则FC =NF ,所以13MF MC =,得13FEM CEMS S =△△,得:DMN CEM S S △△=1∶3.16.【答案】D【解析】∵AC =4 cm ,若△ADC 的周长为13 cm ,∴AD +DC =13-4=9(cm ).又∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∴平行四边形的周长为2(AB +BC )=18 cm .故选D . 17.【答案】B【解析】∵AD BC ∥,∴ADB DBC ∠=∠,由折叠可得ADB BDF ∠=∠,∴DBC BDF ∠=∠,又∵40DFC ∠=︒,∴20DBC BDF ADB ∠=∠=∠=︒,又∵48ABD ∠=︒,∴ABD △中,1802048112A ︒︒-︒∠=-=︒,∴112E A ∠∠==︒,故选B .18.【答案】C【解析】A 、由AD BC ∥,AB CD ∥可以判断四边形ABCD 是平行四边形,故本选项不符合题意; B 、由AB CD ∥,AB CD =可以判断四边形ABCD 是平行四边形,故本选项不符合题意; C 、由AD BC ∥,AB DC =不能判断四边形ABCD 是平行四边形,故本选项符合题意;D 、由AB DC =,AD BC =可以判断四边形ABCD 是平行四边形,故本选项不符合题意,故选C . 19.【答案】C【解析】当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形,故选C . 20.【答案】B【解析】(1)①②,利用两组对边平行的四边形是平行四边形判定; (2)③④,利用两组对边相等的四边形是平行四边形判定;(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定,共4种组合方法,故选B . 21.【答案】B【解析】如图,连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC =3:1,BE =OB ,AF ∥OE ,∴S △OBF =S △AOB =m ,S △OBC =13m ,S △AOC =23m ,∴S △AOB ∶S △AOC ∶S △BOC =m ∶23m ∶13m =3∶2∶1,故选B . 22.【答案】B【解析】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.23.【答案】3【解析】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=162=3 cm,故答案为:3.24.【答案】14【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为:14.25.【答案】14【解析】∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.26.【答案】10【解析】∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7,∵由作图可知,MN 是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10,故答案为:10.27.【答案】10【解析】∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=2,由折叠,∠DAC=∠EAC,∵∠DAC=∠ACB,∴∠ACB=∠EAC,∴OA=OC,∵AE过BC的中点O,∴AO=12BC,∴∠BAC=90°,∴∠ACE=90°,由折叠,∠ACD=90°,∴E、C、D共线,则DE=4,∴△ADE的周长为:3+3+2+2=10,故答案为:10.28.【解析】∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴OE=OF.29.【解析】∵ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,EAO FCO AO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF.31.【解析】∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,B DEF BC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.32.【解析】在ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,AB CDA C AF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CDE(SAS),∴∠ABF=∠CDE.33.【解析】如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,ABC DEF BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.34.【解析】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,AEB CFDBAE DCF AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴得△ABE≌△CDF(AAS),∴AE=CF.35.【解析】∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C , ∴∠E =∠F , 又∵BE =DF , ∴AD +DF =CB +BE , 即AF =CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CEH ≌△AFG , ∴CH =AG .36.【解析】(1)∵E 是AB 边上的中点,∴AE BE =, ∵AD BC ∥, ∴ADE F ∠=∠,在ADE △和BFE △中,ADE F ∠=∠,DEA FEB ∠=∠,AE BE =, ∴ADE △≌BFE △, ∴AD BF =.(2)如图,过点D 作DM AB ⊥于点M ,∵AB ∥DC ,∴DM 同时也是平行四边形ABCD 的高, ∴11113282244AED S AB DM AB DM =⋅⋅=⋅=⨯=△, ∴32824EBCD S =-=四边形.37.【解析】(1)∵四边形ABCD 是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.38.【解析】(1)∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥F C.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25-AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.。
2022年第五章 平行四边形测试题及答案

一、选择题(每小题3分,共36分)1.已知一个正多边形的一个外角为36°,则这个正多边形的边数是( D )A.7B.8C.9D.102.如图所示,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线的和是( C )第2题图A.18B.28C.36D.463.顺次连接平面上A,B,C,D四点得到一个四边形,从①AB∥CD;②BC=AD;③∠A=∠C;④∠B=∠D中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有( C )A.5种B.4种C.3种D.1种4.如图所示,E是▱ABCD的边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是( C )第4题图A.∠ABD=∠DCEB.DF=CFC.∠AEB=∠BCDD.∠AEC=∠CBD5.如图所示,▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,那么▱ABCD的面积为( B )第5题图A.60 cm2B.30 cm2C.20 cm2D.16 cm26.如图所示,点D,E 分别是△ABC 的边AB,AC 的中点,求证:DE ∥BC,且DE=12BC.第6题图证明:延长DE 到点F,使EF=DE,连接FC,DC,AF,又∵AE=EC,∴四边形ADCF 是平行四边形.以下是排序错误的证明过程:①∴DF BC;②∴CF AD,即CF BD;③∴四边形DBCF 是平行四边形;④∴DE ∥BC,且DE=12BC.则正确的证明顺序应是( A )A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④7.如图所示,在△ABC 中,D,E,F 分别是BC,AC,AD 的中点,若△ABC 的面积是40,则四边形BDEF 的面积是( C )第7题图A.10B.12.5C.15D.208.如图所示,将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB 与正五边形的边DE 在同一条直线上,则∠COF 的度数是( C )第8题图A.74°B.76°C.84°D.86° 9.如图所示,在▱ABCD 中,对角线AC,BD 相交于点O,BD=2AD,E,F,G 分别是OC,OD,AB 的中点,有下列结论:①BE ⊥AC;②四边形BEFG 是平行四边形;③EG=GF;④EA 平分∠GEF.其中正确的是( B )第9题图A.①②③B.①②④C.①③④D.②③④10.如图所示,在平行四边形ABCD中,∠B=60°,AB⊥AC,AC的垂直平分线交AD于点E,△CDE的周长是15,则平行四边形ABCD的面积为( D )第10题图A.25√32B.40C.50D.25√311.如图所示,在平行四边形ABCD中,AB=6 cm,AD=10 cm,点P在AD边上以每秒1 cm的速度从点A向点D运动,点Q在BC边上,以每秒 4 cm 的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止运动(同时点Q也停止运动),在运动以后,以P,D,Q,B四点为顶点组成的四边形为平行四边形的有( C )第11题图A.1次B.2次C.3次D.4次12.(2021嘉兴)如图所示,在△ABC中,∠BAC=90°,AB=AC=5,点D在AC上,且AD=2,点E是AB上的动点,连接DE,点F,G分别是BC和DE的中点,连接AG,FG,当AG=FG时,线段DE的长为( A )第12题图A.√13B.5√22C.√412D.4二、填空题(每小题3分,共18分)13.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线有14 条.14.(2020金华)如图所示,平移图形M与图形N可以拼成一个平行四边形,则图中α的度数是30°.第14题图15.(2021临沂)在平面直角坐标系中,▱ABCD的对称中心是坐标原点,顶点A,B的坐标分别是(-1,1),(2,1),将▱ABCD沿x轴向右平移3个单位长度,则顶点C的对应点的坐标是(4,-1) .16.如图所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长.一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B两点的点C,找到AC,BC的中点D,E.若测得DE的长为8 m,则A,B两点间的距离为16 m.第16题图17.如图所示,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为.E,AB=2,BD=4√2,AC=4,则AE的长为4√55第17题图18.(2020天津)如图所示,▱ABCD的顶点C在等边三角形BEF的边BF 上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为 1.5 .第18题图三、解答题(共46分)19.(6分)请根据下面x与y的对话解答下列各小题.x:我和y都是多边形,我们俩的内角和相加的结果为1 440°.y:x的边数与我的边数之比为1∶3.(1)求x与y的外角和相加的度数;(2)分别求出x与y的边数;(3)试求出y共有多少条对角线.解:(1)360°+360°=720°.(2)设x的边数为n,则y的边数为3n.由题意,得180×(n-2)+180×(3n-2)=1 440,解得n=3,∴3n=9,∴x与y的边数分别为3和9.(3)∵12×9×(9-3)=27,∴y共有27条对角线.20.(8分)如图所示,在四边形ABCD中,AD=BC,点O是对角线AC的中点,点E是BC边上一点,连接EO并延长交AD于点F,交BA的延长线于点G,且OE=OF.(1)求证:四边形ABCD是平行四边形;(2)若∠D=63°,∠G=42°,求∠GEC的度数.(1)证明:∵点O是对角线AC的中点,∴OA=OC.在△AOF和△COE中,{OA=OC,∠AOF=∠COE, OF=OE,∴△AOF≌△COE(SAS),∴∠OAF=∠OCE,∴AD∥BC.又∵AD=BC,∴四边形ABCD是平行四边形.(2)解:由(1),得四边形ABCD是平行四边形,∴∠B=∠D=63°,∴∠GEC=∠B+∠G=63°+42°=105°.21.(10分)如图所示,点B,E分别在AC,DF上,AF分别交BD,CE于点M,N,∠A=∠F,∠C=∠D.(1)求证:四边形BCED是平行四边形;(2)已知DE=3,连接BN,若BN平分∠DBC,求CN的长.(1)证明:∵∠A=∠F,∴DF∥AC,∴∠C=∠FEC.又∵∠C=∠D,∴∠FEC=∠D,∴DB∥EC,∴四边形BCED 是平行四边形.(2)解:∵BN 平分∠DBC,∴∠DBN=∠CBN.∵BD ∥EC,∴∠DBN=∠BNC,∴∠CBN=∠BNC,∴CN=BC.又∵BC=DE=3,∴CN=3.22.(10分)如图所示,在四边形ABCD 中,对角线AC,BD 交于点O,E,F 分别是AB,CD 的中点,且AC=BD.求证:OM=ON.证明:如图所示,取AD 的中点G,连接EG,FG.∵G,F 分别为AD,CD 的中点,∴GF 是△ACD 的中位线,∴GF=12AC,GF ∥AC. 同理,得GE=12BD,GE ∥BD.∵AC=BD,∴GF=GE,∴∠GFN=∠GEM.又∵EG ∥OM,FG ∥ON,∴∠OMN=∠GEM,∠GFN=∠ONM,∴∠OMN=∠ONM,∴OM=ON.23.(12分)分别以▱ABCD(∠CDA ≠90°)的三边AB,CD,DA 为斜边作等腰直角三角形△ABE,△CDG,△ADF.(1)如图①所示,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF 与EF 的关系.(只写结论,不需证明)(2)如图②所示,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明 理由.解:(1)GF⊥EF,GF=EF.(2)GF⊥EF,GF=EF成立.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠DAB+∠ADC=180°.∵△ABE,△CDG,△ADF都是等腰直角三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=∠DAF=45°, ∴∠BAE+∠DAF+∠EAF+∠ADF+∠FDC=180°,∴∠EAF+∠CDF=45°.∵∠CDF+∠GDF=45°,∴∠FDG=∠EAF,∴△GDF≌△EAF(SAS),∴EF=FG,∠EFA=∠DFG,∴∠EFA+∠GFA=∠GFD+∠GFA=90°,∴∠GFE=90°,∴GF⊥EF,GF=EF.。
初二平行四边形练习题含答案

初二平行四边形练习题含答案本篇文章将为初二学生提供一些关于平行四边形的练习题,并附带答案,帮助学生巩固对平行四边形的理解和应用。
以下是一些练习题,希望对同学们有所帮助。
练习题一:已知平行四边形ABCD中,点E、F分别为AB、CD的中点。
若AE的长度为8cm,求线段EF的长度。
解答:由平行四边形的性质可知,连结AC和BD两线段的中点为G,那么EG = GF。
由于AE的长度为8cm,AB和CD平行,所以AC的长度为16cm。
根据三角形EGC和GFC的相似性,可得EF与GF之比等于AC与CG之比,即EF/GF = AC/CG。
由于AC的长度为16cm,而CG的长度为8cm(CG为AC的中点),所以EF/GF = 16/8,即EF/GF = 2。
因此,EF的长度为GF的2倍,即EF = 2 * GF。
由于EG= GF,所以EF = 2 * EG。
代入已知条件,得到EF = 2 * 8 = 16。
因此,线段EF的长度为16cm。
练习题二:在平行四边形EFGH中,已知EF的长度为10cm,FG的长度为8cm,角EFG的度数为120°,求线段GH的长度。
解答:由平行四边形的性质可知,EF与GH的长度相同,FG与EH 的长度相同,且角EFG与角HGE互补(即两个角的度数之和为180°)。
已知EF的长度为10cm,FG的长度为8cm,所以GH的长度也为8cm。
又已知角EFG的度数为120°,根据平行四边形内角和定理,可得角HGE的度数为180° - 120° = 60°。
因此,线段GH的长度为8cm。
练习题三:已知平行四边形IJKL中,IJ的长度为12cm,KL的长度为20cm,角KJL的度数为110°,求角KIL的度数。
解答:由平行四边形的性质可知,角IJK与角KJL互补(即两个角的度数之和为180°),角IJK与角KIL互补。
已知角KJL的度数为110°,所以角IJK的度数为180° - 110° = 70°。
平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F 为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB 的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交AD.于点N,求证:MN∥AD且MN=1213.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm 15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F 分别为AB,CD的中点,EF=1cm,那么对角线BD的长度是多少?你是怎样得到的?19.如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•(BC-AC).试说明:(1)DE∥BC.(2)DE=12开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH :S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)×5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//1AB,即AB=2OF.212.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12AC.同理,GH//12AC.∴EF//GH,∴四边形EFGH为平行四边形.16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF =12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.=cm).19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。
八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。
平行四边形综合练习附答案

平行四边形综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.2.如图,平行四边形ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE ,则AB的长为()6cm【答案】D【解析】【分析】根据平行四边形的性质,可得出点O 平分AC ,则OE 是三角形ABC 的中位线,则AB =2OE ,继而求出答案.【详解】解:∵四边形ABCD 为平行四边形,∴AO =CO ,∵点E 是CB 的中点,∴OE 为△ABC 的中位线,∴AB =2OE ,∵OE =6cm ,∴AB =12cm .故选:D .【点睛】本题考查了平行四边形的性质和三角形的中位线定理,关键是根据平行四边形的性质得出OE 为△ABC 的中位线.3.如图,点P 是矩形ABCD 的对角线上一点,过点P 作EF //BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 【答案】A【解析】【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形,∵ADC ABC S S =△△,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM =AE =1,PF =NC =3, ∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠C C .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC【答案】C【解析】【详解】试题分析:根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A ,不能,只能判定为矩形;B ,不能,只能判定为平行四边形;C ,能;D ,不能,只能判定为菱形.故选C .5.如图,ABC ∆中,DE BC ∥,EF AB ∥,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .BE 平分ABC ∠B .AD BD =C .BE AC ⊥D .AB AC =【答案】A【解析】【分析】 当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分ABC ∠时,四边形DBFE 是菱形,理由:∵DE BC ∥,∴DEB EBC ∠=∠,∵EBC EBD ∠=∠,∴EBD DEB ∠=∠,∴BD DE =,∵DE BC ∥,EF AB ∥,∴四边形DBFE 是平行四边形,∵BD DE =,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选A.【点睛】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 6.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为( )A .16B .8C .4D .1【答案】A根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.【详解】解:设两对角线长分别是:a ,b . 则(12a )2+(12b )2=22,故有a 2+b 2=16.故选:A .【点睛】本题主要考查了菱形的性质和勾股定理,菱形被两个对角线平分成四个全等的直角三角形,因为菱形的这个性质,使得菱形的题目一般都会和勾股定理结合起来,同学们要注意掌握.7.如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A 2B 21+C 51+D .43【答案】A【解析】 【分析】 先判断出∠ADE =45°,进而判断出AE =AD ,利用勾股定理即可得出结论.【详解】解:由折叠补全图形如图所示,∵四边形ABCD 是矩形,∴∠ADA '=∠B =∠C =∠A =90°,AD =BC =1,CD =AB ,由第一次折叠得:∠DAE =∠A =90°,∠ADE =12∠ADC =45°,∴∠AED =∠ADE =45°,∴AE =AD =1,在Rt △ADE 中,根据勾股定理得,DE 2AD 2,由第二次折叠可知,DC DE =【点睛】本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.8.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.5【答案】A【解析】【分析】 根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒,∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.二、填空题9.正方形是有一组邻边_______,并且有一个角是_______的平行四边形,因此它既是______又是________.【答案】 相等 直角 矩形 菱形【解析】【分析】根据正方形的定义和性质填空即可.【详解】 正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.故答案为:相等,直角,矩形,菱形【点睛】本题考查了正方形的定义,解题关键是明确正方形的定义:正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.10.如图,在矩形ABCD 中,5AB =,4BC =,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,则FC =______【答案】32【分析】在Rt△ADE中,AD2+DE2=AE2,可得DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,可得(4-x)2=22+x2,解方程即可.【详解】解∵△ABF≌△AEF,∴AE=AB=5,在矩形ABCD中,AD=BC=4,在Rt△ADE中,AD2+DE2=AE2,∴DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,即(4-x)2=22+x2,8x=12,x=32,∴FC=32.故此答案为32.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.11.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.【答案】8【解析】【分析】形ABED 是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得2AD BE ==,4DF AC ==,90C DFE ∠=∠=︒∴四边形ACFD 是矩形//AD CF ∴//AD BE ∴∴四边形ABED 是平行四边形(一组对边平行且相等的四边形是平行四边形) 则四边形ABED 的面积为428DF BE ⋅=⨯=故答案为:8.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.12.如图,ACE ∆是以ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,33)-,则D 点的坐标是_____.【答案】(5,0)【解析】【分析】设CE 和x 轴交于H ,由对称性可知63CE =63AC CE ==根据勾股定理即可求出AH 的长,进而求出AO 和DH 的长,所以OD 可求,又因为D 在x 轴上,纵坐标为0,问题得解.【详解】解:点C 与点E 关于x 轴对称,E 点的坐标是(7,33)-, C ∴的坐标为(7,33),33CH ∴=3CE =63AC ∴=,9AH ∴=,7OH =,2AO DH ∴==,5OD ∴=,D ∴点的坐标是(5,0),故答案为:(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用,解题的关键是综合应用以上知识点.13.如图,在矩形ABCD 中,6AB =,8AD =,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E ,F ,则PE PF +的值为______.【答案】245【解析】【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且互相平分求出OA 、OD ,然后根据S △AOD =S △AOP +S △DOP 列方程求解即可.【详解】解:如图,连接OP ,∵AB=6,AD=8,∴2222.6810BD AB AD ++=,∵四边形ABCD 是矩形,∵S△AOD=S△AOP+S△DOP,∴12×12×6×8=12×5•PE+12×5•PF,解得PE+PF=245.故答案为:245.【点睛】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.【答案】(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则182CF CD,==过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,110,2MC OA==∴在Rt△CMF中,2222108 6.MF MC CF=-=-=∴点C的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.三、解答题15.如图是某区部分街道示意图,其中AB AF⊥,E、D分别是FA和FG的中点,点C、D、E在一条直线上,点A、G、B在一条直线上,//BC FG.从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B D A E⇒⇒⇒,且长度为5公里,路线2是B C F E⇒⇒⇒,求路线2的长度.【答案】5公里【解析】【分析】证明四边形BCDG是平行四边形,得到DG=CB,再证四边形BCFD是平行四边形,根据平行四边形的性质计算,得到答案.【详解】解:∵E、D分别是FA和FG的中点,∴AB∥DE,∵BC∥GF,∴四边形BCDG是平行四边形,∴DG=CB.∵FD=DG,∴CB=FD.又∵BC ∥DF ,∴四边形BCFD 是平行四边形,∴CF =BD ,∵AB ∥DE ,AB AF ⊥,FE =AE ,∴CE 垂直平分AF ,∴AE =FE ,FD =DA ,∴BC =DA ,∴路线2的长度:BC +CF +FE =AD +BD +AE =5(公里).【点睛】本题考查的是平行四边形的判定和性质、线段垂直平分线的性质,掌握平行四边形的判定定理和性质定理是解题的关键.16.已知:如图,ABCD 中,5AB =,3BC =.(1)作DAB ∠的角平分线,交CD 于点E (用直尺和圆规作图,不写作法,保留作图痕迹);(2)求CE 的长.【答案】(1)见解析;(2)CE 的长为2【解析】【分析】(1)根据尺规作图作DAB ∠的平分线即可;(2)根据平行四边形的性质和角平分线的定义,求出DE =DA =BC =3,再求出CE 即可.【详解】解:如图,(1)AE 即为∠DAB 的角平分线;(2)∵AE 为∠DAB 的角平分线,∴∠DAE =∠BAE ,在▱ABCD中,CD∥AB,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DE=DA=BC=3,∵DC=AB=5,∴CE=CD﹣DE=2.答:CE的长为2.【点睛】当平行线遇上角平分线时,通过角的转化,可以得到等腰三角形,这是初中几何一个很重要的数学模型,要深刻领会.17.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF =BD .∴AF =DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF =DC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD =DC .∴平行四边形ADCF 是菱形.18.如图,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长10cm .求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.【答案】(1)24cm AC =;(2)2120cm【解析】【分析】(1)根据菱形的对角线互相垂直平分,可利用勾股定理求出AE 的长,从而求出AC 的长;(2)根据菱形的面积公式:两条对角线乘积的一半即可求得面积.【详解】解:(1)∵四边形ABCD 是菱形,AC 与BD 相交于点E ,∴90AED ∠=︒(菱形的对角线互相垂直),11105(cm)22DE BD ==⨯=(菱形的对角线互相平分). ∴222213512(cm)AE AD DE =--=.∴221224(cm)AC AE ==⨯=(菱形的对角线互相平分);(2)ABD BDC ABCD S S S =+菱形1122BD AE BD CE =⋅+⋅ 1()2BD AE CE =⋅+ 12BD AC =⋅ 110242=⨯⨯ 2120(cm )=.【点睛】本题主要考查了菱形的性质、菱形的面积公式、勾股定理,熟知菱形的性质是解本题的关键.19.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F .(1)求证:△ADE ≌△FCE .(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.【答案】(1)证明过程见解析;(2)8【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AB ∥CD ,证出∠DAE =∠F ,∠D =∠ECF ,由AAS 证明△ADE ≌△FCE 即可;(2)由全等三角形的性质得出AE =EF =3,由平行线的性质证出∠AED =∠BAF =90°,由勾股定理求出DE ,即可得出CD 的长.【详解】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAE =∠F ,∠D =∠ECF ,∵E 是▱ABCD 的边CD 的中点, ∴DE =CE ,在△ADE 和△FCE 中,DAE F D ECF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS );(2)∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE=2222-=-=4,AD AE53∴CD=2DE=8【点睛】考点:(1)平行四边形的性质;(2)全等三角形的判定与性质20.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为() A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图2【答案】(1)C;(2)①证明见解析;1010【解析】【详解】试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AE E′D的形状为矩形,故选C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:∵△AEF ,将它平移至△DE′F′,∴AF ∥DF′,AF=DF′,∴四边形AFF′D 是平行四边形.在Rt △AEF 中,由勾股定理,得AF=2222=34++AE EF =5,∴AF=AD=5,∴四边形AFF′D 是菱形;②连接AF′,DF ,如图3:在Rt △DE′F 中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF=2222=13=10''++E D E F ,在Rt △AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′=2222=39'++AE F E =310. 考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.21.如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【答案】证明见解析.【解析】【分析】先用SAS 证明△ADF ≌△CDE ,得∠DAF=∠DCE ,再用AAS 证明△AGE ≌△CGF 即可.【详解】∵四边形ABCD 是正方形,∴∠ADF=∠CDE=90°,AD=CD .∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中,AD AD ADF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,GAE GCF AGE CGF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△CGF (AAS ),∴AG=CG .22.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB ,AF=AC ,∠EAF=∠BAC ,则∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,利用AB=AC 可得AE=AF ,得出△ACF ≌△ABE ,从而得出BE=CF ;(2)由菱形的性质得到DE=AE=AC=AB=1,AC ∥DE ,根据等腰三角形的性质得∠AEB=∠ABE ,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE 为等腰直角三角形,所以22BD=BE ﹣DE 求解.【详解】(1)∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,在△ACF 和△ABE 中,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ACF ≌△ABE∴BE=CF.(2)∵四边形ACDE 为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC ∥DE ,∴∠AEB=∠ABE ,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴BE=2AC=2,∴BD=BE ﹣DE=21-.考点:1.旋转的性质;2.勾股定理;3.菱形的性质. 23.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AB DE =;(2)当ABC 满足条件__________时,四边形ADCE 是矩形.【答案】(1)见解析;(2)AB =AC 或 ABC ACB ∠=∠【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可; (2)根据矩形的判定解答即可.【详解】(1)∵AD 是ABC 的中线,∴12BD BC =, ∵12AE BC =, ∴AE BD =,∵//AE BC ,∴四边形ABDE 是平行四边形,∴AB DE =(2)当△ABC 满足AB =AC 或ABC ACB ∠=∠时,四边形ADCE 是矩形, 11,,22BC BD AE CD BC =∴== ∴AE =CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形,∵AB =DE ,∴当AB =AC 或ABC ACB ∠=∠时,AC =DE ,∴四边形ADCE 是矩形.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.24.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG =5172,请直接写出此时DE 的长.【答案】(1)5(2109(3)52或152. 【解析】【分析】 (1)如图1,连接CG ,证明△CBD ≌△CBG (SAS ),可得G ,C ,D 三点共线,利用勾股定理可得AG 的长;(2)如图2,作辅助线,构建全等三角形,证明△BCE ≌△BKG ,可得AK 和KG 的长,利用勾股定理计算AG 的长;(3)分三种情况:①当点E在边CD的延长线上时,如图3,同(2)知△BCE≌△BKG (AAS),BC=BK=5,根据勾股定理可得KG的长,即可CE的长,此种情况不成立;②当点E在边CD上;③当点E在DC的延长线上时,同理可得结论.【详解】(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG=22+=22AD DG+=55,510故答案为:55;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG=22103+=109;(3)分三种情况:①当点E在CD的延长线上时,如图3,由(2)知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,此种情况不成立;②当点E在边CD上时,如图4,由(2)知△BCE≌△BKG(AAS),∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,∴DE=CD-CE=52;③当点E在DC的延长线上时,如图5,同理得CE=KG=52,∴DE=5+52=152;综上,DE的长是52或152.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
初中数学 平行四边形练习题(含答案)

绝密★启用前《平行四边形》培优专题学校:___________姓名:___________班级:___________考号:___________一.解答题(共40小题)1.附加题:(成绩只作参考,不计入总分)如图:正方形ABCD中内有一E,连接AE,BE,使∠EAB=∠EBA=15°,证明:(1)DE=CE;(2)△CDE是正三角形.2.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.3.已知,如图,在正方形ABCD中,O是对角线的交点,AF平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E.求证:BE=2OG.4.如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PE⊥AC,E、F分别是垂足,求PE+PF的长.5.在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE 交DP于点F,连接BF,FC.求证下列结论:①FB=AB;②CF⊥EF,FC=EF.6.平行四边形ABCD中,AB=2BC,BE⊥AD于点E,F是DC中点.求证:∠EFC=3∠DEF.7.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.8.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?9.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.10.菱形ABCD中,F是对角线AC的中点,过点A作AE⊥BC垂足为E,G为线段AB上一点,连接GF并延长交直线BC于点H.(1)当∠CAE=30°时,且CE=√3,求菱形的面积;(2)当∠BGF+∠BCF=180°,AE=BE时,求证:BF=(√2+1)GF.11.在▱ABCD中,E,F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)▱ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;(3)▱ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).12.如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点,求证:EF=12AB.13.边长为a的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)若点F在边BC上(如图);①求证:CE=EF;②若BC=2BF,求DE的长.(2)若点F在CB延长线上,BC=2BF,请直接写出DE的长.14.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.15.(1)如图1,已知DE∥BC,∠D:∠DBC=2:1,∠1=∠2.求∠DEB的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的.在探索中,有人曾利用过如图2所示的图形,其中,ABCD是长方形(AD ∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=13∠ACB吗?16.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.17.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB =AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG.18.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.19.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2√2,求EB的长.20.如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE.F为AB上的一点,且BF=DE,连接FC.(1)若DE=1,CF=2√2,求CD的长;(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=60°,求证:AF+CE=√3AC.21.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:求证:(1)△ABE是等边三角形;(2)△ABC≌△AED;(3)S△ABE=S△CEF.22.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)△ABC满足什么条件时,四边形ADCF是矩形?并证明你的结论.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.24.在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD的中点,连接EF,试证明EF⊥BD.25.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE =度.26.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.27.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=8,DC=6,AD=10.动点P 从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)若四边形ABQP为平行四边形,求运动时间t.(2)当t为何值时,三角形BPQ是以BQ或BP为底边的等腰三角形?28.如图,在▱ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.四边形AFCE是菱形吗?请说明理由.29.如图,在矩形ABCD中,BC=24cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm,(1)当x为何值时,点P、N重合;(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.30.如图,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.31.正方形ABCD中,E、F是AD上的两个点,AE=DF,连CF交BD于点M,连AM交BE于点N,连结DN.如果正方形的边长为2.(1)求证:BE⊥AM;(2)求DN的最小值.32.如图,已知△ABD、△BCE、△ACF都是等边三角形.(1)试判断四边形ADEF的形状并说明理由.(2)当△ABC满足,四边形ADEF是矩形(不需证明).(3)当△ABC满足,四边形ADEF是菱形(不需证明).(4)当△ABC满足,四边形ADEF不存在(不需证明).33.如图,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…S8,若S2=2,S7=3,S8=8,则S3的值为.34.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF ⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.35.已知:如图,四边形ABCD中,∠ABC=90°,∠ADC=90°,点E为AC中点,点F 为BD中点.求证:EF⊥BD.36.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)37.如图正方形ABCD的边长为12,E为CD上一点(CE<DE),P为AD上一点,且∠PBE =45°,PE=10,过B作BF⊥PE于F.(1)求证:BF=CD;(2)求CE的长.38.如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL=14AE.39.如图所示.在四边形ABCD中,CD>AB,AB与CD不平行,E,F分别是AC,BD的中点.求证:EF>12(CD−AB).40.如图,四边形ABCD中,对角线AC、BD相交于点O,O为AC、BD的中点,AB=10,AC=16,BD=12.(1)四边形ABCD是什么特殊的四边形?请证明;(2)点P在AO上,点Q在DO上,且AP=2OQ.若PQ=BQ,求AP的长.《平行四边形》培优专题参考答案与试题解析一.解答题(共40小题)1.附加题:(成绩只作参考,不计入总分)如图:正方形ABCD中内有一E,连接AE,BE,使∠EAB=∠EBA=15°,证明:(1)DE=CE;(2)△CDE是正三角形.【分析】(1)由正方形的性质可以得出∠DAB=∠ABC=90°,由∠EAB=∠EBA=15°,可以得出∠DAE=∠EBC=75°及AE=BE,从而可以证明△AED≌△BEC,然后就可以得出结论.(2)以AB为边作正三角形ABM,连接ME,可以得到∠EAM=∠EBM=75°,利用三角形全等可以得出∠AEM=∠BEM=75°,可以得出ME=MB,再证明△BME≌△BCE,可以得出CE=ME,得到EC=BC=CD.从而得出结论.【解答】解:(1)∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵∠EAB=∠EBA=15°,∴∠DAE=∠EBC=75°,AE=BE,∴△AED≌△BEC,∴DE=CE.(2)以AB为边作正三角形ABM,连接ME,如图所示:∵∠EAB=∠EBA=15°,∴AE=BE,又∠EAM=∠EBM=75°,∵ME=ME,∴△MAE≌△MBE,∴∠MEB=∠MEA=75°,∴EM=MB=AB,∵∠EBC=75°,∴∠CBE=∠EBM,∴△BME≌△BCE,∴CE=ME=CB=DC,同理:DE=EM=CB=DC,∴CE=DE=CD,∴△CDE是正三角形.【点评】本题考查了正方形的性质,全等三角形的判定及性质,等边三角形的判定和等腰三角形的性质的运用.2.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.【分析】作∠BAC的平分线交BC于M,交DC的延长线于F,进而求证△ABM≌△ANM,进而可得△ABN≌△ADQ,Rt△PMN≌Rt△PMC,△ABM≌△ADQ进而可得出结论.【解答】解:作∠BAP的平分线交BC于M,作MN⊥AP,垂足为N,连接MP∵AF是∠BAP的平分线,MN⊥AP,∴∠BAM=∠MAP,∠B=∠ANM=90°,AM=AM,∴△ABM≌△ANM(AAS),∴MB=MN,AB=AN,∵AP=PC+CB=PC+AB,又AP=AN+NP=AB+NP∴NP=PC,∵PM=PM,∴Rt△PMN≌Rt△PMC(HL),∴MN=MC,∴MB=MC,∴△ABM≌△ADQ(SAS),∴∠QAD=∠BAM,∴∠BAP=2∠QAD【点评】本题考查了正方形各边长相等的性质,全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中求证△ABM≌△ADQ是解题的关键.3.已知,如图,在正方形ABCD中,O是对角线的交点,AF平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E.求证:BE=2OG.【分析】作OM∥AB交DE于M.首先证明OM是△DEB的中位线,再证明OG=OM即可解决问题.【解答】解:作OM∥AB交DE于M.∵四边形ABCD是正方形,∴OB=OD,∵OH∥BE,∴EM=DM,∴BE=2OM,∵∠OAD=∠ADO=∠BAC=45°,∵F A平分∠BAC,∴∠EAH=22.5°,∵AF⊥DE,∴∠AHE=∠AHD=90°,∴∠AEH=67.5°,∵∠ADE+∠AED=90°,∴∠ADE=22.5°,∴∠OGD=∠GAD+∠ADE=67.5°,∵∠AEH=∠OME=67.5°,∴∠OGM=∠OMG,∴OG =OM ,∴BE =2OG .【点评】本题考查正方形的性质、三角形的中位线定理、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造三角形中位线解决问题,属于中考常考题型.4.如图,在矩形ABCD 中,已知AD =12,AB =5,P 是AD 边上任意一点,PE ⊥BD ,PE⊥AC ,E 、F 分别是垂足,求PE +PF 的长.【分析】连结OP ,由S △AOP +S △DOP =15,可得12×OA ×PF +12×OD ×PE =15.由此即可解决问题.【解答】解:连结OP .由矩形ABCD ,AD =12,AB =5.∴AC =BD =2OA =2OB =13.∴OA =OD =6.5.而S 矩形=12×5=60.∴S △AOD =14×60=15.∴S △AOP +S △DOP =15.即12×OA ×PF +12×OD ×PE =15. ∴12×6.5×(PE +PF )=15.∴PE +PF =6013. 【点评】本题考查矩形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.在正方形ABCD 中,P 为AB 的中点,BE ⊥PD 的延长线于点E ,连接AE 、BE 、F A ⊥AE交DP 于点F ,连接BF ,FC .求证下列结论:①FB =AB ;②CF ⊥EF ,FC =EF .【分析】(1)根据已知和正方形的性质推出∠EAB=∠DAF,∠EBA=∠ADP,AB=AD,证△ABE≌△ADF即可;取EF的中点M,连接AM,推出AM=MF=EM=DF,证∠AMB =∠FMB,BM=BM,AM=MF,推出△ABM≌△FBM,利用全等三角形的性质得出结论;(2)利用(1)中△ABM≌△FBM可得∠BAM=∠BFM,求出∠FDC=∠EBF,推出△BEF ≌△DFC,利用全等三角形的性质即可得出结论.【解答】证明:(1)∵正方形ABCD,BE⊥PD,EA⊥F A,∴AB=AD=CD=BC,∠BAD=∠EAF=90°=∠BEF,∵∠APD=∠EPB,∴∠EAB=∠DAF,∠EBA=∠ADP,∵AB=AD,在△ABE与△ADF中,{∠EAB=∠DAF AB=AD∠EBA=∠ADP,∴△ABE≌△ADF(ASA),∴AE=AF,BE=DF,∴∠AEF=∠AFE=45°,取EF的中点M,连接AM,∴AM⊥EF,AM=EM=FM,∴BE∥AM,∵AP=BP,∴AM=BE=DF,∴∠EMB=∠EBM=45°,∴∠AMB=90°+45°=135°=∠FMB,在△ABM与△FBM中,{AM=FM∠AMB=∠FMB BM=BM,∴△ABM≌△FBM(SAS),∴AB=BF;(2)∵△ABM≌△FBM,∴∠BAM=∠BFM,∵∠BEF=90°,AM⊥EF,∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,∴∠APF=∠EBF,∵AB∥CD,∴∠APD=∠FDC,∴∠EBF=∠FDC,在△BEF与△DFC中,{BE=DF∠EBF=∠FDC BF=CF,∴△BEF≌△DFC(SAS),∴CF=EF,∠DFC=∠FEB=90°,∴CF=EF且CF⊥EF.【点评】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.6.平行四边形ABCD中,AB=2BC,BE⊥AD于点E,F是DC中点.求证:∠EFC=3∠DEF.【分析】取AB中点G,连接FG交BE于O,连接FB,利用三线合一的性质可判断出△FEB 是等腰三角形,然后根据菱形及平行四边形的性质得出FO,FB是∠EFC的三等分线,继而可证得结论.【解答】证明:取AB中点G,连接FG交BE于O,连接FB,则AD∥FG,BE⊥FG,∵G是AB中点,∴O是BE中点,∴△FEB是等腰三角形(三线合一的性质),∴∠EFO=∠BFO,又∵CF=12CD=CB,∴四边形BCFG是菱形,∴∠GFB=∠CFB,∴FO,FB是∠EFC的三等分线,∴DEF=∠EFO=13∠DEF,故可得∠EFC=3∠DEF.【点评】本题考查了平行四边形及菱形的性质,作出AD的平行线FG是解答本题的关键,要求我们熟练掌握等腰三角形的三线合一性质.7.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.【分析】取OB中点M,OC中点N,根据三角形中位线定理可得到DM∥OC,DM=12OC,DN∥OB,DN=12OB,再根据直角三角形斜边上的中线的性质得到QM=12OB,PN=12OC,再根据三角形外角的性质即可推出∠QMD=∠PND,从而利用SAS判定△QMD≌△DNP,根据全等三角形的对应的边相等即可证得结论.【解答】证明:如图,取OB中点M,OC中点N,连接MD,MQ,DN,PN.∵D为BC的中点∴DM∥OC,DM=12OC,DN∥OB,DN=12OB.∵在Rt△BOQ和Rt△OCP中,QM=12OB,PN=12OC.∴DM=PN,QM=DN.∠QMD=∠QMO+∠OMD=2∠ABO+∠FOB,∠PND=∠PNO+∠OND=2∠ACO+∠EOC.∵∠ABO=∠ACO,∠FOB=∠EOC,∴∠QMD=∠PND.∴△QMD≌△DNP,∴DQ=DP.【点评】此题主要考查学生对三角形中位线定理及全等三角形的判定与性质的综合运用能力.8.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?【分析】(1)根据等腰三角形的三线合一可得出D为BC的中点,结合E、F分别为AB、AC的中点可得出DE和DF是△ABC的中位线,根据中位线的定义可得出DE∥AC、DF∥AB,即四边形AEDF是平行四边形,根据三角形中位线定义可得出DE=12AC、DF=12AB,结合AB=AC即可得出DE=DF,从而得出四边形AEDF是菱形;(2)根据中位线的定义可得出EF的长度,根据菱形的面积公式可求出菱形AEDF的面积;(3)由中位线的定义可得出EF∥BC,根据平行四边形的判定定理可得出关于t的一元一次方程,解之即可得出结论.【解答】(1)证明:∵AB=AC,AD⊥BC,∴D为BC的中点.∵E、F分别为AB、AC的中点,∴DE和DF是△ABC的中位线,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∵E,F分别为AB,AC的中点,AB=AC,∴AE=AF,∴四边形AEDF是菱形,(2)解:∵EF为△ABC的中位线,∴EF=12BC=5.∵AD=8,AD⊥EF,∴S菱形AEDF=12AD•EF=12×8×5=20.(3)解:∵EF∥BC,∴EH∥BP.若四边形BPHE为平行四边形,则须EH=BP,∴5﹣2t=3t,解得:t=1,∴当t=1秒时,四边形BPHE为平行四边形.∵EF∥BC,∴FH∥PC.若四边形PCFH为平行四边形,则须FH=PC,∴2t=10﹣3t,解得:t=2,∴当t=2秒时,四边形PCFH为平行四边形.【点评】本题考查了菱形的判定与性质、三角形的中位线、菱形的面积、等腰三角形的性质、平行四边形的判定以及解一元一次方程,解题的关键是:(1)根据三角形中位线的性质找出DE∥AC、DF∥AB;(2)牢记菱形的面积公式;(3)根据平行四边形的判定定理找出关于t的一元一次方程.9.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.【分析】(1)求出BC=BE,根据勾股定理求出BD,即可求出DE;(2)求出△FEB≌△ECD,根据全等三角形的性质得出BF=DE即可;(3)延长GE交AB于F,证△GDE∽△FBE,得出比例式,代入即可求出答案.【解答】解:(1)∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠DBC=∠BCA=∠ACD=45°,∵CE平分∠DCA,∴∠ACE=∠DCE=12∠ACD=22.5°,∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,∵∠DBC=45°,∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,∴BE=BC=√2,在Rt△ACD中,由勾股定理得:BD=√(√2)2+(√2)2=2,∴DE=BD﹣BE=2−√2;(2)∵FE⊥CE,∴∠CEF =90°,∴∠FEB =∠CEF ﹣∠CEB =90°﹣67.5°=22.5°=∠DCE ,∵∠FBE =∠CDE =45°,BE =BC =CD ,∴△FEB ≌△ECD ,∴BF =DE =2−√2;(3)延长GE 交AB 于F ,由(2)知:DE =BF =2−√2,由(1)知:BE =BC =√2,∵四边形ABCD 是正方形,∴AB ∥DC ,∴△DGE ∽△BFE ,∴DG BF =DE BE , ∴2−√2=√2√2, 解得:DG =3√2−4.【点评】本题考查了正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键,题目比较好,难度偏大.10.菱形ABCD 中,F 是对角线AC 的中点,过点A 作AE ⊥BC 垂足为E ,G 为线段AB 上一点,连接GF 并延长交直线BC 于点H .(1)当∠CAE =30°时,且CE =√3,求菱形的面积;(2)当∠BGF +∠BCF =180°,AE =BE 时,求证:BF =(√2+1)GF .【分析】(1)只要证明△ABC 是等边三角形,即可解决问题;(2)如图,连接GC ,作GM ⊥GF 交BF 于M .想办法证明△BGC 是等腰直角三角形,再证明△BGM ≌△CGF 即可解决问题;【解答】(1)解:∵四边形ABCD 是菱形,∴AB =BC ,∵AE ⊥BC ,∠EAC =30°,∴∠ACE =60°,AC =2EC =2√3,∴△ABC ,△ACD 都是等边三角形,∴S 菱形ABCD =2•S △ABC =2×√34×(2√3)2=6√3.(2)如图,连接GC ,作GM ⊥GF 交BF 于M .∵四边形ABCD 是菱形,∴BA =BC ,∵AF =FC ,∴BF ⊥AC ,∴∠BF A =90°,∵∠BGF +∠BCF =180°,∠AGF +∠BGF =180°,∴∠AGF =∠ACB ,∵∠GAF =∠CAB∴△AGF ∽△ACB ,∴AG AC =AF AB , ∴AG AF =AC AB ,∵∠CAG =∠BAF ,∴△CAG ∽△BAF ,∴∠CGA=∠BF A=90°,∵AE⊥BE,AE=BE,∴∠ABE=45°,∴∠GBC=∠GCB=45°,∴GB=GC,∵∠BGC=∠MGF,∴∠BGM=∠CGF,∵∠GBM=∠GCF,∴△BGM≌△CGF,∴BM=CF,GM=GF,FM=√2GF,∵∠AGC=90°AF=FC,∴GF=FC=BM,∴BF=BM+FM=GF+√2GF=(√2+1)GF.【点评】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.11.在▱ABCD中,E,F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)▱ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;(3)▱ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形时,通过证明有一组邻边相等,可得平行四边形EHFG是菱形;(3)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个正方形.【解答】解:(1)∵四边形ABCD 是平行四边形,∴AE ∥CF ,AB =CD ,∵E 是AB 中点,F 是CD 中点,∴AE =CF ,∴四边形AECF 是平行四边形,∴AF ∥CE .同理可得DE ∥BF ,∴四边形FGEH 是平行四边形;(2)当平行四边形ABCD 是矩形时,平行四边形EHFG 是菱形.∵四边形ABCD 是矩形∴∠ABC =∠DCB =90°,∵E 是AB 中点,F 是CD 中点,∴BE =CF ,在△EBC 与△FCB 中,∵{BE =CF∠ABC =∠DCB BC =BC,∴△EBC ≌△FCB ,∴CE =BF ,∠ECB =∠FBC ,BH =CH ,EH =FH ,平行四边形EHFG 是菱形;(3)当平行四边形ABCD 是矩形,并且AB =2AD 时,平行四边形EHFG 是正方形.连接EF .∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=12AB,这时,EF=AE=AD=DF=12AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=12AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是正方形.【点评】本题考查了平行四边形的判定与性质,菱形的判定和正方形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点,求证:EF=12AB.【分析】连接BE,根据等腰三角形三线合一的性质可得BE⊥AC,再根据直角三角形斜边上的中线等于斜边的一半证明.【解答】证明:如图,连接BE,∵在△BCD中,DB=BC,E是CD的中点,∴BE⊥CD,∵F是AB的中点,∴在Rt△ABE中,EF是斜边AB上的中线,∴EF=12 AB【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出直角三角形是解题的关键.13.边长为a的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)若点F在边BC上(如图);①求证:CE=EF;②若BC=2BF,求DE的长.(2)若点F在CB延长线上,BC=2BF,请直接写出DE的长.【分析】(1)①先利用正方形的对称性可得到∠BAE=∠BCE,然后在证明又∠BAE=∠EFC,通过等量代换可得到∠BCE=∠EFC;②过点E作MN⊥BC,垂直为N,交AD于M.依据等腰三角形的性质可得到FN=CN,从而可得到NC的长,然后可得到MD的长,在Rt△MDE中可求得ED的长;(2)先根据题意画出图形,然后再证明EF=EC,然后再按照(1)②中的思路进行证明即可.【解答】解:(1)①证明:∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.②过点E作MN⊥BC,垂直为N,交AD于M.∵CE=EF,∴N是CF的中点.∵BC=2BF,∴CNBN =14.又∵四边形CDMN是矩形,△DME为等腰直角三角形,∴CN=DM=ME,∴ED=√2DM=√2CN=√24a.(2)如图所示:过点E作MN⊥BC,垂直为N,交AD于M.∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.∴FN=CN.又∵BC=2BF,∴FC=32a,∴EN=BN=14a,∴DE=3√24a.【点评】本题主要考查的是正方形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,掌握本题的辅助线的法则是解题的关键.14.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【分析】(1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG≌Rt△DCG,可得结论;(2)证法一:如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得:EM=√2AE,得结论;证法二:如图3,作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【解答】证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,DG =DG∴Rt △DFG ≌Rt △DCG (HL ),∴GF =GC ;(2)BH =√2AE ,理由是:证法一:如图2,在线段AD 上截取AM ,使AM =AE ,∵AD =AB ,∴DM =BE ,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG =45°,∵EH ⊥DE ,∴∠DEH =90°,△DEH 是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵{DM =BE∠1=∠BEH DE =EH,∴△DME ≌△EBH ,∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM =√2AE ,∴BH =√2AE ;证法二:如图3,过点H 作HN ⊥AB 于N ,∴∠ENH =90°,由方法一可知:DE =EH ,∠1=∠NEH ,在△DAE 和△ENH 中,∵{∠A =∠ENH∠1=∠NEH DE =EH,∴△DAE ≌△ENH ,∴AE =HN ,AD =EN ,∵AD =AB ,∴AB =EN =AE +BE =BE +BN ,∴AE =BN =HN ,∴△BNH 是等腰直角三角形,∴BH =√2HN =√2AE .【点评】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.15.(1)如图1,已知DE ∥BC ,∠D :∠DBC =2:1,∠1=∠2.求∠DEB 的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的.在探索中,有人曾利用过如图2所示的图形,其中,ABCD是长方形(AD ∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=13∠ACB吗?【分析】(1)利用平行线的性质即可解决问题;(2)由AD∥CB,由此∠FCB=∠F,由∠AGC是△AGF的外角,推出∠AGC=∠GAF+∠F=2∠F,又∠ACG=∠AGC,可得∠ACB=∠ECB+∠ACG=∠F+2∠F=3∠F=3∠ECB;【解答】(1)解:如图1中,∵DE∥BC,∴∠D+∠DBC=180°,∵∠D:∠DBC=2:1,∴∠D=2∠DBC,∴2∠DBC+∠DBC=180°,即∠DBC=60°,∵∠1=∠2,∴∠1=∠2=30°,∵DE∥BC,∴∠DEB=∠1=30°.(2)解:如图2中,∵AD∥CB,∴∠FCB=∠F,∵∠AGC是△AGF的外角,∴∠AGC=∠GAF+∠F=2∠F,又∵∠ACG=∠AGC,∠ACB=∠ECB+∠ACG,=∠F+2∠F=3∠F=3∠ECB,∴∠ECB=13∠ACB.【点评】本题考查平行线的性质、矩形的性质、三角形的内角和定理、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2√5,由直角三角形性质知MN=√2OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,∴MN=√2OM=2√10.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.17.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB =AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=√2GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=√2CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH=2−AH2=√7,∴S△ABE=12AE×BH=12×4×√7=2√7;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME =∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=12BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,{∠AME=∠BNG ∠MAE=∠NBG AE=BG,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=√2NG=√2ME=√22BE,∴BE=√2GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=√2CG.【点评】本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.18.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.【分析】延长CF交AB于点G,判断出AF垂直平分CG,得到AC=AG,根据三角形中位线定理解答.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=2.【点评】本题关键是通过题目角平分线和垂线合一启发构造等腰三角形,从而构造出DF为△BCG的中位线,利用中位线定理解决问题.19.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2√2,求EB的长.【分析】(1)根据正方形的性质得到∠GAD=∠EAB,证明△GAD≌△EAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BD⊥AC,AC=BD=5√2,根据勾股定理计算即可.【解答】(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,{AC=AE∠GAD=∠EAB AD=AB∴△GAD≌△EAB,∴EB=GD;(2)∵四边形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5√2,∴∠DOG=90°,OA=OD=12BD=5√22,∵AG=2√2,∴OG=OA+AG=9√2 2,由勾股定理得,GD=2+OG2=√53,∴EB=√53.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二几何---四边形
一、选择题:
1. 梯形中位线长15cm,一条对角线把中位线分成两线段之比为2:3,则此梯形的两底长分别是( B )
(A)14cm,16cm (B)12cm,18cm (C)12cm,20cm (D)8cm,22cm
2. 下列说法不正确的是(D )
(A)正方形的对角线互相垂直且相等
(B) 对角线相等的菱形是正方形
(C)邻边相等的矩形是正方形
(D)有一个角是直角的平行四边形是正方形
3. 菱形具有而平行四边形不具有的性质是( C )
(A)对角线互相平分(B)邻角互补(C)每条对角线平分一组对角(D)对角相等
4. 有两个角相等的梯形一定是( C )
(A)等腰梯形(B)直角梯形(C)等腰梯形或直角梯形(D)以上都不对
5. 如图已知:矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=( B )
(A)30°(B)45°(C)60°(D)40°
6. 下列图形中既是轴对称图形,又是中心对称图形的是( D )
(A)平行四边形(B)等腰直角三角形(C)等边三角形(D)菱形
7. 下列语句中不一定正确的是( D )
(A)对角线相等的梯形是等腰梯形
(B)梯形最多有两个内角是直角
(C)梯形的一组对角不能相等
(D)一组对边平行的四边形是梯形
8. 下列说法正确的是( C )
(A)对角相等的四边形是矩形
(B)有一个角是直角的四边形是矩形
(C)对角互补的平行四边形是矩形
(D)三个角相等的四边形是矩形
9. 顺次连结下列四边形各边中点所得的四边形是矩形的是( D )
(A)等腰梯形(B)矩形(C)平行四边形(D)菱形
二、填空题:
1. 直角梯形一内角为120°,它的高与上底长都是√3cm,则它的腰长√3 cm、 2 cm,为中位线长_√3+1/2 cm。
2. □ABCD的周长为56cm,对角线AC、BD交于O,ΔABO与ΔBCO的周长之差4cm,则AD= 12 cm。
3. 对角线互相平分且相等的四边形是矩形。
对角线互相垂直且平分的四边形是菱形。
4. 在□ABCD中,AB=6cm,BC=10cm,∠B=30°,则S□ABCD= 30 cm。
5. 若梯形的上底长为6cm,中位线长8cm,则此梯形的下底线长 10 cm;连结两条对角线的中点的线段长 2 cm。
6. 平行四边形一边长为10,一条对角线长12,则它的另一条对角线的取值范围是大于8但小于32 。
7. 等腰梯形的一条对角线分中位线为4cm和10cm两部分,腰长为12cm,则此梯形不在同一底的两内角为 60 度、 120 度,其面积为 84√3 cm2。
8. 顺次连结四边形各中点所得的四边形是平行四边形。
如果新四边形的两邻边分别长3cm、4cm,那么原四边形的两条对角线之和为 14 cm。
9. 矩形ABCD中,对角线交于O,∠AOD=120°,AB=4cm,则AD= 4√3 cm。
10. 梯形ABCD中,AD∥BC,过D作DE∥AB交BC于E,梯形周长为42cm,AD=6cm,则△CDE的周长是 30 cm。
11. 已知是菱形的边长为5cm,一对角线长8cm,则此菱形的另一条对角线长 6 cm,它的面积为 24 cm2。
三、证明题:
1. 等腰梯形一底角为60°,一条长为2 √3cm的对角线平分这个角。
求此梯形的周长。
2. 如图已知:梯形ABCD中,AB∥CD,E为AD中点,且BC=AB+CD。
求证:BE⊥CE。
3. □ABCD中,对角线AC、BD交于O,E、F、G、H分别是BO、DC、DO、AB的中点。
求证:四边形EFGH是平行四边形
1.:解:∵∠ABC=60°,BD平分∠ABC,
∴∠DBC=∠ABD=30°,
又∵∠C=∠ABC=60°
∴∠BDC=90°
在Rt△BDC中,BD=2 √3
∴CD=BC=2,BC=4
AB=CD=2
而AD∥BC,∠ADB=∠DBC=30°
∴AD=AB=2
∴AB+BC+CD+DA=2+4+2+2=10,答:此梯形的周长为10cm。
2.:证明:延长CE交BA的延长线于F,
∵AB∥CD
∠F=∠DCE
∴在△AFE和△DCE中
∠F=∠DCE
∠AEF=∠DEC
AE=DE
∴△AFE≌△DCE(AAS)
∴FA=CD FE=CE
E为FC中点
又∵BC=AB+CD,BF=AB+AF
∴BC=BF,即:FBC是等腰三角形。
∵E为FC中点,∴BE⊥FC
即:BE⊥CE (三线合一)3.:证明:□ABCD中,AB=CD,BO=DO
∵H、F分别为AB、CD中点
∴BH=AB=DC=DF
又∵E、G分别为BO、DO中点,∴EO=1/2BO=1/2DO=GO
∴BG=BO+GO=DO+EO=DE
而AB∥CD ∴∠HBE=∠FDG
在△BFH和△DEF中,
BH=DF(已证)∴△BGH ≌△DEF
∠HBE=∠FDG(已证)(SAS)
BG=DE(已证)
∴HG=EF,∠HGB=∠FED
∴HG∥EF
∴四边形EFGH是平行四边形。