图论最优化算法

合集下载

数学建模的主要建模方法

数学建模的主要建模方法

数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。

它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。

数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。

下面将分别介绍这些主要建模方法。

1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。

它适用于对大量数据进行分析和归纳,提取有用的信息。

数理统计法可以通过描述统计和推断统计两种方式实现。

描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。

2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。

它可以用来寻找最大值、最小值、使一些目标函数最优等问题。

最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。

这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。

3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。

这种方法适用于可以用一些基本的方程来描述的问题。

方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。

通过求解这些方程,可以得到问题的解析解或数值解。

4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。

它可以用来处理随机变量、随机过程和随机事件等问题。

概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。

利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。

5.图论方法:图论方法是研究图结构的数学理论和应用方法。

它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。

图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。

图论与网络最优化算法答案

图论与网络最优化算法答案

图论与网络最优化算法答案【篇一:《运筹学》复习题】一、名词解释1松弛变量为将线性规划问题的数学模型化为标准型而加入的变量。

2可行域满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域。

3人工变量亦称人造变量.求解线性规划问题时人为加入的变量。

用单纯形法求解线性规划问题,都是在具有初始可行基的条件下进行的,但约束方程组的系数矩阵a中所含的单位向量常常不足m个,此时可加入若干(至多m)个新变量,称这些新变量为人工变量。

4对偶理论每一个线性规划问题都存在一个与其对偶的问题,在求出一个问题解的同时,也给出了另一个问题的解。

研究线性规划中原始问题与对偶问题之间关系的理论5灵敏度分析研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。

在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。

通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。

6影子价格反映资源配置状况的价格。

影子价格是指在其他资源投入不变的情况下,每增加一单位的某种资源的投入所带来的追加收益。

即影子价格等于资源投入的边际收益。

只有在资源短缺的情况下,每增加一单位的投入才能带来收益的增加7产销平衡运输一种特殊的线性规划问题。

产品的销售过程中,产销平衡是指工厂产品的产量等于市场上的销售量。

8西北角法是运筹学中制定运输问题的初始调运方案(即初始基可行解)的基本方法之一。

也就是从运价表的西北角位置开始,依次安排m个产地和n个销地之间的运输业务,从而得到一个初始调运方案的方法。

9最优性检验检验当前调运方案是不是最优方案的过程。

10动态规划解决多阶段决策过程优化问题的方法:把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解11状态转移方程从阶段k到k+1的状态转移规律的表达式12逆序求解法在求解时,首先逆序求出各阶段的条件最优目标函数和条件最优决策,然后反向追踪,顺序地求出改多阶段决策问题的最优策略和最优路线。

算法学习:图论之二分图的最优匹配(KM算法)

算法学习:图论之二分图的最优匹配(KM算法)

二分图的最优匹配(KM算法)KM算法用来解决最大权匹配问题:在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。

基本原理该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。

设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。

在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。

KM算法的正确性基于以下定理:若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。

这个定理是显然的。

因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。

所以相等子图的完备匹配一定是二分图的最大权匹配。

初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。

如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。

我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。

这时我们获得了一棵交错树,它的叶子结点全部是X顶点。

现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。

也就是说,它原来属于相等子图,现在仍属于相等子图。

2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。

图论与网络最优化算法

图论与网络最优化算法

第二章 5 生成树算法定义2·13 (1)图G 的每条边e 赋与一个实数)(e ω,称为e 的权。

图G 称为加权图。

(2)设1G 是G 的子图,则1G 的权定义为: ∑∈=)(11)()(G E e e G ωω定理2·10 Kruskal 算法选得的边的导出子图是最小生成树。

证:K r u s k a l 算法所得子图0T 显然是生成树,下证它的最优性。

设{}[]1210,,,-=υe e e G T 不是最小生成树,1T 是G 的任给定的一个生成树,)(T f 是{}121,,,-υe e e 中不在1T 又{}1210,,,)(-=υe e e T E ,故121,,,-υe e e 中必有不在)(T E 中的边。

设k T f =)(,即121,,,-k e e e 在T 与0T 上,而k e 不在T 上,于是k e T +中有一个圈C ,C 上定存在ke ',使k e '在T 上而不是在0T 上。

令k k e e T T '-+=')(,显然也是生成树,又)()()()(kk e e T T '-+='ωωωω,由算法知,k e 是使{}[]k e e e G ,,,21 无圈的权最小的边,又{}[]kk e e e e G ',,,,1-21 是T 之子图,也无圈,则有)()(k k e e ωω≥',于是)()(T T ωω≤',即T '也是最小生成树,但)()(T f k T f =>'与)(T f 之最大性矛盾。

证毕定理2·11 im Pr 算法产生的图)(0T G 是最小生成树。

证明与定理2·10类似,略。

第三章2 割边、割集、割点定理3·4 设G 是连通图,)(G E e ∈则e 是G 的割边的充要条件是e 不含在圈中。

证明 必要性 设e 是G 的割边,若e 在G 的一圈C 上,则e G -仍连通,这不可能。

最短路径问题的优化算法

最短路径问题的优化算法

最短路径问题的优化算法最短路径问题是图论中的经典问题之一,涉及在给定图中找到两个节点之间的最短路径。

这个问题在实际生活中有广泛的应用,如导航系统中的路线规划、网络通信中数据包的传输等。

为了提高计算效率,许多优化算法被提出和应用于解决最短路径问题。

1. 单源最短路径问题单源最短路径问题是指在给定图中,从一个固定的起始节点到其他所有节点的最短路径问题。

经典的解决方法包括迪杰斯特拉算法和贝尔曼-福特算法。

迪杰斯特拉算法是一种贪婪算法,通过确定与起始节点距离最短的节点来逐步扩展最短路径树。

具体步骤如下:1) 初始化距离数组,将起始节点距离设为0,其他节点距离设为无穷大。

2) 选择当前距离最短的节点,并标记为已访问。

3) 更新与该节点相邻节点的距离,若经过当前节点到相邻节点的距离更短,则更新距离数组。

4) 重复步骤2和步骤3,直到所有节点都被访问过。

最后,距离数组中记录的即为从起始节点到其他所有节点的最短路径。

贝尔曼-福特算法是一种动态规划算法,通过不断地松弛边来逐步得到最短路径。

具体步骤如下:1) 初始化距离数组,将起始节点距离设为0,其他节点距离设为无穷大。

2) 依次对所有边进行松弛操作,即更新边的端点节点的距离。

3) 重复步骤2,直到所有边都被松弛完毕。

4) 判断是否存在负环路,若存在则说明无最短路径;若不存在,则距离数组中记录的即为从起始节点到其他所有节点的最短路径。

2. 全局最短路径问题全局最短路径问题是指在给定图中,找到任意两个节点之间的最短路径问题。

弗洛伊德算法是一种经典的解决方法,通过动态规划的思想逐步求解。

弗洛伊德算法的具体步骤如下:1) 初始化距离矩阵,将所有节点之间的距离设为无穷大。

2) 根据已知的边信息更新距离矩阵,即将已知路径的距离设为对应的实际距离。

3) 对于每一对节点,考虑经过中转节点的路径是否更短,若更短则更新距离矩阵。

4) 重复步骤3,直到距离矩阵不再变化。

最后,距离矩阵中记录的即为任意两个节点之间的最短路径。

数学建模常用方法

数学建模常用方法

数学建模常用方法数学建模是利用数学工具和方法来研究实际问题,并找到解决问题的最佳方法。

常用的数学建模方法包括线性规划、非线性规划、动态规划、整数规划、图论、最优化理论等。

1. 线性规划(Linear Programming, LP): 线性规划是一种在一定约束条件下寻找一组线性目标函数的最佳解的方法。

常见的线性规划问题包括生产调度问题、资源分配问题等。

2. 非线性规划(Nonlinear Programming, NLP): 非线性规划是指当目标函数或约束条件存在非线性关系时的最优化问题。

非线性规划方法包括梯度方法、牛顿法、拟牛顿法等。

3. 动态规划(Dynamic Programming, DP): 动态规划方法是一种通过将复杂的问题分解成多个子问题来求解最优解的方法。

动态规划广泛应用于计划调度、资源配置、路径优化等领域。

4. 整数规划(Integer Programming, IP): 整数规划是一种在线性规划的基础上,将变量限制为整数的最优化方法。

整数规划常用于离散变量的问题,如设备配置、路径优化等。

5. 图论(Graph Theory): 图论方法研究图结构和图运算的数学理论,常用于解决网络优化、路径规划等问题。

常见的图论方法包括最短路径算法、最小生成树算法等。

6. 最优化理论(Optimization Theory): 最优化理论是研究寻找最优解的数学方法和理论,包括凸优化、非凸优化、多目标优化等。

最优化理论在优化问题建模中起到了重要的作用。

7. 离散数学方法(Discrete Mathematics): 离散数学方法包括组合数学、图论、概率论等,常用于解决离散变量或离散状态的问题。

离散数学方法在计算机科学、工程管理等领域应用广泛。

8. 概率统计方法(Probability and Statistics): 概率统计方法通过对已有数据进行分析和建模,提供了一种推断和预测的数学方法。

概率统计方法在决策分析、风险评估等领域起到了重要的作用。

数学建模中常见的十大模型

数学建模中常见的十大模型

数学建模中常见的十大模型集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#数学建模常用的十大算法==转(2011-07-24 16:13:14)1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

最优路径经典算法

最优路径经典算法

最优路径经典算法最优路径问题是在图论中一个经典的问题,其目标是找到两个节点之间的最短路径或最小权值路径。

在解决最优路径问题的过程中,有多种算法可以使用。

下面将列举十个经典的最优路径算法。

1. Dijkstra算法:Dijkstra算法是一种贪心算法,用于解决单源最短路径问题。

它通过不断更新起点到各个节点的最短路径,最终得到起点到终点的最短路径。

2. Bellman-Ford算法:Bellman-Ford算法可以解决带有负权边的最短路径问题。

它通过迭代的方式不断更新起点到各个节点的最短路径,直到收敛为止。

3. Floyd-Warshall算法:Floyd-Warshall算法可以解决所有节点对之间的最短路径问题。

它通过动态规划的方式计算任意两个节点之间的最短路径。

4. A*算法:A*算法是一种启发式搜索算法,常用于解决图上的最短路径问题。

它通过综合考虑节点的实际距离和估计距离,选择下一个最有可能到达终点的节点进行搜索。

5. 最小生成树算法:最小生成树算法用于解决无向图的最小生成树问题。

其中Prim算法和Kruskal算法是两种常用的最小生成树算法,它们都可以用于寻找最优路径。

6. Johnson算法:Johnson算法是一种解决带有负权边的最短路径问题的算法。

它通过引入一个新的节点,并利用Bellman-Ford算法来计算每个节点到新节点的最短路径,然后再利用Dijkstra算法求解最短路径。

7. SPFA算法:SPFA算法是一种解决单源最短路径问题的算法,它是对Bellman-Ford算法的一种优化。

SPFA算法使用了队列来存储需要更新的节点,减少了不必要的更新操作。

8. Yen算法:Yen算法是一种解决最短路径问题的算法,它可以找到第k短的路径。

Yen算法通过删除已经找到的路径上的一条边,并重新计算最短路径来寻找第k短的路径。

9. Bidirectional Search算法:Bidirectional Search算法是一种解决最短路径问题的算法,它同时从起点和终点开始搜索,直到两个搜索路径相交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非诚勿扰男女最优组合
摘要:本文主要内容为寻求最大权匹配问题,即利用图论的最大权匹配知识,为非诚勿扰节目中的男女嘉宾进行最优组合。

本文将其转化为二部图寻找最大权匹配的问题。

关键词:非诚勿扰,最大权匹配
1、问题描述
《非诚勿扰》是中国江苏卫视制作的一档大型生活服务类节目。

每期节目大部分都是5位男嘉宾,24位女嘉宾,女生有“爆灯”权利。

首先男嘉宾选择心动女生,女嘉宾在“爱之初体验”根据第一印象选择是否留灯;然后在“爱之再判断”了解男嘉宾的一些基本情况,比如爱好、情感经历等;接下来在“爱之终决选”通过男嘉宾亲人或朋友的情况了解男嘉宾,做出最后的决定,如果有女生留灯的话就进入“男生权利”,男生做出最后选择,如果没有女生留灯则只能遗憾离场。

2、模型建立
通过观看20150124期节目,这期节目只有4位男嘉宾,然后在整个节目男女嘉宾交流过程中4号、19号、22号、23号女嘉宾都没有发过言,没有了解到这四位女嘉宾的基本情况以及对男嘉宾的要
求,所以在本次模型建立过程中没有考虑这四位女嘉宾。

经过上述分析,本期产生了4位男嘉宾和20位女嘉宾的可能匹配,我们将这4位男嘉宾和20位女嘉宾划分为X部和Y部,男生为X1,X2,X3,X4,女生为Y1,Y2,Y3,....Y20。

X i与Y j之间连线,当且仅当它们所代表的男女双方满足彼此寻找另一半的某些要求,或者女生是男嘉宾选择的心动女生。

由以上分析得到如图 2.1所示的二部图。

如何定义该二部图的权值:首先,每位男嘉宾的心动女生基本权值为1,其余女嘉宾的基本权值为0,然后根据男女嘉宾双方对对方的要求,在外貌、工作、性格、爱好、家庭五个方面基本相符就加1,差别很大就不加。

得到如图2.2所示的加权图。

显然,为这些男女嘉宾找最优组合就转化为二部图(X,Y)寻找最大权匹配
图 2.1
图 2.2
3、模型求解
本模型用匈牙利算法来进行求解。

其中S表示交错树中属于X的顶点集;T表示交错树中属于Y的顶点集;F(Y)表示Y的父亲;N(S)表示S的邻域;A(X i)表示X i的邻接点集;W ij表示X i Y j边上的权。

求解步骤如下:
1)给出初始标号:
L(X1)=max{1,2,0,0,0,2,0,0,0,0,2,2,0,0,1,0,0,0,0,0}=2 L(X2)=max{0,0,3,0,3,0,0,0,0,0,0,3,0,1,0,1,0,2,0,0}=3 L(X3)=max{0,4,0,0,0,5,2,2,3,0,4,0,1,0,0,0,5,0,1,0}=5 L(X4)=max{0,0,0,2,0,0,0,0,0,4,0,0,0,0,3,0,0,0,0,4}=4 L(Y1)=L(Y2)=L(Y3)=L(Y5)=L(Y6)=L(Y7)=L(Y8)=L(Y9)=L(Y10)
=L(Y11)=L(Y12)=L(Y13)=L(Y14)=L(Y15)=L(Y16)=L(Y17)=L(Y18)=L(Y20) =L(Y21)=L(Y24)=0
2)求出A Gl(X i)及匹配M:
A Gl(X1) = {Y2 ,Y7 ,Y12 ,Y13 } A Gl(X2) = {Y3 ,Y6 ,Y13 }
A Gl(X3) = {Y7 ,Y18} A Gl(X4) = {Y11 ,Y24}
对应等子图G l如图3.1所示,求得匹配M,M={X1Y13,X3Y7,X4Y24}。

如图3.1黑线所示。

x1。

X2。

X3。

X4。

Y2 Y3 Y6 Y7 Y11 Y12 Y13 Y18 Y24
图 3.1
3)X2是非渗透点,u=X2 ,用匈牙利算法求出以u为根的M交错树得:S={X1,X2 ,X3}, T={Y7,Y13},N(S)={Y2,Y3,Y6,Y7,Y12,Y13,Y18}。

因N Gl(S)≠T,找一点Y3 ∈A(X2)-T, F(Y3)←X2。

因Y3 是M非渗透点,故得一条M可增长路径P = X2Y3
E(P)= {X2Y3}
因而得到新匹配
M = M△E(P)= {X1Y13,X3Y7,X4Y24, X2Y3}
4)至此已渗透X中所有顶点,M即为最大权匹配。

此时得到的男女最优组合为:1号男嘉宾吴楷与13号女嘉宾肖俊,吴楷是一个帅气、认真、努力、爱好中国古文化但不是很擅长交际的专一型外国男生,对另一半的要求是活波、喜欢冒险、运动的女
生,与13号女嘉宾要求男方要做到诚实相待、善良不撒谎、会照顾人相符,相处之后女生活波的一面也会带动男生;2号男嘉宾张涛与3号女嘉宾张馨予,双方都属于自己创业,也都有一定的成就,在生活中有很多话题、很多共鸣,而且女生属于胆大心细、温柔不强势类型,是男嘉宾心中的理想型,女生希望无论恋爱还是结了婚,对方都不要有欺骗,更不要轻易放弃,发生任何事情都要坚持,婚后不介意和对方家人住一起,与男嘉宾工作能力强、不善交际、踏实肯干十分相符;3号男嘉宾张凡帆与7号女嘉宾魏鸾莹,男嘉宾成熟、热爱生活,有梦想、有追求,与女嘉宾希望对方尊重家庭,有责任感、可以分享周遭的许多事情十分相符,而且两人在节目中互动也挺多,更幸运的是两人还在同一城市。

4号男嘉宾丁腾与24号女嘉宾顾欣伟,男嘉宾年少有为,但有点大男子主义,女嘉宾属于温婉、居家类型,而且为男嘉宾一路留灯到最后,需要很大勇气,很有缘分的是两人穿的是情侣装。

但最后得到的最大权匹配也只是建立在本模型中理论上的,与节目最终的结果还是有区别的,最后只有最大权匹配中的两对牵手成功。

附加题:校园导游任意两景点求最短路径
方案:校园导游为用户提供平面图中任意两点间的问路查询,即查询任意两个景点间的最短路径,旨在为用户的旅游大大提高效率。

用无向网表示学校的平面图,设计了该平面图的存储结构,并应用Dijkstra算法实现了查询图中任意两个景点间的最短路径的功能,为用户熟悉校园环境提供了方便。

算法描述:
s为源,w[u,v]为点u和v之间的边的长度,结果保存在dist[]。

初始化:源的距离dist[s]设为0,其他的点距离设为无穷大(实际程序里设成-1了),同时把所有的点的状态设为没有扩展过。

循环n-1次:
1) 在没有扩展过的点中取一距离最小的点u,并将其状态设为已扩展。

2) 对于每个与u相邻的点v,如果
dist[u]+G.edges[u][v]<dist[v],那么把dis[v]更新成更短的距离dist[u]+w[u,v]。

此时到点v的最短路径上,前一个节点即为u。

3) 结束。

此时对于任意的u,dist[u]就是s到u的距离。

景点1到各点最短路径
邻接矩阵如图1所示
{0 340 320 ∞∞∞∞∞∞∞∞ 360} { 0 150 600 ∞∞∞∞∞∞∞∞ }
{ 0 ∞∞∞ 300 ∞∞∞∞ 150}
{ 0 250 ∞∞ 430 ∞∞∞∞ }
{ 0 180 ∞∞∞∞∞∞ }
W = { 0 100 ∞ 290 ∞∞∞ }
{ 0 ∞∞∞ 150 ∞ }
{ 0 430 ∞∞∞ }
{ 0 150 ∞∞ }
{ 0 450 ∞ }
{ 0 380}
{ 0 }
图 1
Dijkstra各次迭代各变量值的变化情况如下表1所示
利用算法的父点追踪便可得到从U1到其余各点的最短路径。

部分代码:
void Dijkstra(int v, int w)
{
int dist[MAXV], path[MAXV]; //dist[]记录顶点到其他各点的权值,path[]记录源点到其余各点是否有路径
int s[MAXV]; //s[]记录经过的顶点
int mindis, i, j, u;
for(i = 0; i < G.vexnum; i ++)
{
dist[i] = G.edges[v][i]; //距离初始化
s[i] = 0; //s[]置空
if(G.edges[v][i] < INF) //路径初始化
path[i] = v;
else
path[i] = -1;
}
s[v] = 1; path[v] = 0; //源点编号v放到s中
//循环直到所有顶点的最短路径都求出
for(i = 0; i < G.vexnum; i ++){
mindis = INF; //mindis置最小长度初值
for(j = 0; j < G.vexnum; j ++){
if(s[j] == 0 && dist[j] < mindis){
u = j;
mindis = dist[j];
}
}
s[u] = 1;
for(j = 0; j < G.vexnum; j ++){
if(s[j] == 0){
if(G.edges[u][j] < INF && dist[u] + G.edges[u][j] < dist[j])
{
dist[j] = dist[u] + G.edges[u][j];
path[j] = u;
}
}
}
}
Dispath(dist, path, s, v, w);
}。

相关文档
最新文档