烧碱装置工艺流程图

合集下载

烧碱装置氯气处理计算

烧碱装置氯气处理计算

1.2氯气处理工序的任务、原理及流程图1.2.1 氯气处理工序的任务氯气处理工序的任务是将电解工序来的湿氯气,洗涤、冷却、干燥、压缩、除NCl3后,送往盐酸工序、液氯工序和用户等.1.2.2 氯气处理工序的原理由电解工序来的湿氯气(温度约85℃左右),通过管路输送进入塔氯气洗涤塔底部(温度约80℃左右),氯气贮槽中的氯水经循环泵送至氯气冷却器(换热器),冷却后进入氯气洗涤塔,洗涤塔为填料塔,氯气经塔上部喷淋逆流,与氯气直接接触,氯气冷却到约40~50℃,并除去氯气所夹带的盐雾. 出塔氯气进入冷却器进一步冷却,氯气出口温度控制在12~18℃,因为当氯气温度在9.6℃湿氯气中的水蒸气会与氯气生成Cl2.8H2O结晶,造成设备管路的阻塞并损失氯气. 在冷却过程中大部分的水被冷凝下来,这样节约用于干燥的硫酸用量,同时一部分冷凝水成雾滴存在于氯气中,所以除雾也是一项降低硫酸单耗,减少酸雾夹带的重要措施. 因此,冷却后氯气经水雾分离器进入干燥系统,水雾的补集在99%以上.氯水洗涤塔冷凝下来的氯水用氯水循环泵打入到氯气冷却器经循环水冷却后进入洗涤塔上部,与氯气进行逆流接触,除去氯气中的杂质和盐分,并降低氯气温度,当氯水到一定液位时,溢流入氯水贮槽. 氯水由氯水循环泵送往废气处理或化学水管网进行处理.冷却后12~18℃的氯气进入干燥塔的下部,与硫酸循环泵打入的硫酸在填料段逆流接触除去氯中水分. 塔底出硫酸,浓度控制在75%以上,由于氯气中的水分被硫酸吸收而放热,这部分热量由循环酸冷却器带走. 干燥塔的氯气出口温度为20℃,塔顶入口酸温度为14℃,塔底出口酸温度为20℃.当干燥塔底部的酸液位超过设定值时,调节阀自动开启,将硫酸打至稀酸贮槽;当循环酸降到低液位时,调节阀关闭或关小;当循环酸浓度低于75%,即使干燥塔下部的液位未达到排酸要求,也应排酸.稀酸贮槽的稀酸,装槽车或装罐后送出界区. 干燥后氯气的指标为含量≧98.5%,氯中含水≦30ppm.1.2.3工艺流程图1- 洗涤塔及氯水箱;2- 一级钛冷却器A并B;3- 二级钛冷却器A并B;4- 湿氯除雾器;5-6 干燥塔(填料塔、泡罩塔);7- 硫酸捕雾器;8- 硫酸高位槽;9- 氯气压缩机;10- 酸雾捕捉器图1-1氯气处理工艺流程图氯气处理采用了淡盐水、冷却水~氯气换热技术, 2 段冷却、 2 段干燥( 泡沫塔和填料塔串联) 技术,工艺流程为:湿氯气→洗涤器→氯气→盐水换热器→一段冷却器→二段冷却器→脱水塔→泡沫塔→填料塔→脱酸塔→氯气泵→氯气分配台→用户及液氯等工段.电解槽出来的85℃湿氯气汇集到氯气总管,经过安全水封后进人氯气洗涤塔,用从换热器和一、二段冷却器中冷凝下来的氯水洗涤氯气,洗涤后氯水排氯水箱,氯气进人换热器,与从盐水工序送来的精盐水进行热交换,再依次进人一段钛冷却塔和二段钛冷却塔,分别用工业水和冷冻水进行冷却,氯气温度降至15℃后进湿氯除雾器脱去水雾,进人泡沫干燥塔,用86% 硫酸进行第一次干燥,再进入填料干燥配台,分配给氯气用户及液氯等工段.第2章 物料衡算和能量衡算2.1计算依据经查西部氯碱厂的电解原料生产氢氧化钠(NaOH ),工业数据查NaOH GB/T1919-94可知固体I 类优等品NaOH 的含量为≥94.0%,除掉检修等等时间的浪费,按每年实际生产时间为8000小时,本设计计算是以西部氯碱厂目前烧碱装置的年产量为基准,生产10万吨/年98%离子膜NaOH ,其生产纯NaOH 的量为:10×104×103×98.0%/(40×8000)=306.250 kmol/h. 电解过程发生的化学反应为:2NaCl+2H 2O=2NaOH + Cl 2 +H 2由电解方程式计算可知理论生产氯气量为:306.250/2=153.1250 kmol/h. 即氯气的理论年产量为:153.1250×8000×70.91/1000=86864.75吨/年.但在实际生产中,考虑到氯气输送过程等条件中有损失,现以2%耗损计算,则进入洗涤塔前氯气的量为:153.1250×(1-2%)=150.0625 kmol/h.经过对电解槽出来的电解气分析可知所含的组分:Cl 2 ,H 2O ,O 2 ,H 2 ,其他杂质(M );其中以干基为基准,物料混合气各组分的含量如下(kmol/h )表示:Cl 2 :≥98.5%, O 2 : ≤0.7%,H 2 :≤0.03%, 其他杂质(M ):≤0.77%; 以100mol 干基混合气为基准,计算混合气各组分的量:2Cl n =98.5; 2O n =0.7; 2H n =0.03; n 其它=0.77根据气体溶解度可知:氧气、氢气、其他杂质在混合气中含量较少,并且在水中的溶解度非常小,即可将这些气体的含量视为常数,则进入洗涤塔前各组分视为量不变。

电解法生产烧碱课件

电解法生产烧碱课件
新型电解槽设计
优化电解槽设计,提高电解过程的稳定性和连续性。
自动化与智能化控制
引入先进的自动化和智能化控制技术,实现生产过程的自动化和智 能化。
市场需求与竞争
市场需求增长
01
随着化工、造纸、纺织等行业的快速发展,烧碱市场需求持续
增长。
环保要求提高
02
对烧碱生产过程中的环保要求日益严格,推动企业加大环保投
电解法生产烧碱课件
CONTENTS 目录
• 电解法生产烧碱概述 • 电解槽的构造与工作原理 • 电解法生产烧碱的工艺流程 • 电解法生产烧碱的能效与环保 • 电解法生产烧碱的未来发展
CHAPTER 01
电解法生产烧碱概述
电解法生产烧碱的定义
01
电解法生产烧碱的定义
电解法是一种通过电解食盐水溶液来生产烧碱的方法。在电解过程中,
清洁生产
采用先进的生产工艺和设备,减少生产过程中的 污染物排放,实现清洁生产。
资源循环利用
实现资源的循环利用,减少对自然资源的依赖和 消耗。
社会责任
企业应积极履行社会责任,关注员工健康和环境 保护,推动可持续发展。
CHAPTER 05
电解法生产烧碱的未来发展
技术进步与创新
高效能电极材料
研发更高效能的电极材料,提高电解效率,降低能耗。
阴极
通常由金属钛或镍制成,负责 产生氢气。
隔膜
一种半透膜,允许阳离子通过 而阻止阴离子通过,以保持阳 极和阴极区域之间的电荷平衡 。
电解液
氢氧化钠溶液,作为导电介质 。
电解槽的工作原理
当电流通过电解液时,水分子在阳极被氧化成氧气和氢离子 ,氢离子在阴极被还原成氢气。同时,钠离子穿过隔膜从阳 极区域移动到阴极区域,并在阴极区域与水反应生成氢氧化 钠和氢气。

第一部分 烧碱装置氯气处理工序初步设计

第一部分 烧碱装置氯气处理工序初步设计

目录第一篇氯气处理 1第一章总论 1 一概述 1 二氯气处理的任务和方法 1 三工艺流程简介 2第二章氯气工艺计算4一氯气处理工艺流程 4 二计算依据 4 三工艺计算 5 (一)第一钛冷却器 5 (二)第二钛冷却器 8 (三)硫酸干燥塔Ⅰ(填料塔) 10 (四)硫酸干燥塔Ⅱ(泡罩塔) 11 第三章主要设备设计及选型13一第一钛冷却器 13 二第二钛冷却器 20 三硫酸干燥塔Ⅰ(填料塔) 25 四硫酸干燥塔Ⅱ(泡罩塔) 27 五除沫器 28 主要设备一览表40参考文献42第一篇氯气处理第一章总论一. 概述1. 氯气氯气Cl,分子量70.906,常温下,氯是黄绿色,具有使人窒息气味的气体,2有毒。

氯气对人的呼吸器官有强烈的刺激性,吸入过多时还会致死。

氯气比空气重,约为空气的2.5倍。

氯气能溶于水,但溶解度不大,温度越高氯气在水中的溶解度越小。

氯气溶于水同时与水反应生成盐酸和次氯酸,因此氯水具有极强的腐蚀性。

氯气在四氯化碳,氯仿等溶剂中溶解度较大,比在水中的溶解度约大20倍。

工业上利用氯气在四氯化碳中有较大溶解度这一特点,用四氯化碳吸收氯碱厂产生的所有废氯,然后再解吸回收氯气。

氯气的用途极为广泛,重要用途如:杀菌消毒、漂白及制浆、冶炼金属、制造无机氯化物、制造有机氯化物及有机物。

2. 氯碱工业在国民经济中的地位食盐电解联产的烧碱、氯气、氢气,在国民经济的所有部门均很需要,除应用于化学工业本身外,有轻工、纺织、石油化工、有色金属冶炼和公用事业等方面均有很大用途,作为基本化工原料的“三酸二碱”中,盐酸烧碱就占了其中两种,而且氯气和氢气还可进一步加工成许多化工产品。

所以氯碱工业及相关产品几乎涉及到国民经济及人民生活的各个领域。

3. 氯碱工业的特点氯碱工业的特点除原料易得、生出流程短外,主要还有三个突出问题:能量消耗大;氯与碱的平衡;腐蚀和污染。

二. 氯气处理的任务和方法从电解槽出来的湿氯气,一般温度较高,并伴有大量水蒸汽及盐雾等杂质。

【化学】烧碱行业的节能技术

【化学】烧碱行业的节能技术

※烧碱行业的节能技术①发展离子膜法生产技术:离子膜电解制碱具有节能、产品质量高、无汞和石棉污染的优点。

我国将不再建设年产1万吨以下规模的烧碱装置,新建和扩建工程应采用离子膜法工艺。

如果我国的隔膜法制碱改造100万吨为离子交换膜法制碱,综合节能可节约标煤412万吨。

②采用扩张阳极、改性隔膜技术改造的金属阳极(DSA)隔膜电解槽。

这是近年来氯碱工业中电解过程改进的新技术。

理论上,采用扩张阳极与改性隔膜每吨碱可节约直流电147kWh ,经济效益十分可观。

③采用大型可控硅整流机组;有载调压—变压—整流机组和计算机控制技术;提高盐水质量,实现长周期稳定运行;④液体烧碱蒸发技术(三效逆流改造三效顺流)。

采用三效逆流比三效顺流可更充分合理地利用加热蒸汽的热量,生产每吨碱可节省蒸汽一吨。

⑤高速自然强制循环蒸发器。

采用高速自然强制循环蒸发器,可节省400万~500万吨蒸汽,全国按节省强制循环泵每吨碱节电30kWh,全行业年节电1.5亿kWh。

⑥滑片式高压氯气压缩机。

采用滑式高压氯气压缩机耗电85kWh,与传统的液化工艺相比,全行业年可节电23750万kWh,同时还可减少大量的“三废”排放。

碱厂现有纳氏泵应逐步更新为压缩机。

※技术发展趋势PVC生产的节能技术目前世界烧碱生产工艺主要有离子膜法、隔膜法及水银法, 另有少量苛化法。

离子膜法能耗低,产品纯度高, 污染小, 操作成本低, 是新建烧碱装置的首选。

世界氯碱技术发展总体方向是规模大型化, 节能降耗技术将成发展重点。

新建和扩建氯碱产能90%以上采用离子膜法工艺, 该技术发展方向主要是高性能离子膜和电解槽技术的改进和应用。

PVC技术发展的主要方向是探索采用价格便宜的乙烷作原料, 用直接氧氯化法生产出低成本的氯乙烯单体; 改造平衡氧氯化工艺, 进一步降低生产成本; 进一步解决聚合体系的稳定性及防粘釜问题;改进悬浮聚氯乙烯树脂的粒径分布以及开发使用性能更好的专用树脂, 如开发透明度更好的抗冲击氯化氯乙烯-丙烯酸酯接枝共聚树脂, 研制更易于加工的聚氯乙烯薄膜专用树脂,改进丙烯酸酯改性的聚氯乙烯型材专用树脂的生产方法等; 在聚氯乙烯树脂加工应用方面, 通过共聚和共混改性生产具有特殊性能和用途的聚氯乙烯产品,增加产品附加值。

工艺流程简述

工艺流程简述

工艺流程简述霍家工业树脂厂工艺流程1离子膜烧碱工艺流程说明(1)一次盐水工序来自电解的淡盐水进入化盐水贮槽,经化盐水泵被送入化盐桶,原盐由皮带输送机送入化盐桶顶部,化盐水溶解原盐后的饱和粗盐水从化盐桶溢流口流出,粗盐水流经反应器,与精制剂氯化钡,氢氧化钠,次氯酸钠混合后经前反应罐进入中间槽,再由泵将粗盐水经气水混合器送入加压溶气罐,减压后加入三氯化铁进入预处理器,除去有机物及氢氧化镁等杂质,从溢流口流出,流经反应器与碳酸钠混合后进入后反应罐,经机械搅拌后进入滤料槽,充分反应后的盐水自流进入HVM 过滤器,去除碳酸钙,硫酸钡等杂质,过滤后的盐水由过滤器上部溢流出,同时加入5%亚硫酸钠溶液除去盐水中的游离氯,后进入精盐水储槽,精盐水由精盐水泵送往二次盐水精制工序。

渣池中的盐泥浆用盐泥泵打入板框压滤机经压滤,滤饼运出界区,滤液流入滤液槽,再用泵送入后反应罐。

(2)二次盐水精制工序由一次盐水工序的精盐水泵送来的精盐水,进入精盐水储槽,由精盐水泵送入螯合树脂塔对盐水进行二次精制,装置设有三台树脂塔,正常运行期间为二塔串联运行,一塔线外再生,精制后盐水中的钙镁含量小于0.02mg/l ,然后送电解系统。

树脂塔再生时需要用的烧碱,高纯酸,纯水等,分别由装置内储罐经泵供给。

再生废液进入再生废水槽,由再生废水泵输送至废水处理,经中和后,达标后排放。

(3)离子膜电解工序通过树脂塔来的合格的二次精制盐水进入盐水高位槽,通过位差,进入离子膜电解槽的阳极室电解,生成氯气,同时使盐水浓度降低成为含氯淡盐水,淡盐水与氯气一起进入淡盐水储槽进行气液分离,氯气送至氯气处理工序,一部分淡盐水与通过树脂塔来的二次精制盐水混合,作循环盐水送入离子膜电解槽的阳极室,继续电解,一部分通过淡盐水泵送到脱氯塔。

电解槽阴极室出来的电解液,进入碱液储槽进行气液分离,分离后的氢气送至氢气处理工序,电解液通过碱液泵一部分进入碱高位槽,通过位差且经过纯水稀释后给电解槽循环使用;一部分由泵打到成品碱储槽,由成品碱泵送到液碱储运工序。

电解法制烧碱

电解法制烧碱

1.H2和Cl2 混合不安全 上述装置的弱点:
2.Cl2会和NaOH反应,会使得到的NaOH不纯
工业上通常选用隔膜法或离子膜法电解
生产流程
隔膜的作用:
(1)防止氯气和氢气混合而引起爆炸; (2)避免氯气与氢氧化钠反应生成次氯酸钠影响氢氧化钠 的产量。
隔膜法电解 以石墨为阳极,铁为阴极,采用石棉隔膜的一种电
隔膜法电解工艺流程
电解液的蒸发
1.目的:浓缩NaOH;使NaCl结晶析出 2.电解液蒸发原理:蒸汽加热
固碱的制造
将液碱制成固体碱
降膜式蒸发器:适用于粘度在 0.05~0.4Pa· s、蒸发量较小 者
升膜式蒸发器:适用于粘度 小于0.05Pa· s、蒸发量较大 者
实验内容及要求

电解的基本原理,电极反应,隔膜的作用
解方法,隔膜是由一种多孔渗透性材料成。
隔膜的作用:将阳极产物与阴极产物隔开,可使电
液和钠离子以一定的流速流向阴极并且在一定程度上
阻止OH-向阳极扩散。
电极反应及副反应
电极反应 副 反 应
Cl2 + H2O NaOH + HClO NaOH + HCl NaClO + 2HClO 12ClO- + 6H2O – 12e HClO3 + NaOH HCl + NaOH NaClO + 2[H] NaClO3 + 6[H]
讨论电流效率及电压效率与哪些因素有关
绘制电解工艺草图,蒸发浓缩工艺草图,蒸发制固 碱工艺草图 一次盐水开车操作(实验室现场完成) 在工艺图上标注出主要物流的名称及状态 对整个工艺进行简极: 2H+ + 2e- = H2↑ 阳 极: 2Cl- -2e- = Cl2↑

离子膜烧碱工艺设计

离子膜烧碱工艺设计

离子膜法制烧碱——10化工班第四组全体成员一、世界离子膜法电解装置发展历程(一)第一阶段为萌发成长期1、“四竞争”(1)复极槽与单极槽的竞争复极槽是低电压、高电压,在复极槽中,各个阴阳极单元串联而成,从而使每个电槽的槽电流相对较小,而槽电压相对较高,这对整流效率来将是一般有利的。

复极槽具有流程短,设备台数少,易采用计算机控制,占地面积少,节省电解厂面积等优势。

单极槽是高电流,低电压,在单极槽中,电流并联式的流经各电极对,由于电流流经的通道较长,致使电压降较高,唯有把各“电极对”的尺寸减少或引入内部铜导体后,才可将槽电压降低。

初期的离子膜单极槽在运行中一旦发现某槽泄露或者有问题,可与隔膜槽一样借助停槽开关,单独停槽检修或者更换,以防止对其他电槽的影响,不至于因局部事故而影响全厂生产。

单极槽可传入隔膜槽系统逐步替换隔膜槽而成为离子膜法电解。

(2)自然循环与强制循环的竞争自然循环是靠电解液的相对密度差推动电解液循环的,具有动力消耗小,循环量大,对膜冲击小,压力稳定,运行安全等特点,但是生产符合一般不能低于50%,不像强制循环那样有高压差和因操作上压差波动二造成膜的机械损伤;强制循环是采用崩推动电解液循环,增加电解反应过程中电解液在电解液内部循环的推动力,具有不受低电流负荷的影响、循环量易控制等特点,但动力消耗大,对摸冲击大,压力不稳定。

(3)单元槽有效面积的竞争单元槽有效面积增大可以有效地提高离子膜利用率,减少更换和维修费。

但是并非面积越大越好,面积过大,离子交换膜的实际强度就难以支撑,也会造成垫圈泄露。

(4)压滤机式压紧与单元组合式压紧的竞争压滤式电解槽是把多个单元槽用一个压紧装置压紧加以封闭,特点在于组装简单,膜内不受压,无接触电压损失,但需要有较高的压紧力,密封面加工要精密、单片槽加工精度要求高,存在槽框加工误差累积问题;单元组合式电解槽是单独地将每一电极对的法兰夹夹紧,以达到可靠的密封要求,2、“四趋向”(1)电流密度趋向提高;(2)单元槽数量趋向增多;(3)单槽产能趋向增大;(4)直流电耗趋向降低。

离子膜烧碱工艺设计说明

离子膜烧碱工艺设计说明
本装置产生的生产废水送一次盐水循环利用。 (1)含碱废水:由于离子膜的预期使用寿命长。这样,由于拆槽所排出的稀碱水 的次数大为减少,在拆槽时排出的废水,被送去一次盐水化盐。消防废水被送到处理 厂进行处理循环使用。 (2)含氯废水:氯气处理产生的氯水,被送往电解车间脱氯后进入了一次盐水化 盐。 (3)螯和树脂塔再生废水,进入了一次盐水化盐。 4.3.3 废渣 (1)在盐水工序中产生的盐泥,从盐泥池中采出,打入板框压滤机进行固液分 离,清液回收用于化盐。滤饼外运制作煤球或被水泥厂用作添加剂提高水泥标号。 (2) 厂区生活垃圾由城市环卫部门统一处置。 4.3.4 其他污染 非正常排放污染控制措施 生产过程中非正常排放的环境污染控制,需从二方面采取措施,一是设置必要处 理设施,如废水池、回收罐等进行处理或回收,最大限度地消除或减轻非正常排放的 环境污染,另一是从全面加强管理着手,避免和减少非正常排放的可能性,达到控制 污染的目的。 (1) 各车间、职能部门、维修车间全面加强对公司内的环保设备、设施的维护保 养、巡检工作,杜绝设备、管道的跑、冒、滴、漏现象,环保设备一旦发生故障,不 分昼夜立即组织抢修,确保环保设备的高运行率。 (2) 为杜绝因检修、操作上随意性,造成污染物排入水沟,要求冲洗液以及检修 静设备的冲洗液都严禁排入沟内,全部进入事故池。
4 化工工艺及系统
4.1 概述
装置设计规模,装置组成与各工序名称 (1)2 万吨/年离子膜烧碱装置: 20000t/a ;60t/d;2.5t/h (2)1.7 万吨/年氯气液化及汽化装置。 (3)一次盐水工序、二次盐水工序、电解工序、淡盐水真空脱氯工序、氯气处理 工序、氢气处理工序、尾气处理工序、液氯贮存及汽化 、液碱罐区及卸车。
化学品较多,所以选用 BaCl2 法。 一次盐水加入 NaOH、Na2CO3 等精制剂进行精制反应,再用凯膜过滤技术和氯化钡
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档