常用逻辑用语测试题(供参考)
逻辑思维练习题

逻辑思维练习题一、判断推理类1. 如果今天下雨,那么路面湿滑。
已知路面不湿滑,那么今天是否下雨?2. 所有的猫都怕水,小明家的宠物不怕水,那么小明家的宠物是什么?3. 小华要么去图书馆,要么去公园。
如果小华没有去公园,那么他在哪里?4. 全部学生都参加了数学竞赛,小王不是学生,那么小王是否参加了数学竞赛?5. 要么是A要么是B,已知A是错误的,那么是什么?二、类比推理类1. 鸟()之于飞翔,正如鱼()之于游泳。
2. 书()之于知识,正如地图()之于路线。
3. 太阳()之于光明,正如月亮()之于夜晚。
4. 老师是学生的(),正如医生是病人的()。
5. 红色()之于热情,正如蓝色()之于宁静。
三、逻辑排序类1. A. 小明起床B. 小明吃早餐C. 小明去上学D. 小明做作业2. A. 播种B. 浇水C. 收获D. 施肥3. A. 提交报告B. 调查研究C. 分析数据四、逻辑谬误识别类1. 甲:所有的猫都喜欢吃鱼。
乙:你家的猫不喜欢吃鱼,所以甲的说法是错误的。
2. 甲:今天天气晴朗,适合户外活动。
乙:今天阴天,所以甲的说法是错误的。
3. 甲:努力学习可以取得好成绩。
乙:我努力学习,但成绩还是不好,所以甲的说法是错误的。
五、逻辑应用类1. 小明、小华、小丽三人参加比赛,小明说:“我不是一名。
”小华说:“我是第一名。
”小丽说:“我不是第一名。
”请问比赛的名次如何排列?2. 有四个人分别住在不同楼层,甲说:“我住在第二层。
”乙说:“我住在第三层。
”丙说:“我住在第四层。
”丁说:“我住在第一层。
”如果他们中只有一个人说了真话,那么他们分别住在哪一层?3. 有三个房间,分别放着苹果、香蕉和橘子。
每个房间门口都有一盏灯,其中一盏灯下放着正确的水果。
现在,你只能打开一盏灯,并且只能进入一个房间,如何确保拿到正确的水果?六、逻辑悖论类1. 一个村庄里,所有人都说谎。
一位旅行者来到村庄,询问村民:“你们这里的人是说谎的吗?”村民回答:“不是。
考验罗辑思维的题目

考验罗辑思维的题目
以下是一些可以考验逻辑思维的题目:
1.猜数字:甲乙丙丁四人,分别拥有1、2、3、4这四个数字中
的两个数字。
他们各自猜了对方的数字,其中甲说:“乙有两个数码,一个是2,另一个数码我不知道。
”乙说:“丁和乙数码之和被3除余1。
”丙说:“丁和甲数码之和正好是10。
”丁说:“乙不是数码2。
”那么谁是2的持有者?2.三条路:在一个岛屿上有三条路通往不同的地方,你来到这
个岛屿,如何选择才能最大程度地确保自己能到达目的地?
3.称量水:如果你有无穷多的水和一个3公升的提捅和一个5
公升的提捅,如何准确地称出4公升的水?
4.两人路口:一个岔路口分别通向诚实国和说谎国。
来了两个
人,已知一个是诚实国的,另一个是说谎国的。
诚实国的人永远说实话,说谎国的人永远说谎话。
现在你要去说谎国,但不知道应该走哪条路,需要问这两个人中的哪一个?
5.12个球:有12个球,其中有一个球的重量与其他球不同,但
外观相同。
你只有一架天平,如何用三次称重的方法确定哪个球的重量是轻还是重?
6.九点十线:在9个点上画10条直线,每条直线上至少有三个
点,如何画?
7.时钟指针重合:在一天的24小时之中,时钟的时针、分针和
秒针完全重合在一起的时候有几次?都分别是什么时间?
8.四棵树的距离:如何种植4棵树木,使其中任意两棵树的距
离相等?
以上题目可以测试你的逻辑推理能力。
高二数学第一章 常用逻辑用语测试题及答案

高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。
常用逻辑用语测试题

选修2-1常用逻辑用语测试题一.选择题(每小题5分,共60分)1.一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )A 真命题与假命题的个数相同B 真命题的个数一定是奇数C 真命题的个数一定是偶数D 真命题的个数可能是奇数,也可能是偶数 2.(06天津)设集合M={x|0<x ≤3},N={x|0<x ≤2},那么“a ∈M”是“a ∈N”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 3.下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题②“正多边形都相似”的逆命题③“若m>0,则x 2+x -m=0有实根”的逆否命题④“若3-x 是有理数,则x 是无理数”的逆否命题 A ①②③④ B ①③④ C ②③④ D ①④ 4.(05北京)“m=21”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 5.“a ≠1或b ≠2”是“a +b ≠3”的() A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要 6.“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题( ) A 若x =a 且x =b ,则x 2-(a +b )x +ab =0B 若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0D 若x =a 或x =b ,则x 2-(a +b )x +ab =07.(06北京)若a 与b -c 都是非零向量,则“a ·b =a•c ”是“a ⊥(b -c )”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件8.(07山东)命题“对任意的R x ∈, 0123≤+-x x ”的否定是( ) A 不存在R x ∈,0123≤+-x x B 存在R x ∈,0123≤+-x xC 存在R x ∈, 0123>+-x xD 对任意的R x ∈,0123>+-x x9.(04天津)已知数列{a n },那么“对任意的n ∈N *,点P n (n,a n )都在直线y=2x+1上”是“{a n }为等差数列”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件10.数列{a n }的前n 项和S n =2•3n-a,“a=2”是“数列{a n }为公比等于3的等比数列”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 11.已知p :{}0⊆∅,q :∅⊆∅,则命题q p ∨, q p ∧和p ⌝形式的命题中,真命题个数为( )A0 B1 C2 D312.(07湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s的必要条件,现有下列命题:①r 是q 的充要条件; ②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④┐p 是┑s 的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 A ①④⑤ B ①②④ C ②③⑤ D ②④⑤ 二.填空题(每小题4分,共16分) 13.命题“若ab=0,则a 、b 至少有一个为0”的的逆否命题是14.用符号“∀”与“∃”表示含有量词的命题: (1)实数的平方大于等于0_____(2)存在一对实数,使2x +3y +3>0成立_________ 15.关于x 的方程062)1(22=++-+a x a x 有一正一负两实数根的充要条件是 16.集合}1{>=x x A ,}2{<=x x B ,则“B x A x ∈∈或 ”是“B A x ∈”的 条件 三.解答题(共74分) 17.写出命题:“若1<m ,则042=++m x x 有实数根”的逆否命题,并判断真假,给出理由18.若022>++bx ax 的充要条件是⎭⎬⎫⎩⎨⎧<<-3121x x ,试求a+b 的值19. 01,0200>-+∈∃x ax R x ,求a 的取值范围20.ABC ∆中A ,B 的对边分别是a ,b ,证明:A>B 的充要条件是sinA>sinB21.已知a>0且a ≠1,设p:函数y =a x在(-∞,+∞)上是减函数;q:方程0212=++x ax 有两个不等的实数根.若“p ∧q ”为假命题,“p ∨q ”为真命题,求a 的取值范围22.已知2311:≤--x p , 012:22≤-+-m x x q ,且p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围答案CBBAB DCCACC CB13.若a ≠0且b ≠0,则ab ≠0 14.(1)∀R x ∈,02≥x(2) ∃(x,y)∈{(x,y)∣x ∈R ,y ∈R},2x+3y+3≥0 15.a<-316.必要不充分17.若042=++m x x 无实数根,则1≥m ,真命题18.-14 19.a>-1/4 20.略21.1/2≤a<122.m ≤-9,或m ≥9。
面试逻辑测试题

面试逻辑测试题1. 逻辑推理题题目:一个岛上住着两种人,一种人总是说真话,另一种人总是说谎。
你只能问一个问题来区分这两种人。
请问你会问什么?2. 分类题题目:以下哪些是逻辑谬误的例子?A. 因为所有的狗都是哺乳动物,所以所有的哺乳动物都是狗。
B. 我昨天吃了一个苹果,今天也吃了一个苹果,所以明天我还会吃一个苹果。
C. 因为A是B,B是C,所以A是C。
D. 他总是迟到,所以他不是一个可靠的人。
3. 条件逻辑题题目:如果今天是星期五,那么小明会去打篮球。
今天是星期五,但是小明没有去打篮球。
根据这些信息,以下哪个结论是正确的?A. 小明可能生病了。
B. 小明不喜欢打篮球了。
C. 小明今天有其他事情要做。
4. 分析题题目:一个逻辑学家在前往会议的路上遇到了一个岔路口,每个路口都有一个指示牌,一个指示牌总是说真话,另一个总是说谎。
指示牌A说:“如果你问我哪条路通向会议,我会指向左边。
”指示牌B 说:“不要相信指示牌A,它总是说谎。
”请问哪条路通向会议?5. 数学逻辑题题目:一个数字序列是1, 2, 4, 7, 11... 这个序列的下一个数字是什么?6. 假设题题目:如果所有的鸟都会飞,并且企鹅是一种鸟,那么企鹅会飞吗?7. 逻辑游戏题题目:有五个房子排成一排,每个房子的颜色都不同,并且住在不同颜色房子里的人有不同的国籍。
你能根据以下线索找出谁喝什么饮料,养什么宠物吗?- 英国人住在红色房子里。
- 瑞典人养狗作为宠物。
- 丹麦人喝茶。
- 绿色房子在白色房子的左边。
- 喝咖啡的人住在黄色房子里。
- 住在中间房子里的人喝牛奶。
- 挪威人住在第一间房子。
- 养马的人住在旁边喝咖啡的人的房子里。
8. 悖论题题目:一个著名的悖论是“这句话是假的。
”如果这句话是真的,那么它就是假的;如果这句话是假的,那么它就是真的。
这个悖论说明了什么?9. 决策题题目:你面前有两个按钮,按下第一个按钮你将得到100美元,按下第二个按钮你有50%的机会得到200美元,50%的机会什么也得不到。
逻辑测试题目及答案

逻辑测试题目及答案1. 如果所有的猫都会爬树,而Tom是一只猫,那么Tom会爬树吗?A. 会B. 不会C. 不确定D. 以上都不是答案:A2. 假设在一个房间里,所有的人都是医生,所有的医生都戴眼镜。
如果John戴眼镜,那么John是医生吗?A. 是B. 不是C. 不确定D. 以上都不是答案:C3. 以下哪项陈述是逻辑上正确的?A. 如果今天下雨,那么地面会湿。
B. 如果今天不下雨,那么地面不会湿。
C. 如果地面湿了,那么今天下雨了。
D. 如果地面不湿,那么今天没有下雨。
答案:D4. 一个逻辑上有效的论证是:A. 一个前提为假,结论为假的论证。
B. 一个前提为真,结论为假的论证。
C. 一个前提为假,结论为真的论证。
D. 一个前提为真,结论为真的论证。
答案:D5. 如果所有的苹果都是水果,而所有的水果都是食物,那么苹果是食物吗?A. 是B. 不是C. 不确定D. 以上都不是答案:A6. 如果一个命题的否定是真的,那么原命题是:A. 真的B. 假的C. 不确定D. 以上都不是答案:B7. 以下哪个选项是“如果P,则Q”的逆否命题?A. 如果非Q,则非PB. 如果Q,则PC. 如果非P,则非QD. 如果P,则非Q答案:A8. 如果一个逻辑论证的前提都为真,但结论为假,那么这个论证是:A. 有效的B. 无效的C. 有效的,但结论不是由前提推导出来的D. 以上都不是答案:B9. 以下哪个选项是“如果P,则Q”的逆命题?A. 如果非Q,则非PB. 如果Q,则PC. 如果非P,则非QD. 如果P,则Q答案:B10. 如果一个命题的逆命题是真的,那么原命题也是真的吗?A. 是B. 不是C. 不确定D. 以上都不是答案:C。
逻辑三十道测试题答案

逻辑三十道测试题答案-、单项选择题1. 以下哪项不是逻辑学的基本概念?A. 命题B. 推理C. 假设D. 变量答案:D2. 逻辑推理中的“充分条件”指的是:A. 有之足够,无之不足B. 有之不足,无之足够C. 既不充分也不必要D. 既不必要也不充分答案:A3. "如果今天下百,那么地面会湿”这句话中的“今天下酉”是:A. 充分条件B. 必要条件C. 既非充分也非必要条件D. 条件的否定答案:A4. 在逻辑学中,所谓的"谬误”是指:A. 逻辑的有效推理B. 无效的推理C. 语法错误D. 拼写错误答案:B5. "所有人都是凡人,苏格拉底是人”这个推理的结论是:A. 苏格拉底是凡人B. 苏格拉底不是人C. 所有人都是凡人D. 苏格拉底不是神答案:A6. 以下哪个选项是演绎推理的例子?A. 因为昨天下百,所以地面湿了B. 因为地面湿了,所以昨天可能下可C. 苏格拉底是人,且所有人都会死,所以苏格拉底会死D. 许多科学家都是男性,因此所有男性都是科学家答案:C7. 逻辑等价表达式中,“非P"与"P的否定":A. 表示不同的含义B. 是完全不同的概念C. 表示相同的意义D. 只在特定条件下相同答案:C8. "如果A,则B"与"A仅当B"之间的区别是:A. 前者是后者的逆否命题B. 前者是后者的必要条件C. 前者是后者的充分条件D. 两者表达相同的含义答案:A9. 在逻辑学中,“归纳推理”是基于:A. 个别事例得出普遍结论B. 普遍事实得出个别结论C. 假设得出证据D. 证据得出假设答案:A10. "所有金子都是金属”这个命题中的“金子”是:A. 属性B. 谓词C. 主词D. 宾词答案:C二、多项选择题11. 以下哪些选项属于逻辑谬误?A. 诉诸权威B. 诉诸情感C. 归纳法D. 偷换概念答案:A, B, D12. 逻辑学中的“三段论“包括哪些部分?A. 大前提B. 小前提C. 结论D. 假设答案:A, B, C13. 以下哪些原则是有效推理必须遵守的?A. 形式有效B. 内容真实C. 结构合理D. 论据充分答案:A, C14. 在逻辑学中,哪些是常见的推理形式?A. 演绎推理B. 归纳推理C. 类比推理D. 因果推理答案:A, B, C三、判断题15. 逻辑学是研究有效推理的学科。
常用逻辑用语练习题

常用逻辑用语练习题逻辑用语是数学和哲学中非常重要的工具,它帮助我们清晰地表达思想和论证。
以下是一些常用的逻辑用语练习题,旨在帮助学生熟悉和掌握这些基础概念。
# 练习题1:命题逻辑1. 给出命题P:今天是星期三。
命题Q:明天是星期四。
写出这两个命题的逻辑表达式。
2. 判断命题P和Q的逻辑关系,是互斥的、等价的还是既不互斥也不等价?3. 写出命题P或Q的逻辑表达式。
4. 写出命题P且Q的逻辑表达式。
5. 写出命题非P的逻辑表达式。
# 练习题2:条件语句1. 将“如果今天是星期三,那么明天是星期四”这个条件语句转化为逻辑表达式。
2. 给出一个条件语句的例子,并说明其真假条件。
3. 判断以下条件语句的真假:如果今天是星期一,那么明天是星期二。
# 练习题3:逻辑等价1. 证明以下两个逻辑表达式是等价的:(P → Q) ≡ ¬P ∨ Q。
2. 给出一个逻辑表达式,并找出它的逻辑等价表达式。
3. 使用逻辑等价规则简化以下表达式:(P ∨ Q) ∧ (¬P ∨ ¬Q)。
# 练习题4:逻辑推理1. 已知命题P:如果下雨,我就不去跑步。
命题Q:今天下雨了。
请使用逻辑推理判断我今天是否去跑步。
2. 给出一个包含两个前提的逻辑推理问题,并解答它。
3. 使用逻辑推理证明以下命题:如果所有的人都是动物,那么苏格拉底是动物。
# 练习题5:逻辑运算1. 给出命题P:今天是晴天。
命题R:我会去公园。
写出命题P且R的逻辑表达式。
2. 写出命题P或R的逻辑表达式。
3. 使用逻辑运算符,将命题P和R组合成一个复合命题,并判断其真假。
# 练习题6:逻辑谬误1. 识别并解释以下论证中的逻辑谬误:所有的鸟都会飞,企鹅是鸟,所以企鹅会飞。
2. 给出一个常见的逻辑谬误的例子,并解释为什么它是谬误。
3. 判断以下论证是否包含逻辑谬误:如果一个学生学习努力,他就会取得好成绩。
小明学习努力,所以小明会取得好成绩。
# 练习题7:量化逻辑1. 将“有些学生喜欢数学”这个命题转化为量化逻辑表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用逻辑用语测试一. 选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中, 只有一项是符合题目要求的) 1.下列语句不是命题的有( )① 疋_3 = 0;②与一条直线相交的两直线平行吗?③3 + l=5;®5x -3>62.(改编题)命题“a、b 都是奇数,则a+b 是偶数”的逆命题是( )A. a 、b 都不是奇数,则a+b 是偶数B. a+b 是偶数,则a 、b 都是奇数C. a+b 不是偶数,则a 、b 都不是奇数D. a+b 不是偶数,则a 、b 不都是奇数3. 命题“若a>b,则心2>久_(这里b 、c 都是实数)与它的逆命题、否命题、逆(改编题)下列有关命题的说法中错误的个数是( ①若pfq 为假命题贝J/入q 均为假命题② "x = 1喘“F - 3x + 2 = 0啲充分不必要条件③ 命题“若疋一 3x + 2 = 0,则x =广的逆否命题为亠若x H 1,则F - 3x + 2 H (T ④ 对于命题 p : 3.V e R,使得X 2+x + l <0侧-1/?: Vxe R,均有x 2+x + l >0 A 4 B 3 C 2 DI6. 已知命题p:Hx^R,x 2+2ax+a<0.若命题"是假命题,则实数“的取值范囤是( )A. Y ,0] u [1,SB.[0J]C. Y ,0) u (h SD.(OJ) 7.(原创题)= 线心+ 2y = 0垂直于直线x+by = \^的()bC •必要而不充分条件D.既不充分也不必要条件B.①②③C ・®@④D ・@®④4. 否命题中,真命题的个数为 A. 4 个B. 3 个C. 2 个D.命题“若AUB=A,贝lj AnB=B M 的否命题是( A ・B ・C ・D ・若 AUBHA, 若 AQB = B, 若 AQBHA, 若 AUB = B, 则ACBHB 则 A U B=A 则AUBHB 则AAB=A 5. A ・充分而不必要条件 B.充分必要条件8.用反证法证明命题:“a, bWN, ab能被5整除,那么a, b中至少有一个能被5整除”时,假设的内容是()A・a. b都能被5整除B・a、b都不能被5整除C.a、b不都能被5整除D.a不能被5整除,或b不能被5整除9.圆x2 + y2 = \与直线y = kx + 2没有公共点的充要条件是()A.^ eB.k s (―00,—5/2)(J(>/T,+<X))C・k 已(—y/3^yf3) D・k 已(YO,—10•命题/€VxGR,x2 -x + 2>0"的否定是()3 —x + 2n0 V GR,X2 7 + 2X03eR,x2-x + 2<0 V GR,X2 -x + 2<011、在A48C中,设命题p :"—"一「,命题q:MBC是等边二角形,那么命题psin B sin C sin A是命题q的()A.充要条件B.必要不充分条件c •充分不必要条件D・即不充分也不必要条件12、设命题":函数f(x) = lg(心—x +卜)的定义域为心命题q:不等式3* -9x<a对一切巫实级均成立•如果命题“卩或为真命题,且“卩且広‘为假命题,则实数"的取值范围是()A.(l,+oo)B.[O,1]C.[O,F)D.(O,1)二、填空题(共4小题,每小题3分共12分,把答案填在相应的位置上)13.设p、r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么P是t的条件,r是t的条件.(用充分、必要、充要填空)14.“末位数字是0或5的整数能被5整除"的否進形式是____________________________________ ;否命题是______________________________________ .15.(原创题)若命题TxCR,石"叶1<0”是假命题,则实数"的取值范围是_________________ •16.给出下列命题:(1)命题“若b2-4ac<0,则方程ax2+bx+c=0 (aHO)无实根”的否命题(2)命题“AABC中,AB二BC二CA,那么AABC为等边三角形”的逆命题(3)命题“若a>b>0,则需〉训>0”的逆否命题(4)“若m>\,贝T_2 (加+1) x+ S—3) >0的解集为R"的逆命题貝中真命题的序号为__________ .三. 解答题:(本大题四个小题,共52分,解答应写出文字说明,证明过程或演算步骤)17.(本小题10分)写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)两条平行线不相交(2)两条对角线不相等的平行四边形不是矩形⑶若 xM10,则 2x+l>2018.(改编题)(本小题10分)若非"是"的充分不必要条件,求"的取值范围.19.(本小题10分)已知命题":方程以+愿+1=0有两个不等的负根:命题⑺方程4W+4伽一2)x+1=0无实根.若“p或彳”为真,“P且/为假,求加的取值范围.20.(本小题10分)证明:已知"与”均为有理数,且、方和都是无理数,证明需+、厉也是无理数. 21.(本小题12分)已知下列三个方程:x2+4ax—4a+3=0, x~ + (a— l)x+a^=O, x?+2ax—2a=0 至少有一个方程有实根,求实数a的取值范围【挑战能力】★ 1.(改编题)在A4BC中,“丽•妊=臥•茕”是4<|AC|=|BC|"的()A.充分而不必要条件C・充分必要条件B.必要而不充分条件D.既不充分也不必要条件★2 (原创题)命题p:若a, beR,若问+问> 1则|« + /?| > 1,命题q:函数y = ^|x-l|-2 的建义域是(—8,— l]U卜+ 8),则下列命题()A. pvg假 B . PM真 C. 〃真,g假 D . p假,彳真★3.已知cbHO,求证(i+b = 1的充要条件是/ +1/ +ab-a2 -b2 =0.常用逻辑用语测试题参考答案一、选择题1.【答案】C【解析】①④无法判断英真假,②为疑问句,所以只有③为命题.2.【答案】B【解析】“都是”的否泄是"不都是” •3.【答案】C【解析】原命题为假命题,当c=0时不成立,故逆否命题也为假命题;逆命题与否命题都是真命题:另外四种命题中真命题与假命题的个数只能是0, 2, 4,不可能是3个.已知命题刚I*%:/ -2x + \-a2 > (\a > 0),4. 【答案】A【解析】“AUB=A”的否泄是“AUBHA”而不是“ACBHA” 5. 【答案】D【解析】由命题真假性的可知A 是错的. 6. 【答案】D【解析】p 为假,知“不存在x^R ,使x 2+ lax + a<0 "为真,即“ Vxe/?.x 2+ 2cix + " > 0 ”为真,•: △=4"' 一4。
v 0 => 0 v “ v 1.7. 【答案】A【解析】由卍=-2枕直线ax + 2y = 0与直线x+by = \的斜率均为-1,两直线垂直;当. ba = O.b = 0时两直线垂直。
8. 【答案】B【解析】反证法证明命题应假设结论不正确•“至少有一个”的否泄是“一个也没有”. 9. 【答案】C【解析】圆与直线y=kx+2没有公共点,得圆心(0,0)到直线,到直线歹=尬+2的距离,-> 1,所以R e (-石,的). yl\ + k 210. 【答案】C【解析】考查含有全称量词的命题的否定. 11. 【答案】A【解析】旦=丄=丄,即竺沁=竺凹仝sinAsinCcin 彷① sin 3 sinC sin A sinB sinC 2/? sin BsinC=° - sin Asin B = sin 2c ②,①-②, sin A W (sin C - sin B)(sin A + sinB + sin C) = 0,则 sinC = sin A. A C = A 同理得 C = B.:.A = B = C,则AA3C 是等边三角形•反之成立.12.【答案】B令 y = 3X -9X =-(y--)2 2 + 丄,由 x > 0得3" > 1 ,••• y = 3” 一9“ 的值域为(YO ,0). 4•••若命题q 为真,则a>0.由命题或”为真JT"且『为假,得命题八q —真一假当p 真【解析】若命题"为真,即cix 2-x +-a 4 a >0> 0>0恒成立•则彳 ,有< ,△<0 1-6/- <0q假时,a不存在;当p假q真时.0 <a<\.二、填空题(共4小题,每小题4分共16分,把答案填在相应的位置上)13.【答案】充分充要【解析】由题意可画出图形:由图形可看出p是t的充分条件,r是t的充要条件.14.【答案】否左形式:末位数是0或5的整数,不能被5整除;否命题:末位数不是0或5的整数,不能被5整除•【解析】否立形式只否泄结论:否命题否左条件与结论。
15.【答案】-2<a<2.【解析】由△<()得:cr-4<0.:.-2<a<2.16.【答案】(1) (2) (3)【解析】三. 解答题:(本大题四个小题,共52分,解答应写出文字说明,证明过程或演算步骤)17.【解析】(1)逆命题:若两条直线不相交,则它们平行,为真命题.否命题:若两条直线不平行,则它们相交为真命题. 逆否命题:若两条直线相交,则它们不平行为真命题.(2)逆命题:若平行四边形不是矩形,则它的两条对角线不相等,为真命题.否命题:若平行四边形两条对角线相等,则它是矩形,为真命题. 逆否命题:若平行四边形为矩形,则它的两条对角线相等,为真命题.(3)逆命题:若2x4-1 >20,则x鼻10,为假命题.否命题:若XV10,则2X+1W20,为假命题.逆否命题:若2X+1W2O,则xV 10,为假命题.18.【解析】一)p:|4-x|>6,x> 10,或x<-2,A = {xlx> 10,或r<一2}q:x2—2x+\—a2 >0, x> 1—= x> l + 1—\-a >-2而即h+«<io,.-.o<6/<3« >0A = ;T> ~ — 4 > 019.【解析】若方程/+亦・+1二0有两不等的负根,则解得小>2,即命题p: m>2若方程4F+4伽一2)x+l=0无实根,则 J= 16(/H~2)2— 16= 16(/?r—4/??+3)<0 解得:\<m<3.即牛\<m<3.因〉或/为真,所以八g 至少有一为真,又“P 且g”为假,所以命题"、q 至少有一为假,因此,命题八g 应一真一假,即命题卩为真,命题g 为假或命题p 为假,命题g 为真.m > 2m < 1或加> 3 ■或<1 < /7Z < 3 解得:“23或1V”庄2・ 20.【解析】假设石+丽是有理数,则(、方+丽)(需-丽)*b 由 6/>0. /?>0 则 yfa + Qb >0 即 4a + y/b *0 /• >[ci - yfb = ―— — °:a,bwQ 且 y[ci +y/bE Qyja +Jb -i ———wQ 即(4a-y[b ) eQ yja+y/b 这样(Ja +y[b ) + (-Ja -yfb ) =2\fa eQ从而需wQ (矛盾)•••岛+乔是无理数.21・【解析】假设三个方程都没有实根,则: A ] =(4a)2-4(-4a+3)<0 由< A 2 =(a —l)2—4a 2<0 A 3 =(2a)2-4XlX(-2a)<04a 2+4a-3<0 得 ^3a 2 + 2a-l<0 a 2+2a<0 解集:一 l<aV0,・•・所求实数a 的取值范围是:a£-l 或a20【挑战能力】 1. 【答案】C 【解析】•.•而•走=丽•茕 /. |AB ||AC |COS A = |^X||BC |COS B/. |/ic|cos A = |BC|cosB 设 AD 为 AABC 的高线,则.-.|AC | cos A = AD.|^c|cos B = BD :.^BCD = 44CD,/. BC = AC 2. 【答案】:D 【解析】因为\a+b\<\a\+\b\y \a+b\>l:.\a\ + \b\>l ;所以卩假。