5数列的综合运用
高三一轮复习北师大版5.5 数列的综合应用

[难点正本
疑点清源]
1.用函数的观点理解等差数列、等比数列 (1)对于等差数列,由an=a1+(n-1)d=dn+(a1-d),当 d≠0时,an是关于n的一次函数,对应的点(n,an)是位于直 线上的若干个离散的点.当d>0时,函数是增函数,对应的 数列是递增数列;同理,d=0时,函数是常函数,对应的 数列是常数列;d<0时,函数是减函数,对应的数列是递减 数列. 若等差数列的前n项和为Sn,则Sn=pn2+qn (p、q∈R).当 p=0时,{an}为常数列;当p≠0时,可用二次函数的方法 解决等差数列问题.
要点梳理
1.等比数列与等差数列比较
不同点 (1)强调从第二项起每一 等差 数列 项与前一项的差; (2)a1 和 d 可以为零; (3)等差中项唯一 (1)强调从第二项起每一 等比 数列 项与前一项的比; (2)a1 与 q 均不为零; (3)等比中项有两个值 相同点 (1)都强调从第二项 起每一项与前一项 的关系; (2)结果都必须是同 一个常数; (3)数列都可由 a1, d 或 a1,q 确定
3 2 45 d 5a1 d 50, 3a1 2 2 2 (a1 3d ) a1 (a1 12d ),
a1 3, 解得 d 2,
∴an=a1+(n-1)d=3+2×(n-1)=2n+1,即an=2n+1.
a2 =2×2n+1=2n+1+1, (2)由已知得,bn=
5.5 数列的综合应用
考 1
点
考纲解读 以数列知识为载体考查数 学建模和运用数列知识解 决实际问题的能力.
运用数列的概念、公式、 性质解决简单的实际问题
数列的综合应用问题既能考查潜能,又具有较强的区分度,创新应用问题选 材也可以用数列为背景,在近几年的高考试题解答题中,有关数列的试题出现的 频率较高,不仅可与函数、方程、不等式相关联,还可与三角、几何、复数等知 识相结合,题目新颖,难度较大,对数学思想方法的运用和各种数学能力的要求较 高. 在复习中要重视紧扣等差、等比数列的性质和定义,做到合理地分析,灵巧
2025届高考数学一轮复习教案:数列-数列的综合应用

第六节数列的综合应用【核心考点·分类突破】考点一等差、等比数列的综合问题(规范答题)[例1](12分)(2023·新高考Ⅰ卷)设等差数列{a n}的公差为d,且d>1,令b n=2+,记S n,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99-T99=99,求d.审题导思破题点·柳暗花明(1)思路:根据等差数列的定义,灵活运用给定的条件,即可得到所求等差数列的通项公式;同时帮助学生理解题设条件,以顺利进入第(2)问的情境.(2)思路:所给题设条件“{b n}为等差数列”要求学生能够灵活转化为求解数列{a n}中公差与首项的关系,可以采用通性通法来解答.规范答题微敲点·水到渠成【解析】(1)因为3a2=3a1+a3,所以3d=a1+2d,解得a1=d,[1分]关键点根据已知条件,列方程求出首项a1和公差d的关系.所以S3=3a2=3(a1+d)=6d,又T3=b1+b2+b3=2+3+4=9,所以S3+T3=6d+9=21,即2d2-7d+3=0,解得d=3或d=12(舍去),[3分]所以a n=a1+(n-1)d=3n,所以的通项公式为a n=3n.[4分]阅卷现场(1)没有过程,只有a n=3n得1分;(2)结果正确时漏写a1=d不扣分;(3)d=12漏舍只得1分.(2)因为b n=2+,且为等差数列,所以2b2=b1+b3,即122=21+123,[6分]所以61+-11=61+2,所以12-3a1d+2d2=0,解得a1=d或a1=2d.[8分]传技巧取的前3项,利用等差中项2b2=b1+b3,得到首项a1和公差d之间的关系.解法一:①当a1=d时,a n=nd,所以b n=2+=2+B=r1,S99=99(r99)=99×50d,T99=99×51.因为S99-T99=99,所以99×50d-99×51=99,关键点利用S99-T99=99,列出关于d的方程,结果注意d>1.即50d2-d-51=0,解得d=5150或d=-1(舍去).[10分]②当a1=2d时,a n=(n+1)d,所以b n=2+=2+(r1)=,避易错讨论另一种情况,不可遗漏.S99=99(2r100)=99×51d,T99=99×50.因为S99-T99=99,所以99×51d-99×50=99,即51d2-d-50=0,解得d=-5051(舍去)或d=1(舍去).[11分]综上,d=5150.[12分]解法二:因为S99-T99=99,由等差数列的性质知,且99a50-99b50=99,即a50-b50=1,传技巧利用等差数列的性质,可以简化运算过程.列方程求出a50,注意由d>1可知a n>0.所以a50-255050=1,即a502-a50-2550=0,解得a50=51或a50=-50(舍去).[10分]①当a1=d时,a50=a1+49d=50d=51,解得d=5150.②当a1=2d时,a50=a1+49d=51d=51,解得d=1,与d>1矛盾,应舍去.[11分]综上,d=5150.[12分]解法三:因为,都是等差数列,且a nb n=n(n+1),=B=1(+1).[8分]所以可设=1(+1)=B或敲黑板构造新数列要考虑全面,少写一组不得分.(i)当a n=1(n+1),b n=kn时,S99-T99=1(2+3+…+100)-k(1+2+…+99)=99,即50k2+k-51=0,解得k=-5150或k=1,因为d=k>1,所以均不合题意.[10分](ii)当a n=kn,b n=1(n+1)时,S99-T99=k(1+2+…+99)-1(2+3+…+100)=99,即50k2-k-51=0,解得k=5150或k=-1.因为d=k>1,所以k=5150,所以d=5150.[12分]拓思维高考命题强调“多思考,少运算”的理念,试题面向全体学生,为考生搭建展示数学能力的平台.本解法根据给出的条件,巧妙的构造新的数列,突破常规解法,灵活运用数列知识,解题方法“高人一招”,解题速度“快人一步”.【解题技法】等差、等比数列综合问题的求解策略1.基本方法:求解等差、等比数列组成的综合问题,首先要根据数列的特征设出基本量,然后根据题目特征使用通项公式、求和公式、数列的性质等建立方程(组),确定基本量;2.基本思路:注意按照顺序使用基本公式、等差中项、等比中项以及证明数列为等差、等比数列的方法确定解题思路.【对点训练】(2022·全国甲卷)记S n为数列{a n}的前n项和.已知2+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)由2+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②-①,得2a n+1+2n+1=2a n+1(n+1)-2a n n+1,化简得a n+1-a n=1,所以数列{a n}是公差为1的等差数列.(2)由(1)知数列{a n}的公差为1.由a4,a7,a9成等比数列,得72=a4a9,即(a1+6)2=(a1+3)(a1+8),解得a1=-12,所以S n=-12n+(-1)2=2-252=12(n-252)2-6258,所以,当n=12或n=13时,(S n)min=-78.考点二数列与函数、向量的综合[例2](1)(2023·龙岩模拟)已知函数f(x)=13x3+4x,记等差数列{a n}的前n项和为S n,若f(a1+2)=100,f(a2022+2)=-100,则S2022等于()A.-4044B.-2022C.2022D.4044【解析】选A.因为f(-x)=-13x3-4x=-f(x),所以f(x)是奇函数,因为f(a1+2)=100,f(a2022+2)=-100,所以f(a1+2)=-f(a2022+2),所以a1+2+a2022+2=0,所以a1+a2022=-4,所以S2022=2022(1+2022)2=-4044.(2)数列满足a1=1,a2=5,若m=1,r1+1,n=+r2,-2,m·n=0,则数列的通项公式为________.【解析】由已知m·n=0,得1×+r2-2r1+1=0,即r2-r1-r1-=2,则r1-是首项为a2-a1,公差为2的等差数列,则a n+1-a n=2-1+-1×2=2+1,于是a n=--1+-1--2+…+2-1+a1=2n+2-1+…+2×2+1=2+-1+…+2+1=n2+n-1.答案:a n=n2+n-1【解题技法】数列与函数、向量的综合问题的求解策略(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形;(3)涉及数列与三角函数有关的问题,常利用三角函数的周期性等特征,寻找规律后求解;(4)涉及数列与向量有关的综合问题,应根据条件将向量式转化为与数列有关的代数式求解.【对点训练】1.已知数列{a n}满足a n+2-a n+1=a n+1-a n,n∈N*,且a5=π2,若函数f(x)=sin2x+2cos22,记y n=f(a n),则数列{y n}的前9项和为()A.0B.-9C.9D.1【解析】选C.由题意知数列{a n}是等差数列.因为a5=π2,所以a1+a9=a2+a8=a3+a7=a4+a6=2a5=π.f(x)=sin2x+2cos22,所以f(x)=sin2x+cos x+1,所以f(a1)+f(a9)=sin2a1+cos a1+1+sin2a9+cos a9+1=2.同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2.因为f(a5)=1,所以数列{y n}的前9项和为9.2.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为________.【解析】因为a4+λa10+a16=15,所以a1+3d+λ(a1+9d)+a1+15d=15,令λ=f(d)=151+9-2,因为d∈[1,2],所以令t=1+9d,t∈[10,19],因此λ=f(t)=15-2.当t∈[10,19]时,函数λ=f(t)是减函数,故当t=10时,实数λ有最大值,最大值为f(10)=-12.答案:-12考点三数列与不等式的综合【考情提示】数列不等式作为考查数列综合知识的载体,因其全面考查数列的性质、递推公式、求和等知识而成为高考命题的热点,重点考查不等式的证明、参数范围、最值等.角度1数列中的最值[例3]公比为2的等比数列{a n}中存在两项a m,a n满足a m a n=1612,则1+4的最小值为()A.32B.53C.43D.1310【解析】选A.由等比数列的通项公式知a m=a1×2m-1,a n=a1×2n-1,由a m a n=1612,可得12×2m+n-2=1612,易知a1≠0,故2m+n-2=16,解得m+n=6,则1+4=16(m+n)·(1+4)=16(1+4++4)≥16(5+2)=32(当且仅当m=2,n=4时取等号).角度2数列中的不等式证明[例4](2023·宁德模拟)已知数列,满足b n=a n+n2,a1+b1=3,a2+b2=8,且数列是等差数列.(1)求数列的通项公式;(2)n项和为S n,求证:12≤S n<1.【解析】(1)由b n=a n+n2得b1=a1+1,b2=a2+4,代入a1+b1=3,a2+b2=8得2a1+1=3,2a2+4=8,解得a1=1,a2=2.又因为数列为等差数列,故公差为d=a2-a1=1,因此a n=n,b n=n+n2.(2)由(1)可得b n=n+n2,所以1=1r2=1-1r1,所以S n=11+12+13+…+1=(1-12)+(12-13)+(13-14)+…+(1-1r1)=1-1r1,又因为n∈N*,所以0<1r1≤12(n=1时等号成立),所以12≤1-1r1<1,即12≤S n<1.角度3数列中的不等式恒成立[例5]已知数列{a n}的通项公式为a n=5-n,其前n项和为S n,将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n.若存在m∈N*,使对任意n∈N*,S n≤T m+λ恒成立,则实数λ的取值范围是()A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(2,+∞)【解析】选D.依题意得S n=(4+5-)2=(9-)2,根据二次函数的性质知,当n=4,5时,S n 取得最大值为10.另外,根据通项公式得数列{a n}的前4项为a1=4,a2=3,a3=2,a4=1,观察易知抽掉第二项后,余下的三项可组成等比数列,所以数列{b n}中,b1=4,公比q=12,所以T n=4(1-12)1-12=8(1-12),所以4≤T n<8.因为存在m∈N*,对任意n∈N*,S n≤T m+λ恒成立,所以10<8+λ,所以λ>2.【解题技法】数列与不等式交汇问题的解题策略(1)判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.(2)考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(3)数列中有关项或前n 项和的恒成立问题,常转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.【对点训练】1.(2023·重庆模拟)设a >0,b >0,若3是3a 与9b 的等比中项,则1+2的最小值为()A .92B .3C .32+2D .4【解析】选A .因为3是3a 与9b 的等比中项,所以32=3a ·9b =3a +2b ,所以a +2b =2,所以1+2=12·(1+2)·(a +2b )=12(5+2+2)≥12·(5+2)=92,当且仅当a =b =23时取等号.2.数列{a n }满足a 1=14,a n +1=14-4,若不等式21+32+…+r2r1<n +λ对任何正整数n 恒成立,则实数λ的最小值为()A .74B .34C .78D .38【解析】选A .因为数列{a n }满足a 1=14,a n +1=14-4,所以反复代入计算可得a 2=26,a 3=38,a 4=410,a 5=512,…,由此可归纳出通项公式a n =2(r1),经验证,成立,所以r1=1+1(r2)=1+12(1-1r2),所以21+32+…+r2r1=n +1+12(1+12-1r2-1r3)=n +74-12(1r2+1r3).因为要求21+32+…+r2r1<n +λ对任何正整数n 恒成立,所以λ≥74.3.(2023·南京模拟)已知数列的前n 项和为S n ,a 1=2,(n -2)S n +1+2a n +1=nS n ,n ∈N *.(1)求数列的通项公式;(2)求证:112+122+…+12<716.【解析】(1)(n -2)S n +1+2a n +1=nS n ,则(n -2)S n +1+2(S n +1-S n )=nS n ,整理得到nS n +1=(n +2)S n ,故r1(r1)(r2)=(r1),,故(r1)=11×2=1,即S n=n(n+1).当n≥2时,a n=S n-S n-1=n(n+1)-n(n-1)=2n,验证当n=1时满足,故a n=2n,n∈N*.(2)12=142<142-1=12(12-1-12r1),故112+122+…+12<14+12(13-15+15-17+…+12-1-12r1)=14+12(13-12r1)<14+12×13=512<716.考点四数列在实际问题中的综合应用[例6](1)(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为B1B1=0.5,B1B1=k1,B1B1=k2,B1B1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.9【解析】选D.设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且B1+B1+B1+B1B1+B1+B1+B1=0.725,所以0.5+33-0.34=0.725,故k3=0.9.(2)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t倍.下列选项中,与t值最接近的是()A.11B.13C.15D.17【解析】选B.设鱼原来的质量为a,饲养n年后鱼的质量为a n,q=200%=2,则a1=a(1+q),a2=a1(1+2)=a(1+q)(1+2),…,a5=a(1+2)×(1+1)×(1+12)×(1+122)×(1+123)=40532a≈12.7a,即5年后,鱼的质量预计为原来的13倍.【解题技法】数列在实际应用中的常见模型等差模型如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差等比模型如果后一个量与前一个量的比是一个固定的非零常数,则该模型是等比模型,这个固定的数就是公比递推数列模型如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n项a n与第(n+1)项a n+1(或者相邻三项等)之间的递推关系还是前n项和S n 与前(n+1)项和S n+1之间的递推关系【对点训练】1.(2023·武汉模拟)南宋数学家杨辉为我国古代数学研究作出了杰出贡献,他的著名研究成果“杨辉三角”记录于其重要著作《详解九章算法》,该著作中的“垛积术”问题介绍了高阶等差数列.以高阶等差数列中的二阶等差数列为例,其特点是从数列中的第二项开始,每一项与前一项的差构成等差数列.若某个二阶等差数列的前4项为2,3,6,11,则该数列的第15项为()A.196B.197C.198D.199【解析】选C.设该数列为,则a1=2,a2=3,a3=6,a4=11.由二阶等差数列的定义可知,a2-a1=1,a3-a2=3,a4-a3=5,…所以数列r1-是以a2-a1=1为首项,公差d=2的等差数列,即a n+1-a n=2n-1,所以a2-a1=1,a3-a2=3,a4-a3=5,…,a n+1-a n=2n-1.将所有上式累加可得a n+1=a1+n2=n2+2,所以a15=142+2=198,即该数列的第15项为198.2.(2023·深圳模拟)将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去,最后挖剩下的就是一条“雪花”状的Koch曲线,如图所示.已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是()A.1681B.2081C.827D.1027【解析】选A.根据题意可知,每次挖去的三角形面积是被挖三角形面积的13,所以每一次操作之后所得图形的面积是上一次三角形面积的23,由此可得,第n次操作之后所得图形的面积是,即经过4次操作之后所得图形的面积是=1681.。
数列的综合应用教学设计

数列的综合应用教学设计数列的综合应用一、教学内容分析本节内容安排在《普通高中课程标准实验教科书数学必修5》(人教A版),第二章内容结束之后的综合练习。
在课本中没有专设章节。
内容从教材习题2.5中A组的第4题中体现。
本章五节内容分别讲授了等差数列、等比数列以及这两种数列的性质、通项公式、前N项和等基础内容。
让学生在此基础之上,了解高考中出现频率较多的一些特殊数列。
在实际教学中,本节内容应该分为五个阶段:第一阶段学生要充分掌握基本数列的知识点,可用提问的方式进行复习回顾。
第二阶段,对于特殊数列有关例题首先要引导学生观察,找到与基本数列的相似处,从而决定构造为基本数列中的等差数列或等比数列,大胆提出猜想。
第三阶段从猜想入手,开始构造。
运用基本数列的形式和性质得到新的数列。
构造出的新数列必须满足基本数列成立的条件。
验证猜想的正确性。
第四阶段根据题目要求从构造出的新数列找出所求项。
第五阶段,老师和学生一起归纳题型。
学生在老师的引导下结题,提高主动性,学习的灵活性。
从而提高对本节知识的兴趣。
二、学情分析对于高一年级的学生来说。
之前的学习中已经接触到了函数内容。
以及在本节内容的学习之前,已经有了数列的基础。
学生已经具备了一定的分析能力,函数构造基础等。
对于本节授课内容来说,学生在一般很难自己分析出来,有一定的难度。
所以需要老师的正确引导,但是在复习的基础上不宜直接灌输解题方法。
应该带领学生一起观察、分析、猜想、证明。
从而加深学生对本节内容的理解,也可让学生自己尝试找到新的解法,建立自己的思维模式。
三、设计思想在授课中,必须要求学生掌握基本数列(等差数列和等比数列)的内容。
以此引导学生,分析特殊数列。
并且根据之前学习三角函数时用到的“构造”理念。
将特殊数列构造为基本数列,再运用基本数列的知识点来解题。
课堂中,以例题分析为主,让学生学会观察特殊数列的结构,分析如何构造出适合的基本数列的形式。
讲课过程中,以启发性为主,让学生主动分析。
高考理科第一轮复习课件(5.5数列的综合应用)

1.设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数 列,则{an}的前n项和Sn=(
n 2 7n (A) 4 4 n 2 5n (B) 3 3
) (D)n 2+n
n 2 3n (C) 2 4
【解析】选A.设数列{an}的公差为d,则根据题意得
(2+2d)2=2·(2+5d),解得 d 1 或d=0(舍去),所以数列{an}
【变式备选】已知{an}是首项为19,公差为-2的等差数列,Sn
为{an}的前n项和. (1)求通项an及Sn. (2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn} 的通项公式及其前n项和Tn.
【解析】(1)因为{an}是首项为a1=19,公差d=-2的等差数
列,所以an=19-2(n-1)=-2n+21, Sn=-n2+20n. (2)由题意知bn-an=3n-1,所以bn=an+3n-1, 即bn=-2n+21+3n-1. Tn=Sn+(1+3+„+3n-1)
3n 2 11n 2 2 , n 2, 所以Sn 2 3n 11n 10, n 2, 2 2 4,
这个式子中n=2时两段函数值相等,
n 1,
故可以写为
Sn 3n 2 11n 10, n 2. 2 2
【互动探究】本例题(1)中将条件“S1,S2,S4成等比数列”改
第五节 数列的综合应用
数列的实际应用 (1)解答数列应用题的步骤. ①审题——仔细阅读材料,认真理解题意. ②建模——将已知条件翻译成数学(数列)语言,将实际问题转 化成数学问题,弄清该数列的结构和特征. ③求解——求出该问题的数学解. ④还原——将所求结果还原到原实际问题中.
数列综合题和应用性问题教案

数列综合题和应用性问题教案章节一:数列的概念和性质教学目标:1. 理解数列的定义及其基本性质。
2. 能够识别和表示不同类型的数列。
3. 掌握数列的通项公式和求和公式。
教学内容:1. 数列的定义及表示方法。
2. 数列的性质,如单调性、周期性等。
3. 数列的通项公式和求和公式。
教学活动:1. 通过实例介绍数列的定义和表示方法。
2. 引导学生探索数列的性质,如单调性、周期性等。
3. 讲解数列的通项公式和求和公式,并通过例题进行解释。
章节二:等差数列和等比数列教学目标:1. 理解等差数列和等比数列的定义及其性质。
2. 能够识别和表示等差数列和等比数列。
3. 掌握等差数列和等比数列的通项公式和求和公式。
教学内容:1. 等差数列和等比数列的定义及表示方法。
2. 等差数列和等比数列的性质,如单调性、周期性等。
3. 等差数列和等比数列的通项公式和求和公式。
教学活动:1. 通过实例介绍等差数列和等比数列的定义和表示方法。
2. 引导学生探索等差数列和等比数列的性质,如单调性、周期性等。
3. 讲解等差数列和等比数列的通项公式和求和公式,并通过例题进行解释。
章节三:数列的极限教学目标:1. 理解数列极限的概念及其性质。
2. 能够求解数列极限的问题。
3. 掌握数列极限的运算规则。
教学内容:1. 数列极限的定义及其性质。
2. 数列极限的求解方法。
3. 数列极限的运算规则。
教学活动:1. 通过实例介绍数列极限的定义和性质。
2. 引导学生学习数列极限的求解方法,如直接求解、夹逼定理等。
3. 讲解数列极限的运算规则,并通过例题进行解释。
章节四:数列的综合题型教学目标:1. 理解数列综合题型的概念及其解题方法。
2. 能够解决数列综合题型的问题。
3. 掌握数列综合题型的解题策略。
教学内容:1. 数列综合题型的概念及其解题方法。
2. 数列综合题型的常见类型和解题技巧。
3. 数列综合题型的解题策略。
教学活动:1. 通过实例介绍数列综合题型的概念和解题方法。
《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
高考数学一轮复习 第六章 第5讲 数列的综合应用配套课件 理 新人教A版
考点自测
1.若数列{an}为等比数列,则下面四个命题:
①{a2n}是等比数列; ②{a2n}是等比数列; ③a1n是等比数列; ④{lg|an|}是等比数列.其中正确的个数是________.
答案 3
2.(2012·南京一模)若数列{an}满足:lg an+1=1+lg an(n∈N*), a1+a2+a3=10,则lg(a4+a5+a6)的值为________.
答案 (-∞,7]
5.(2012·盐城第一学期摸底考试)设等差数列{an}满足:公差 d∈N*,an∈N*,且{an}中任意两项之和也是该数列中的 一项.若a1=35,则d的所有可能取值之和为________.
解析 由题意知,an=35+(n-1)d.对数列{an}中的任意两 项ar,as其和为ar+as=35+35+(r+s-2)d,设at=35+(t -1)d,则35+(r+s-2)d=(t-1)d,即35=(t-r-s+1)d. 因为r,s,t,d∈N*,所以35是d的整数倍,即d所有可能 取值为1,3,9,27,81,243,和为364. 答案 364
∴{an}是以 a4 为首项,a2 为公比的等比数列.
(2)解 bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2. 当 a= 2时,bn=(2n+2)( 2)2n+2=(n+1)2n+2. Sn=2·23+3·24+4·25+…+(n+1)·2n+2,① 2Sn=2·24+3·25+4·26+…+n·2n+2+(n+1)·2n+3,② ①-②得 -Sn=2·23+24+25+…+2n+2-(n+1)·2n+3 =16+2411--22n-1-(n+1)·2n+3 =16+2n+3-24-n·2n+3-2n+3=-n·2n+3. ∴Sn=n·2n+3.
第三章 第五节 数列的综合应用
第三章 第五节 数列的综合应用数列,则a m +cn 等于 ( )A.4B.3C.2D.1解析:由题意得b 2=ac ,2m =a +b ,2n =b +c ,则a m +c n =an +cmmn=2222b c a b a c a b b c +++++=22ab ac ac bcab ac b bc ++++++=2. 答案:C2.数列{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 6=b 7,则有( ) A.a 3+a 9≤b 4+b 10 B.a 3+a 9≥b 4+b 10 C.a 3+a 9≠b 4+b 10D.a 3+a 9与b 4+b 10的大小不确定解析:∵a3+a 9≥=2a 6=2b 7=b 4+b 10,当且仅当a 3=a 9时, 不等式取等号. 答案:B3.(文)已知等差数列{a n }的前n 项和为S n 且满足a 2=3,S 6=36. (1)求数列{a n }的通项公式;(2)若数列{b n }是等比数列且满足b 1+b 2=3,b 4+b 5=24.设数列{a n ·b n }的前n 项 和为T n ,求T n .解:(1)∵数列{a n }是等差数列, ∴S 6=3(a 1+a 6)=3(a 2+a 5)=36.∵a 2=3,∴a 5=9,∴3d =a 5-a 2=6,∴d =2, 又∵a 1=a 2-d =1,∴a n =2n -1.(2)由等比数列{b n }满足b 1+b 2=3,b 4+b 5=24,得4512b b b b ++=q 3=8,∴q =2,∵b 1+b 2=3,∴b 1+b 1q =3,∴b 1=1,b n =2n -1, ∴a n ·b n =(2n -1)·2n -1.∴T n =1×1+3×2+5×22+…+(2n -3)·2n -2+(2n -1)·2n -1,则2T n =1×2+3×22+5×23+…+(2n -3)·2n -1+(2n -1)·2n ,两式相减得(1-2)T n =1×1+2×2+2×22+…+2·2n -2+2·2n -1-(2n -1)·2n ,即-T n =1+2(21+22+…+2n -1)-(2n -1)·2n=1+2(2n -2)-(2n -1)·2n =(3-2n )·2n -3, ∴T n =(2n -3)·2n +3.(理)已知数列{a n }的前n 项和为S n ,a 1=1,数列{a n +S n }是公差为2的等差数列. (1)求a 2,a 3;(2)证明:数列{a n -2}为等比数列; (3)求数列{na n }的前n 项和T n .解:(1)∵数列{a n +S n }是公差为2的等差数列, ∴(a n +1+S n +1)-(a n +S n )=2,即a n +1=22n a +. ∵a 1=1,∴a 2=32,a 3=74.(2)证明:由题意得a 1-2=-1,又∵122n n a a +--=2222n n a a +--=12,∴{a n -2}是首项为-1,公比为12的等比数列.(3)由(2)得a n -2=-(12)n -1,∴na n =2n -n ·(12)n -1,∴T n =(2-1)+(4-2·12)+[6-3·(12)2]+…+[2n -n ·(12)n -1],=(2+4+6+…+2n )-[1+2·12+3·(12)2+…+n ·(12)n -1],设A n =1+2·12+3·(12)2+…+n ·(12)n -1,①∴12A n =12+2·(12)2+3·(12)3+…+n ·(12)n ,②①-②得12A n =1+12+(12)2+…+(12)n -1-n ·(12)n ,∴12A n =11()2112n---n ·(12)n ,∴A n =4-(n +2)·(12)n -1, ∴T n =(22)2n n ++(n +2)·(12)n -1-4=(n +2)·(12)n -1+n (n +1)-4.4.若数列{a n }满足1n na a +-=d (n ∈N *,d 为常数),则称数列{a n }为调和数列.已知 数列{1x n}为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16= .解析:由题意,若{a n }为调和数列,则{1a n }为等差数列,所以{1x n }为调和数列,则可得数列{x n }为等差数列,由等差数列的性质可知,x 5+x 16=x 1+x 20= x 2+x 19=…=20010=20.答案:205.(2010·安庆模拟)某市2009年11月份曾发生流感,据统计,11月1日该市新的流 感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人, 由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染 者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病 毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一 天的新患者人数.解:设第n 天新患者人数最多,于是,前n 天每天新感染者的总人数构成一个首项为 20,公差为50的等差数列,前n 天流感病毒感染者总人数S n =20n +n (n -1)2×50=25n 2-5n (1≤n ≤30,n ∈N),后30-n 天每天新增流感病毒感染者构成一个首项为20+(n -1)×50-30=50n -60,公差为30,项数为30-n 的等差数列,而后30-n 天的流感 病毒感染者总人数T n =(30-n )(50n -60)+(30)(29)2n n --×(-30)=-65n 2+2445n -14850,依题设构建方程有,S n +T n =8670, ∴25n 2-5n +(-65n 2+2445n -14850)=8670,化简,n 2-61n +588=0,∴n =12或n =49(舍),第12天的新的患者人数为20+ (12-1)·50=570人.故11月12日,该市感染此病毒的新患者人数最多,新患者人数为570人.6.2个, 现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要( ) A.6秒钟 B.7秒钟 C.8秒钟 D.9秒钟解析:设至少需要n 秒钟,则1+21+22+…+2n -1≥100,∴1212n --≥100,∴n ≥7. 答案:B7.某科研单位欲拿出一定的经费奖励科研人员,第1名得全部资金的一半多一万元, 第二名得剩下的一半多一万元,以名次类推都得到剩下的一半多一万元,到第10名 恰好资金分完,则此科研单位共拿出 万元资金进行奖励.解析:设第10名到第1名得的奖金数分别是a 1,a 2,…,a 10,则a n =12S n +1,则a 1=2,a n -a n -1=12a n ,即a n =2a n -1,因此每人得的奖金额组成以2为首项,以2为公比的等比数列,所以S 10=2(1-210)1-2=2046.答案:20468.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,若1<S k <9(k ∈N *),则k 的值为 .解析:∵S n =23a n -13,∴S 1=23a 1-13=a 1,a 1=-1.a n =S n -S n -1(n >1),即a n =(23a n -13)-(23a n -1-13)=23a n -23a n -1,整理得:a na n -1=-2,∴{a n }是首项为-1,公比为-2的等 比数列,S k =a 1(1-q k )1-q =(-2)k -13,∵1<S k <9,∴1<(-2)k -13<9,即4<(-2)k <28,仅当k =4时不等式成立. 答案:49.(2010·徐州模拟)设数列{b n }的前n 项和为S n ,且b n =2-2S n ;数列{a n }为等差数列, 且a 5=14,a 7=20. (1)求数列{b n }的通项公式;(2)若c n =a n ·b n (n =1,2,3…),T n 为数列{c n }的前n 项和,求证:T n <72.解:(1)由b n =2-2S n ,令n =1,则b 1=2-2S 1,又S 1=b 1,所以b 1=23b 2=2-2(b 1+b 2),则b 2=29当n ≥2时,由b n =2-2S n ,可得b n -b n -1=-2(S n -S n -1)=-2b n 即b n b n -1=13所以{b n }是以b 1=23为首项,13为公比的等比数列,于是b n =2·13n .(2)数列{a n }为等差数列,公差d =12(a 7-a 5)=3,可得a n =3n -1从而c n =a n ·b n =2(3n -1)·13n∴T n =2[2·13+5·132+8·133+…+(3n -1)·13n ],13T n =2[2·132+5·133+…+(3n -4)·13n +(3n -1)·13n +1] ∴23T n =2[3·13+3·132+3·133+…+3·13n -13-(3n -1)·13n +1] 从而T n =72-72·13n -n 3n -1<72.10.(文)在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2,n ∈N). (1)试判断数列{1a n}是否为等差数列;(2)设{b n }满足b n =1a n ,求数列{b n }的前n 项和S n ;(3)若λa n +1a n +1≥λ,对任意n ≥2的整数恒成立,求实数λ的取值范围. 解:(1)∵a 1≠0,∴a n ≠0, ∴由已知可得1a n -1a n -1=3(n ≥2),故数列{1a n}是等差数列.(2)由(1)的结论可得b n =1+(n -1)×3,所以b n =3n -2, ∴S n =n (1+3n -2)2=n (3n -1)2.(3)将a n =1b n =13n -2代入λa n +1a n +1≥λ并整理得λ(1-13n -2)≤3n +1,∴λ≤(3n +1)(3n -2)3n -3,原命题等价于该式对任意n ≥2的整数恒成立.设C n =(3n +1)(3n -2)3n -3,则C n +1-C n =(3n +1)(3n -4)3n (n -1)>0,故C n +1>C n ,∴C n 的最小值为C 2=283,∴λ的取值范围是(-∞,283].(理)已知数列{a n }的前n 项和为S n ,点(n ,S n n )在直线y =12x +112上.数列{b n }满足b n +2-2b n +1+b n =0(n ∈N *),b 3=11,且其前9项和为153. (1)求数列{a n },{b n }的通项公式; (2)设c n =3(2a n -11)(2b n -1),数列{c n }的前n 项和为T n ,求使不等式T n >k57对一切n ∈N *都成立的最大正整数k 的值. 解:(1)由已知得S n n =12n +112,∴S n =12n 2+112n .当n ≥2时, a n =S n -S n -1=12n 2+112n -12(n -1)2-112(n -1)=n +5; 当n =1时,a 1=S 1=6也符合上式. ∴a n =n +5.由b n +2-2b n +1+b n =0(n ∈N *)知{b n }是等差数列, 由{b n }的前9项和为153,可得9(b 1+b 9)2=9b 5=153,得b 5=17,又b 3=11,∴{b n }的公差d =b 5-b 32=3,b 3=b 1+2d ,∴b 1=5,∴b n =3n +2. (2)c n =3(2n -1)(6n +3)=12(12n -1-12n +1),∴T n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1). ∵n 增大,T n 增大,∴{T n}是递增数列.∴T n≥T1=1 3.T n>k57对一切n∈N *都成立,只要T1=13>k57,∴k<19,则k max=18.。
6.5 数列的综合应用
n( n 1) ×50=25n2+225n≥4 750. 2 (2)an>0.85bn,bn=400×1.08n-1.
问题:Sn=250n+ 解
(1)设中低价房的面积形成的数列为{an},
由题意可知{an}是等差数列, 其中a1=250,d=50, 则an=250+(n-1)·50=50n+200
是 等 比 数 列 , 其 中 b1=400,q=1.08, 则 bn=400·(1.08)n-1.
由题意可知an>0.85bn,
即50n+200>400·(1.08)n-1·0.85. 当n=5时,a5<0.85b5,
当n=6时,a6>0.85b6,
因此满足上述不等式的最小正整数n为6. 因此到2013年底,当年建造的中低价房的面积占该年 建造住房面积的比例首次大于85%.
∵等差数列{bn}的各项为正,∴d>0,
n( n 1) ∴d=2,b1=3,∴Tn=3n+ ×2=n2+2n. 2
探究提高
对等差、等比数列的综合问题的分析,
应重点分析等差、等比数列的通项及前n项和;分析
等差、等比数列项之间的关系.往往用到转化与化归
的思想方法. 知能迁移1 (2009·全国Ⅰ文,17)设等差数列{an}
题型二
数列与函数的综合应用Fra bibliotek【例2】 (12分)已知f(x)=logax(a>0且a≠1),设 f(a1),f(a2),„,f(an) (n∈N*)是首项为4,公差为
2的等差数列.
(1)设a为常数,求证:{an}是等比数列; (2)若bn=anf(an),{bn}的前n项和是Sn,当a= 2 时, 求Sn. 思维启迪 利用函数的有关知识得出an 的表达式,
第五章 第五节 数列的综合应用
一辆邮政车自A城驶往B城,沿途有n个车站(包括起点站A 和终点站B),每停靠一站便要卸下前面各站发往该站的邮
袋各一个,同时又要装上该站发往后面各站的邮袋各一个,
设该车从各站出发时邮政车内的邮袋数构成一个有穷数列 {ak}(k=1,2,3,„,n). 试求:(1)a1,a2,a3. (2)邮政车从第k站出发时,车内共有邮袋多少个?
解:(1)由题意得 a1=n-1,a2=(n-1)+(n-2)-1=2n-4, a3=(n-1)+(n-2)+(n-3)-1-2=3n-9. (2)在第 k 站出发时,放上的邮袋共(n-1)+(n-2)+„+(n- k)个,而从第二站起,每站放下的邮袋共 1+2+3+„+(k- 1)个, ak=(n-1)+(n-2)+„+(n-k)-[1+2+…+(k-1)] 故 1 1 =kn- k(k+1)- k(k-1)=kn-k2(k=1,2,„,n), 2 2 即邮政车从第 k 站出发时,车内共有邮袋个数为 kn-k2(k= 1,2,„,n).
(2)由(1)知an=2n 1,∴Sn=2n-1, 2an+1 2n+1 2 ∴ S = n =1+ n . 2 -1 2 -1 n 2 ∵n≥1,∴2 -1≥1,∴1+ n ≤3, 2 -1
n
-
2an+1 ∴当n=1时, S 的最大值为3. n
[归纳领悟]
1.等差数列与等比数列相结合的综合问题是高考考查的 重点,特别是等差、等比数列的通项公式、前n项和 公式以及等差中项、等比中项问题是历年命题的热点. 2.利用等比数列前n项和公式时注意公比q的取值.同时 对两种数列的性质,要熟悉它们的推导过程,利用好 性质,可降低题目的难度,解题时有时还需利用条件
[究 疑 点] 银行储蓄单利公式及复利公式是什么模型? 提示:单利公式——设本金为a元,每期利率为r,存期