单次脉冲发生器电路
pwm发生器原理

pwm发生器原理PWM发生器是一种广泛应用于电子学领域的电路。
PWM发生器用于产生PWM信号,其主要用途是调整电源的DC电压,从而实现电力控制。
PWM(脉宽调制)是一种将特定项的占空比调整为期望值的技术。
本文将详细介绍PWM发生器的原理和工作方式。
PWM发生器的原理PWM发生器的基本原理是利用方波产生技术,将方波信号借助特定电路变化为PWM信号。
当电路中存在一个固定的方波脉冲时,PWM发生器会根据一个特定的控制电信号调整脉冲的开启和关闭时间。
控制信号的变化导致PWM脉冲的占空比发生变化,从而产生不同的输出控制信号。
PWM发生器的工作方式PWM发生器基于传统方波产生器的基本原理,通过一个比较器来产生的PWM信号。
PWM发生器的输出可以是方波、三角波和锯齿波等,不同的波形可以通过不同的信号数字计数器切换实现。
如果我们以方波信号为例,PWM发生器将通过不断调整方波脉冲信号的占空比来产生PWM信号输出。
控制PWM脉冲的决定性因素是一个称为“占空比”的比例。
这个比例是脉冲信号开放时间的百分比,通常被表示为一个小数(0.1表示10%)。
如果占空比为50%,那么PWM是50%的“占空比”。
在PWM发生器中,占空比可以通过锯齿波生成器等部件进行精确的调整。
总结PWM发生器是用于产生PWM信号的电路。
PWM发生器可以根据控制信号的变化调整脉冲的开启和关闭时间,从而产生不同的输出控制信号。
控制PWM脉冲的决定性因素是占空比,可以通过锯齿波生成器等部件进行精确的调整。
在电力控制和电动机驱动等领域中,广泛应用了PWM发生器。
脉冲信号发生器电路功能总结

脉冲信号发生器电路功能总结
脉冲信号发生器是一种用于产生高频率、高电压脉冲的电子设备,广泛应用于电子、通信、自动化等领域。
下面是脉冲信号发生器电路的主要功能总结:
1. 产生高频率、高电压脉冲:脉冲信号发生器可以通过改变电路中的参数,产生各种频率的脉冲信号,如高频脉冲、中频脉冲、低频脉冲等。
2. 控制脉冲宽度和幅度:脉冲信号发生器可以通过改变电路中的参数来控
制脉冲的宽度和幅度,以实现各种控制功能,如计时、计数、测量等。
3. 滤波:脉冲信号发生器可以通过设置滤波器来去除电路中的杂波,提高脉冲信号的纯度和可靠性。
4. 驱动外部设备:脉冲信号发生器可以通过输出脉冲信号来驱动外部设备,如电子元件、机械元件等。
5. 测量和测试:脉冲信号发生器可以通过输出脉冲信号来进行测量和测试,如测量电路的参数、测量电路的性能等。
除了以上主要功能外,脉冲信号发生器电路还有一些其他功能,如储能、调压、稳压等。
其中,储能功能可以用于将脉冲信号储存起来,以便后续使用;调压功能可以用于调节电路的电压;稳压功能可以用于稳定电路的电压。
随着技术的发展,脉冲信号发生器的电路功能也在不断扩展和改进。
未来,
脉冲信号发生器电路将朝着更加智能化、高效化的方向发展。
单次脉冲发生器电路

单次脉冲发生器电路图
安装在逻辑开关的右边。
当按、放一次按纽“P”时,可在P+、P—端同时产生正极性和负极性单次脉冲。
电路如附图1-6所示。
单次脉冲分别在输入(出)插孔板上对应的P+、P—插孔输出。
单脉冲发生器的电源与+5V电源在内部已接通。
由于采用了防抖动电路,输出电平是无抖动的。
单次脉冲本来是可以由按钮式开关来获取的,但是由于在按钮的按动过程中极易发生抖动现象,因而所获取的往往并不是单个的脉冲,而是一组数目不定的脉冲串,虽然有的电路中加有防抖动电路,但对于某些电路仍不能保证其工作的可靠性。
如图所示电路可以确保每按动一次按钮,可以取得一个脉冲,工作十分可靠。
真值表:。
脉冲发生器电路原理

脉冲发生器电路原理
脉冲发生器电路原理
脉冲发生器的原理图示于图4 ,由充电回路和放电回路组成。
充电电源V s 是逆变谐振高
压电源,通过充电电阻R 向开路的高压电缆进行脉冲充电。
高阻值的取样电阻Rp 对高压电
缆的电压进行取样,并送至稳压控制电路。
控制电路通过控制充电脉冲的个数来控制电缆的
充电电压,直至到达设定的电压值。
在t = 0 时,触发电路工作,闸流管K( EEV CX1174) 作为
理想开关导通。
这时,传输线通过闸流管、冲击磁铁L k 和匹配电阻RL 放电。
冲击磁铁是一
对电流板,可视为一电感,并可通过TDR( TIme Domain Reflectomet ry) 系统测出电感值[7 ] 。
此
外,线路的自感也须予以考虑。
受高压充电电源的限制,为到达一定幅度的放电电流,用4 根高压脉冲电缆并联,以降低
回路阻抗,增大电流的幅度。
由TDR 系统测出传输线的长度约为45 ns。
冲击磁铁和整个系
统的连接线较短,且采用同轴结构,分布电感较小。
高压充电电源最大可使脉冲电缆被充电至
24 kV ,放电回路总电感为011~015μH ,利用PSpice[8 ]模拟冲击磁铁上的放。
《微机原理与接口技术》实验指导书

《微机原理与接口技术》课程实验指导书实验内容EL-8086-III微机原理与接口技术教学实验系统简介使用说明及要求✧实验一实验系统及仪器仪表使用与汇编环境✧实验二简单程序设计实验✧实验三存储器读/写实验✧实验四简单I/0口扩展实验✧实验五8259A中断控制器实验✧实验六8253定时器/计数器实验✧实验七8255并行口实验✧实验八DMA实验✧实验九8250串口实验✧实验十A/D实验✧实验十一D/A实验✧实验十二8279显示器接口实验EL-8086-III微机原理与接口技术教学实验系统简介使用说明及要求EL-8086-III微机原理与接口技术教学实验系统是为微机原理与接口技术课程的教学实验而研制的,涵盖了目前流行教材的主要内容,该系统采用开放接口,并配有丰富的软硬件资源,可以形象生动地向学生展示8086及其相关接口的工作原理,其应用领域重点面向教学培训,同时也可作为8086的开发系统使用。
可供大学本科学习《微机原理与接口技术(8086)》,《单片机应用技术》等课程提供基本的实验条件,同时也可供计算机其它课程的教学和培训使用。
为配合使用EL型微机教学实验系统而开发的8086调试软件,可以在WINDOWS 2000/XP等多种操作系统下运行。
在使用本软件系统调试程序时,可以同时打开寄存器窗口、内存窗口、反汇编窗口、波形显示窗口等等,极大地方便了用户的程序调试。
该软件集源程序编辑、编译、链接、调试与一体,每项功能均为汉字下拉菜单,简明易学。
经常使用的功能均备有热键,这样可以提高程序的调试效率。
一、基本特点EL型微机教学实验系统是北京精仪达盛科技有限公司根据广大学者和许多高等院校实验需求,结合电子发展情况而研制的具有开发、应用、实验相结合的高科技实验设备。
旨在尽快提高我国电子科技发展水平,提高实验者的动手能力、分析解决问题能力。
系统具有以下特点:1、系统采用了模块化设计,实验系统功能齐全,涵盖了微机教学实验课程的大部分内容。
脉冲发生器工作原理

脉冲发生器工作原理
脉冲发生器是一种用于产生脉冲信号的电子设备。
它的工作原理基于周期性地切换电路的导通和截止状态,以产生短暂的脉冲信号。
脉冲发生器通常由稳压电源、时基电路、触发电路和输出电路组成。
稳压电源用于为电路提供稳定的电源电压,时基电路用于产生稳定的时基信号,触发电路用于接收外部触发信号或内部时基信号,并控制输出电路产生脉冲信号。
脉冲发生器的核心部分是触发电路,它通常由比较器、集成电路、晶体管等组成。
触发电路可以根据内部时基信号或外部触发信号的变化,控制输出电路的导通和截止,从而产生脉冲信号。
输出电路通常由电容器、电阻器、晶体管等组成,可以根据设计需要产生不同幅度、宽度和频率的脉冲信号。
脉冲发生器广泛应用于电子测试、测量、通信和控制等领域。
例如,在数字电路测试中,脉冲发生器可以产生不同频率和占空比的时钟信号,以测试电路的稳定性和可靠性;在通信领域中,脉冲发生器可以产生调制信号,用于模拟不同类型的通信信号,以测试通信设备的性能和可靠性。
ne555脉冲发生器原理

ne555脉冲发生器原理NE555脉冲发生器原理引言:NE555是一种经典的集成电路,被广泛应用于各种电子设备中。
作为一种多功能计时器,NE555不仅可以用于产生精确的脉冲信号,还可以用作稳压电源、频率测量器等。
本文将介绍NE555脉冲发生器的原理及其工作过程。
一、NE555脉冲发生器的基本原理NE555脉冲发生器基于NE555内部的比较器和RS触发器电路。
NE555内部包含有一个比较器、RS触发器、稳压电源、电压比较器和输出级等组成。
其中比较器负责将电压比较结果传送给RS触发器,RS触发器根据比较器的输出状态决定输出脉冲的频率和占空比。
二、NE555脉冲发生器的工作原理NE555脉冲发生器的工作原理可以分为充电、放电和比较三个阶段。
1. 充电阶段:当电源接通时,稳压电源向NE555提供电源电压,电容C开始充电。
NE555的第二比较器将电容电压与一个内部参考电压进行比较。
当电容电压低于参考电压时,比较器输出高电平,RS触发器的S端置高,R端置低,输出为高电平。
此时,输出的高电平将截断外部电路,使电容继续充电,直到电容电压达到参考电压。
2. 放电阶段:当电容电压达到参考电压时,比较器输出低电平,RS触发器的S端置低,R端置高,输出变为低电平。
此时,输出的低电平将使电容开始放电,电容电压开始下降。
3. 比较阶段:当电容电压降到一个较低的阈值时,比较器输出高电平,RS触发器的S端置高,R端置低,输出变为高电平。
如此循环,形成周期性的高低电平输出,从而产生脉冲信号。
三、NE555脉冲发生器的参数调节NE555脉冲发生器的输出脉冲频率和占空比可以通过调节电阻和电容的数值来实现。
1. 调节频率:输出脉冲的频率与电阻R和电容C的数值有关。
频率可通过调节电阻R的大小来实现,电容C的数值保持不变。
当电阻R增大时,电容C充电时间增加,频率减小;当电阻R减小时,电容C充电时间减少,频率增大。
2. 调节占空比:输出脉冲的占空比与电阻R和电容C的数值也有关。
脉冲信号发生器使用方法 信号发生器操作规程

脉冲信号发生器使用方法信号发生器操作规程由于占空系数≤80%,所以在使用双脉冲或B脉冲输出时,应注意调整,使脉冲的延迟时间加上脉宽时间小于脉冲周期;在使用A 脉冲输出时,应使脉冲宽度小于脉冲周期由于占空系数≤80%,所以在使用双脉冲或B脉冲输出时,应注意调整,使脉冲的延迟时间加上脉宽时间小于脉冲周期;在使用A 脉冲输出时,应使脉冲宽度小于脉冲周期,否则将产生分频或无输显现象。
1、脉冲重复周期(频率)的调整调整范围为1μs~100ms(即重复频率为1MHz),共分1~10μs、10~100μs、100μs~1ms、1?10ms、10?100ms五挡,由周期波段开关实现粗调,由面板上方与之对应的电位器实现细调。
细调旋钮顺时针旋转时周期增大,顺时针旋转到底时,其周期值为高一挡的周期;细调旋钮逆时针旋转时周期减小,逆时针旋转到底时,其周期值为粗调挡刻度所指周期。
2、延迟时间的调整在部分仪器中,延迟时间是指B脉冲前沿相对A脉冲前沿的延迟时间。
调整范围为0.3?3000μs、共分0.3?3μs、3~30μs、30~300μs、300?3000μs四挡,分粗调、细调两种调整。
3、脉冲宽度的调整调整范围为0.1?1000μs、共分0.1?1ps、1?10|is、10?100ns、100?1000ns四挡。
也分粗调、细调两种调整。
A、B脉冲的宽度貌似相等,其相对误差≤±10%。
4、输出幅度及极性选择正、负脉冲由极性开关选择,从同一插孔输出,输出幅度的范围为150mV?20V。
衰减器以1、2、4、8、16倍衰减输出幅度。
幅度细调旋钮顺时针旋转时,幅度增大。
当衰减器置“1”、负载开关置“内”、幅度细调旋钮顺时针旋到底时,输出幅度最大为20V,误差≤±20%。
输出端具有50Ω内负载,也可外接负载,由负载开关选择。
5、脉冲选择输出脉冲有三种,即A脉冲(前脉冲)、B脉冲(后脉冲)、(A+B)脉冲(双脉冲),通过脉冲选择开关选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单次脉冲发生器电路图
安装在逻辑开关的右边。
当按、放一次按纽“P”时,可在P+、P—端同时产生正极性和负极性单次脉冲。
电路如附图1-6所示。
单次脉冲分别在输入(出)插孔板上对应的P+、P—插孔输出。
单脉冲发生器的电源与+5V电源在内部已接通。
由于采用了防抖动电路,输出电平是无抖动的。
单次脉冲本来是可以由按钮式开关来获取的,但是由于在按钮的按动过程中极易发生抖动现象,因而所获取的往往并不是单个的脉冲,而是一组数目不定的脉冲串,虽然有的电路中加有防抖动电路,但对于某些电路仍不能保证其工作的可靠性。
如图所示电路可以确保每按动一次按钮,可以取得一个脉冲,工作十分可靠。
真值表:。