初中数学锐角三角函数优质课教案教学设计

合集下载

初中锐角三角函数教案

初中锐角三角函数教案

初中锐角三角函数教案教学目标:1. 了解锐角三角函数的定义和意义。

2. 掌握30°、45°、60°角的正弦、余弦和正切值。

3. 能够运用锐角三角函数解决实际问题。

教学重点:1. 锐角三角函数的定义和意义。

2. 30°、45°、60°角的正弦、余弦和正切值。

教学难点:1. 理解锐角三角函数的概念。

2. 运用锐角三角函数解决实际问题。

教学准备:1. 教师准备PPT课件。

2. 学生准备笔记本和文具。

教学过程:一、导入(5分钟)1. 教师通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。

2. 学生分享对锐角三角函数的理解,教师总结并板书。

二、新课讲解(15分钟)1. 教师讲解锐角三角函数的定义,引导学生理解锐角三角函数的概念。

2. 教师讲解30°、45°、60°角的正弦、余弦和正切值,引导学生掌握锐角三角函数的数值。

3. 教师通过例题讲解,引导学生运用锐角三角函数解决实际问题。

三、课堂练习(10分钟)1. 学生独立完成课堂练习题,巩固所学知识。

2. 教师巡回指导,解答学生疑问。

四、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。

2. 学生分享学习心得,教师给予鼓励和指导。

五、课后作业(课后自主完成)1. 学生根据课堂所学,完成课后作业,巩固知识点。

教学反思:本节课通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。

在讲解过程中,注意引导学生理解锐角三角函数的概念,并通过例题讲解让学生掌握锐角三角函数的数值和运用方法。

在课堂练习环节,学生能够独立完成练习题,巩固所学知识。

总体来说,本节课达到了预期的教学目标。

在今后的教学中,要继续加强对学生的引导和鼓励,提高学生的参与度和积极性。

同时,注重课后作业的布置和批改,及时了解学生掌握情况,为下一步教学提供参考。

九年级数学锐角三角函数教案

九年级数学锐角三角函数教案

一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。

2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。

3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。

二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。

2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。

三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。

2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。

(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。

3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。

(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。

4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。

(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。

5.总结(5分钟)(1)对本节课的内容进行总结概括。

(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。

第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。

九年级数学下册《锐角三角函数》教案、教学设计

九年级数学下册《锐角三角函数》教案、教学设计
(3)锐角三角函数的应用:解决实际问题,如测量物体的高度、计算物体之间的距离等。
2.教学方法:
采用讲解法、示例教学法,结合几何画板演示,帮助学生形象地理解锐角三角函数的定义和性质。
3.教学过程:
(1)通过回顾勾股定理,引导学生发现锐角三角函数的定义。
(2)利用几何画板,动态演示锐角三角函数随角度变化的规律,帮助学生理解其性质。
(4)注重情感教育,关注学生的学习情感,激发学生的学习兴趣和内在动力。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决等方面,全面评价学生的学习过程。
(2)终结性评价:通过测试、作业等方式,评价学生对本章知识的掌握程度。
(3)增值性评价:关注学生的进步,鼓励学生自我评价,激发学生的学习潜能。
九年级数学下册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及其相互关系。
2.学会使用计算器或手工计算方法,解决直角三角形中锐角三角函数值的问题。
3.掌握用锐角三角函数解决实际问题的方法,如测量物体的高度、计算物体之间的距离等。
4.能够运用锐角三角函数的性质,解决一些简单的几何问题,如求角的度数、证明线段相等等。
3.利用计算器、几何画板等教学辅助工具,帮助学生直观地理解锐角三角函数的图像和变化规律,提高学生的数学思维能力。
4.设计丰富的例题和练习题,巩固学生对锐角三角函数知识的掌握,培养学生分析问题、解决问题的能力。
5.通过课堂小结,引导学生总结本章所学内容,形成知识体系,提高学生的概括和表达能力。
(三)情感态度与价值观
3.思考题:
(1)思考锐角三角函数的定义在解决实际问题中的作用,举例说明。

(优质课)锐角三角函数教案

(优质课)锐角三角函数教案
四、巩固练习
1、小试牛刀
(1)在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的( ).
A.
(2)若sin(65°-∠A)= ,则∠A=
(3)如图:在Rt△ABC中,∠C=90°,AB=10,sinB=,BC的长是.
(4)如图,P是平面直角坐标系上的一点,点P的坐标为(3,4),则sin=
BC=,由勾股定理得:A
因此CB
即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于
从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°
当∠A=30°时,∠A的对边与斜边的比都等于 ,是个固定值;
当∠A=45°时,∠A的对边与斜边的比都等于 ,也是一个固定值.
【这一环节的教学,教师要强调前提条件是:“在直角三角形中”,正弦函数值是边的比值,没有单位,并且让学生明确什么是“对边”和“斜边”】单独写出符号sin是没有意义的。
当∠A=30°时,
当∠A=45°时,
当∠A=60°时,
3、概念强化训练:
判断对错:
(1)如图(1)sinA=( ) B
10m
(2)sinB=( ) 6m
教学重点:
理解正弦(sinA)概念,掌握当直角三角形的锐角固定时,它的对边与斜边的比值是固定值.
教学难点:
在直角三角形中当锐角固定时,它的对边与斜边的比值是固定值的事实。
二、教学过程:
1、创设情景,提出问题:(PPT演示)
在唐僧师徒取经的路上,遇到了一座山,这座山有多高呢?这可难住了唐僧。大徒弟孙悟空目测山的顶部,视线与水平线的夹角为30度,然后从地面飞到山顶,路程是1000米。
(3)sinA=0.6m( ) A C

锐角三角函数教案设计

锐角三角函数教案设计

锐角三角函数教案设计锐角三角函数教案设计锐角三角函数教案设计篇1知识目的:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。

2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。

才能、情感目的:1.经历由情境引出问题,探究掌握数学知识,再运用于理论过程,培养学生学数学、用数学的意识与才能。

2.体会数形结合的数学思想方法。

3.培养学生自主探究的精神,进步合作交流才能。

重点、难点:1.直角三角形锐角三角函数的意义。

2.由直角三角形的边长求锐角三角函数值。

教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。

但有些问题单靠相似与勾股定理是无法解决的。

同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、答复各种方法。

老师加以评论。

总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。

因此,我们换个角度,假如可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。

〔由一个学生比拟熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。

由此导入新课〕二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°,C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 〔学生探究,引导学生积极考虑,利用相似发现比值相等〕〔〕假设在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探究问题的过程,你发现了什么?〔学生讨论〕结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。

在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A 表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。

浙教版数学九年级下册1.1《锐角三角函数》教学设计1

浙教版数学九年级下册1.1《锐角三角函数》教学设计1

浙教版数学九年级下册1.1《锐角三角函数》教学设计1一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章第一节的内容。

本节内容主要介绍了锐角三角函数的定义及求法,通过对特殊直角三角形的观察,让学生理解正弦、余弦、正切函数的概念,并掌握它们的基本性质。

这部分内容是初中数学的重要知识,对于学生来说,既是基础又是难点,需要教师耐心引导,让学生通过实践操作,逐步理解和掌握。

二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。

但锐角三角函数的概念和性质较为抽象,学生可能难以理解。

因此,在教学过程中,需要教师关注学生的认知水平,通过生动形象的举例和实际操作,帮助学生理解和掌握。

三. 教学目标1.知识与技能:让学生了解锐角三角函数的定义,掌握正弦、余弦、正切函数的求法及基本性质。

2.过程与方法:通过观察、操作、思考、讨论等活动,培养学生的观察能力、动手能力、逻辑思维能力和合作能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和毅力,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:锐角三角函数的定义及求法,正弦、余弦、正切函数的基本性质。

2.难点:对锐角三角函数概念的理解,以及函数性质的运用。

五. 教学方法1.情境教学法:通过生活实例和实际操作,让学生在情境中感受和理解锐角三角函数。

2.启发式教学法:引导学生观察、思考、讨论,激发学生的学习兴趣,培养学生的创新能力。

3.小组合作学习:学生进行小组讨论和实践操作,培养学生的合作能力和团队精神。

六. 教学准备1.教具准备:直角三角形模型、多媒体设备等。

2.教学素材:相关的生活实例、图片、练习题等。

3.课前调查:了解学生对锐角三角函数的预习情况,为课堂教学提供依据。

七. 教学过程1.导入(5分钟)教师通过展示生活中常见的直角三角形实例,如建筑工人测高度、运动员投篮等,引导学生思考:如何利用直角三角形来求解未知角度的值?从而引出锐角三角函数的概念。

初中锐角三角函数教案

初中锐角三角函数教案

初中锐角三角函数教案
一、教学内容
(一)初中锐角三角函数教学内容
1、一般三角函数定义:指受一定角$\alpha$(一般为锐角)的弦长、边长和角的角平分线长之间的函数关系,其中最基本的三角函数有三个,
即正弦函数(sinx)、余弦函数(cosx)和正切函数(tanx)。

2、正弦函数sin$α$:指在锐角$α$中,它所对应的邻边长a与斜
边b之间的函数关系,即a:b=sin$α$;
3、余弦函数cos$α$:指在锐角$α$中,它所对应的直角边长a与
斜边b之间的函数关系,即a:b=cos$α$;
4、正切函数tan$α$:指在锐角$α$中,它所对应的邻边长a与对
边长b之间的函数关系,即a:b=tan$α$。

(二)锐角三角函数的基本性质
1、正弦函数:sin$α$的值介于[-1,1],sin90$^\circ$=1,sin
30$^\circ$=1/2;
2、余弦函数:cos$α$的值介于[-1,1],cos90$^\circ$=0,cos
60$^\circ$=1/2;
3、正切函数:tan$α$的值介于[-∞,+∞],tan90$^\circ$=∞,
tan45$^\circ$=1;
4、由倒三角形的性质可知:sin$α$=cos$(\pi/2$-$α)$,
cos$α$=sin$(\pi/2$-$α)$,tan$α$=cot$(\pi/2$-$α)$。

二、教学目标
1.了解初中三角函数的基本概念;
2.掌握初中三角函数的具体含义;
3.掌握三角函数基本性质;
4.学会使用三角函数解决实际问题。

三、教学重点。

数学九年级下册《锐角三角函数》省优质课一等奖教案

数学九年级下册《锐角三角函数》省优质课一等奖教案

第一章直角三角形的边角关系锐角三角函数》教学设计(第1 课时)一、教材分析直角三角形中边角之间的关系在实际生活中应用广泛. 这节先从实际问题:梯子的倾斜程度引入了锐角三角函数——正切. 它是刻画物体的倾斜程度,山的坡度一个重要的量. 本节从现实情境出发,让学生在经历探索直角三角形边角关系的过程中,理解锐角三角函数正切的意义:直角三角形中边的比值与角的大小之间的一种内在数量关系,并能通过实际举例来说明;并能够根据直角三角形的边角关系进行计算. 本节的重点就是通过角度的变化和边的比值之间的关系理解tan A 的几何意义.并能够根据它们的数学意义进行直角三角形边角关系的计算,难点是对三角函数意义的深层次理解. 所以在教学中要注重创设符合学生实际的问题情境,引出正切三角函数的概念,使学生感受到数学与现实世界的联系,鼓励他们有条理地进行表达和思考,特别关注他们对概念的理解.二、教学目标知识目标1. 经历探索直角三角形中边的比值和角大小关系的过程;理解正切三角函数的意义和与现实生活的联系.2. 能够用tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.能力目标1. 经历观察、猜想等数学活动过程,发展学生的思维推理能力,能有条理地,清晰地阐述自己的观点.2. 进一步理解函数的概念:边与边比值与角大小之间的变化关系.3. 体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题. 会用化归思想对问题进行转换,从而解决问题,提高解决实际问题的能力情感与价值观要求体会客观现实世界中量与量之间的相互联系和变化关系.教学重点1. 从现实情境中探索直角三角形的边角关系.2. 理解正切、倾斜程度、坡度的数学意义,并能进行简单的计算.教学难点:理解正切的意义,并用它来表示两边的比.三、教学过程:一、创设问题情境,引入新课1、通过对课件封面图片的观察,提出问题:[ 问题1] :以前我们学习了直角三角形中的勾股定理,在直角三角形中给出两条边的长度可以求出第三边的长度,大家也知道直角三角形的两个锐角互余,哪组梯子较陡 .根据其中一个锐角的度数可以求另外一个内角 . 那么请问,在直角三角形中,知 道一边和一个锐角,你能求出其他的边和角吗 ?[ 问题 2] :随着改革开放的深入,深圳的城市建设正日新月异地发展,幢幢 大楼拔地而起 . 上个世纪的地王大厦一直是深圳最高的大厦,但经过几十年的城 市发展,“深圳最高大厦”的桂冠早已被其他高楼取代,你们知道目前深圳最高 的大厦叫什么名字吗 ?你能应用数学知识和适当的途径得到京基大厦的实际高 度吗?通过本章的学习,相信大家一定能够解决 . 这节课,我们学习锐角三角函数 .( 板书课题:锐角三角函数 ).二、新课讲授1、用多媒体演示如下内容:梯子是我们日常生活中常见的物体 . 我们经常听人们说这个梯子放的“陡” 那个梯子放的“平缓” ,人们是如何判断的 ?“陡”或“平缓”是用来描述梯子 什么的 ?为了描述梯子的这种倾斜程度, 先给大家介绍三个简单的概念: 倾斜角, 铅垂高,水平宽 .请同学们看下图,并回答问题 (用多媒体演示 )(1)梯子在上升变陡过程中,倾斜角的大小有无变化?如何变 ?结论:倾斜角越大——梯子越陡AB甲组乙组结论:当铅直高度一样,水平宽度越小,梯子越陡;当水平宽度一样,铅直高度越大,梯子越陡(3)如图,梯子AB和EF哪个更陡?你是怎样判断的?方法:在保持倾斜程度不变的情况下,将两部梯子的水平宽变成一样,比较铅垂高,或者将铅垂高变成一样,比较水平宽.这种比较方法还是很麻烦,需要找到更简便的方法,(4)如图,三部梯子的倾斜程度一样,通过测量发现其中两部梯子的数据如下,请你用上面的方法分析当倾斜角相等时,铅直高度和水平宽度之间有何关系.结论:铅垂高和水平宽的比值一样(5)回头看前面几个梯子,铅垂高和水平宽的比值与梯子的强些程度有无 一点的关系?结论:梯子越陡,比值越大,从而也得出前斜角越到,比值越大 . (让学生 体会直角三角形中的锐角 A 大小,它的对边与邻边之比之间的内在关系 . )练习:通过这个结论比较课件中四部梯子的倾斜程度 .6、 正切的定义如图,在 Rt △ABC 中,如果锐角 A 确定,那么∠ A 的 对边与邻边之比便随之确定,这个比叫做∠ A 的正切 (tangent ) ,记作 tanA ,即注意:1.tanA 是在直角三角形中定义的 ,目前∠ A 是一个锐角(注意数形结合,构 造直角三角形)tanA=A 的对边 A 的邻边2.tanA 是一个完整的符号,表示∠ A的正切,省去“∠”号(注意tanA 不表示tan 乘以A).3. tanA 没有单位,它表示一个比值,即直角三角形中∠ A 的对边与邻边的比..4. tanA 的大小只与∠ A的大小有关, 而与直角三角形的边长无关.5. 角相等, 则正切值相等;两锐角的正切值相等, 则这两个锐角相等.思考:1. ∠B的正切如何表示?它的数学意义是什么?2. 前面我们讨论了梯子的倾斜程度,课本图1—3,梯子的倾斜程度与tanA 有关系吗?总结:梯子越陡,tanA 的值越大;反过来,tanA 的值越大,梯子越陡练习:请你用不同的符号表示下列图形中两个锐角的正切三、例题讲解[ 例1] :如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tan α、tan β的值,比较大小,越大,扶梯就越陡.四、、坡度、坡角的定义正切在日常生活中的应用很广泛,例如建筑,工程技术等. 正切经常用来描述山坡的坡度、堤坝的坡度.如图,有一山坡在水平方向上每前进100m,就升高60 m,那么山坡的坡度(即坡角α的正切——tan α)就是60 3 tan α= .100 5(这里要注意区分坡度和坡角.)坡面的铅直高度与水平宽度的比即坡角的正切称为坡度. 坡度越大,坡面就越陡.拓展:如图,为拦水坝的横截面,其中AB面的坡度i =1: 3,若坝高BC=20米,求坝面AB的长.分析:现根据坡度的概念,知道 BC 的长,求出 AC ,在利用勾股定理求 的长度五、课时小结本节课从梯子的倾斜程度谈起,经历了探索直角三角形中的边角关系,得 出了在直角三角形中的锐角与它的对边与邻边之比之间的数量关系,并以此为接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了 解了正切在现实生活中是一个具有实际意义的一个很重要的概念 .六、课后作业1. 习题 1.1 第 1、 2、4.2. 观察学校及附近商场的楼梯,哪个更陡 .D BAAB基础,在“ Rt △”中定义了 tanA =A 的对边 A 的邻边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《锐角三角函数》教学设计一、内容和内容解析本节课选自北师大版教材九年级下册第一章《直角三角形的边角关系》,第一节《锐角三角函数》的第一课时.本章中所介绍的直角三角形的边角关系是现实世界中应用广泛的关系之一。

.通过本章的学习,学生将进一步体会比和比例、图形的相似、推理证明等知识之间的联系,从而为将来一般性的学习三角函数的知识及其他数学知识奠定基础。

本节从梯子的倾斜程度谈起,引入生活中用的最多的一个三角函数——正切,而正弦、余弦的概念是由正切类比得到的.因此,本节内容在本章教材中处于非常重要的位置,既是三角函数的起始课,引领整章的探究与学习;又是一般性三角函数知识板块的重要组成部分。

同时在本节课中学生将进一步感受数形结合、从直观到抽象等思想,体会数形结合、从一般到特殊等方法,这些分析问题和解决问题过程中常用的思想方法将会对学生今后的数学学习乃至生活产生深远的影响.根据以上分析,本节课的教学重点在于,从现实情境中探索直角三角形的边角关系,理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。

二、目标和目标解析根据教材地位、新课程标准的指导思想及九年级学生的认知心理特征及年龄特点,本节课的教学目标有以下三个方面:1.理解正切的意义,能够运用tanA表示直角三角形中两边的比;2.通过观察、探究和实践操作等活动,经历探索直角三角形边角关系的过程,体会正切概念的产生的必然性与合理性. 体验知识发生、发展的全过程;3.在实际生活中发现数学问题,通过合作交流探索、感受生活中的数学,提高学数学用数学的意识,感受数学学习的价值.三、教学问题诊断分析在本节课中,学生通过生活常识和特殊情况可以体会到梯子的陡缓程度确实与铅直高和水平宽有着密切的关系,但是从众多关系中准确的找到比值关系却是一个难点,而这个比值关系又恰恰是正切概念的核心。

其次,本节的三角函数与学生以前所学的一次函数、反比例函数有所不同,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,学生初次接触这种对应关系,理解起来有一定的困难,可是这种对应关系对学生深刻地理解函数又有很大帮助。

基于以上认识,我认为本节课的难点在于,理解梯子的陡缓程度和铅直高与水平宽比值之间的关系,以及锐角与其对边和邻边之间的对应关系。

同时,在探索过程中,不同学生对问题的理解和生活的经验可能是不一样的,给出的思考结果差异性较大.教师应尊重学生间的差异,不要急于得出答案,要鼓励学生开展讨论,给学生提供展示的机会,培养学生的交流能力及学习数学的自信心.四、教学支持条件分析由于本节课的正切概念是从实际问题中产生又应用于实际问题,因此需要配合ppt给出大量的实际场景帮助学生理解。

五.教学过程整体教学是依照《数学课程标准》提出要在课堂上充分发挥学生的主体作用,以及九年级学生的认知特征设计,本节课设计了:第一环节:创设情境,引出课题;第二环节:探索交流,获取新知;第三环节:随堂练习,巩固新知,第四环节:课堂小结,感悟数学;第五环节:布置作业,挑战自我.五个环节的教学模式,把课堂还给学生,培养学生课堂上的合作交流能力,自主探究能力、经历由“生活经验感觉”到“发现思考”到“数学推理”的数学新知的形成过程.并能让学生在实践应用中提高自己的综合能力.第一环节:创设情境,引出课题情景设置:展示一组图片:生活中的梯子问题:(1)观察下图,你能判断哪个梯子更陡吗?(2)如果用数据做出更准确的判断该怎么做呢?学生活动:观察思考,初步感知,主动发现问题.设计意图:从生活实际中提出问题,引导学生用数学的眼光去观察世界,同时对于提出的问题不但要勇于猜想,还要善于从数学角度思考原因。

一步步引发学生思考:铅直高和水平宽与梯子的倾斜程度有何关系?第二环节:探索合作,获取新知(一)探索活动一:引导学生将现实生活中的具体情景抽象成几何图形,并将探究问题尽可能的简单化.情景设置:展示两个铅直高相等,但水平宽不相等的梯子。

问题:在图中,梯子AB和BD哪个更陡?你是怎样判断的?学生活动:鼓励学生先独立思考,然后与同桌探索与交流判断的方法,并在全班交流。

设计意图:对于复杂难以处理的问题,我们不妨先从特殊的情况入手,学生在探索活动中体会从特殊到一般的解决问题的方法。

同时类比铅直高相等的情况,自主探究水平宽相等时梯子的倾斜程度,为判断一般情况做好铺垫。

(二)探索活动二:研究完特殊情况后,再次给出一般的问题。

情景设置:展示两个铅直高不相等,水平宽也不相等的梯子。

问题:⑴图中,梯子AB 和EF 哪个更陡?⑵你是怎样判断的?⑶铅直高和水平宽与梯子的倾斜程度有何关系?学生活动:该环节留给学生充分思维的时间,四人小组讨论探究,发散思维,解决问题。

并在全班交流。

设计意图:从特殊到一般,逐层递进,并利用类比的思想将探索活动二中的问题转化为探索活动一中的问题加以解决.通过探索让学生感受梯子的倾斜程度与铅直高和水平宽的比值有关---比值越大,梯子越陡。

在探索过程中体会“数形结合”,“转化”等思想方法,拓展学生的思维空间。

(三)探索活动三:情景设置:你同意小明的看法吗?问题:(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系? (2) 111AC C B 和 222AC C B 有什么关系?(3)如果改变B 2在梯子上的位置呢? 由此你能得出什么结论?学生活动:学生独立思考,并在全班交流。

设计意图:以问题串的形式帮助学生利用相似的知识解决情景设置中的问题,并体会B 点的位置从特殊到一般的变化中,在直角三角形中,对于任意的锐角,其对边与邻边之比是唯一确定的,这也是学生理解正切概念的关键所在。

(四)获取新知,深化理解1.通过以上探究,我们得出结论在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比随之确定,这个比叫做∠A 的正切(tangent ),记作tanA.tanA=的邻边的对边A A ∠∠ 2. 情景设置:游戏—你选我说。

问题:(1)你们用学过的知识,计算出这些锐角的正切值吗?(2)老师三角板中的30。

角的正切值,和你们一样吗?这个三角形中的30。

的正切值呢?(3)你能得出一个什么结论?学生活动:完成游戏环节,熟悉正切概念。

独立思考各个问题,深化对正切概念的理解。

设计意图:通过小游戏调节课堂气氛,同时让学生快速准确的运用tanA 表示直角三角形中两边的比。

后续的问题设计是让学生体会正切是锐角A 的属性,与这个角处在哪一个或者怎样的三角形中无关,为正切函数的理解做好充分准备。

(五)学以致用情景设置:tanA能解决我们的生活中的问题吗?问题:(1)梯子的倾斜程度与tanA的关系吗?(2)你能解决这样一个实际问题吗?学生活动:独立思考,全班交流,学生口述例题思路,教师板书,作出规范指导。

设计意图:再次回归到最初的实际问题,让学生体会数学来源于生活,又服务于生活,不仅可以进一步巩固加深理解正切的概念,感受正切在生活中的广泛应用。

也能让学生体会用自己学到的知识可以解决现实生活中的具体问题感受数学学习的价值.第三环节:随堂练习,巩固知识1.随堂练习(1)△ABC是等腰三角形,你能根据图中所给数据求出tanC吗? tan∠CBD吗?观察数据,你发现了什么?你能证明你的猜想吗?(2)如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)学生活动:独立完成,猜想互余两角正切的关系,并证明,在全班交流。

设计意图:巩固熟悉正切的概念,通过对第一个练习的补充问题,引出学生对于互余两角正切值关系的思考,并利用正切概念证明猜想,再将其拓展到任意三角形,进一步加深学生对互余两角正切关系的认识。

第四环节:课堂小结,感悟数学情景设置:探索之旅即将结束,你收获到了什么?1.知识上:正切,坡度的概念2.学习方法上:数形结合的思想,类比的思想.3.解决实际问题上:利用正切解决实际问题。

感悟:数学新知的产生,往往是先通过观察得到一个结论,然后才有后来的逻辑证明的.希望同学们在平时的生活中善于用数学的眼光观察世界,用数学的头脑思考世界,用数学的语言总结与表达你的发现与收获,相信你的数学学习之路上一定会越走越宽阔!学生活动:整理思路,总结收获,与教师共同回顾,小结本节课所学内容。

设计意图:归纳总结,使学生明晰本节课的“形”——知识;“神”——数学思想与方法. 体会到数学与实际生活之间密不可分的关系。

第五环节:布置作业,挑战自我1.课本:习题1.1第1、2题.2.调查生活中正切应用实例,下节课课堂汇报.学生活动:完成作业设计意图:巩固课堂所学知识,深化认知,积累数学活动经验,体会数学的有用性.六.课后反思本节课通过现实生活中搭梯子的现象引入课题,设计了一系列的探究活动引导学生将具体问题抽象成数学问题并利用已有的数学知识解决,理解正切的概念,感受其产生的必然性和合理性。

同时通过“小游戏—你选我指”、“你能解决这个实际问题”等板块进一步反馈、提高学生对正切概念的认知水平.另外,本节的三角函数与学生以前所学的一次函数、反比例函数有所不同,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,学生初次接触这种对应关系,理解起来有一定的困难,可是这种对应关系对学生深刻地理解函数又有很大帮助。

所以我充分利用教具设计将同一个角放入不同的三角形,加深学生对于角和数值之间的对应关系的理解,顺利突破难点。

另外,课标对于本节函数部分的说明中提到“把握好三角函数值的变化规律研究的定位,切莫提高要求!”,而本节课的教学对象是交大附中的学生,具有较好基础,思维敏捷,和良好的学习习惯,因此,我在学生理解函数的基础之上,略作适当的延伸,让学生感受tanA随锐角A的变化趋势,课堂实践证明,我们的学生也能顺利并且出色的完成了挑战。

因此,我认为这节课的设计完成了预期的教学目标的三个维度的要求。

但是,对于学生回答问题后的及时评价及鼓励部分做的还远远不够,也感觉自己包办的还是有些过多,没有完全挖掘学生的潜力,调动他们的积极性。

这不得不说是我本节课教学的一个遗憾。

再次,众所周知,北师大版教材的设计往往都是体现数学的生活性,在很多的知识点上都是由生活实例引入.我在这里也曾经思考过我能不能从纯数学的角度,先利用几何图形的变化,直接给出正切的概念,再将正切的概念应用到生活中,这样的设计,会不会更好一些呢?。

相关文档
最新文档