人教版九年级锐角三角函数全章教案

合集下载

新人教版九年级数学第28章锐角三角函数(教案)

新人教版九年级数学第28章锐角三角函数(教案)
新人教版九年级数学第28章锐角三角函数(教案)
一、教学内容
新人教版九年级数学第28章锐角三角函数:
1.锐角三角函数的定义与性质;
2.正弦、余弦、正切的定义及互余角的三角函数关系;
3.利用计算器求锐角三角函数值;
4.锐角三角函数在直角三角形中的应用;
5.实际问题中锐角三角函数的运用,如测量物体的高度等。
五、教学反思
在本次教学过程中,我发现学生们对锐角三角函数的概念和性质掌握得相对较好,但在实际应用和计算器操作方面还存在一些问题。首先,我在讲授理论知识时,尽量用生动的语言和实例来解释抽象的概念,让学生们能够更好地理解和记忆。这种方式似乎取得了不错的效果,大部分学生能够跟上课堂节奏,但仍有少数学生显得有些吃力。
(4)锐角三角函数在直角三角形中的应用:解决实际问题,如测量物体的高度、计算斜边长度等。
举例:已知直角三角形的斜边和一个锐角,求另一个锐角的函数值以及各边的长度。
2.教学难点
(1)理解锐角三角函数的定义:学生可能难以理解函数值随角度变化而变化的规律,需要通过实例和图示进行讲解。
突破方法:结合直角三角形的动态图示,让学生观察并总结规律。
(2)互余角的三角函数关系:掌握互余角的正弦、余弦、正切函数值之间的关系,并能灵活运用。
举例:若锐角α与β互余,则sinα=cosβ,cosα=sinβ,tanα=cotβ。
(3)利用计算器求锐角三角函数值:熟练掌握计算器操作,快速求解函数值。
举例:使用科学计算器求解sin45°、cos30°、tan60°的值。
二、核心素养目标
1.理解并掌握锐角三角函数的定义、性质及应用,提高数学抽象和逻辑推理能力;
2.通过计算器求锐角三角函数值,培养数据运算和数学建模的核心素养;

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案【教案名称】:人教版九年级锐角三角函数全章教案【教学目标】:1. 了解锐角三角函数的概念和基本性质;2. 掌握锐角三角函数的定义和计算方法;3. 能够应用锐角三角函数解决实际问题;4. 培养学生的数学思维和解决问题的能力。

【教学内容】:本教案共包含以下内容:1. 锐角三角函数的引入和概念介绍;2. 正弦函数、余弦函数和正切函数的定义和计算方法;3. 锐角三角函数的性质和关系;4. 锐角三角函数的应用。

【教学步骤】:一、引入和概念介绍1. 通过引导学生观察直角三角形中的角度和边长关系,引入锐角三角函数的概念;2. 介绍正弦函数、余弦函数和正切函数的定义和符号表示;3. 通过实例演示和练习,让学生掌握锐角三角函数的计算方法。

二、正弦函数、余弦函数和正切函数的性质和关系1. 通过图像和表格展示正弦函数、余弦函数和正切函数的周期性、奇偶性和单调性;2. 引导学生观察和总结正弦函数、余弦函数和正切函数之间的关系,如正弦函数与余弦函数的关系、正切函数与正弦函数的关系等;3. 练习题目让学生巩固和应用正弦函数、余弦函数和正切函数的性质和关系。

三、锐角三角函数的应用1. 通过实际问题引导学生应用锐角三角函数解决实际问题,如测量高楼的高度、计算斜坡的坡度等;2. 练习题目和实例让学生掌握如何运用锐角三角函数解决实际问题。

【教学重点】:1. 锐角三角函数的定义和计算方法;2. 正弦函数、余弦函数和正切函数的性质和关系;3. 锐角三角函数的应用。

【教学扩展】:1. 引导学生探究其他三角函数(割函数、余割函数和余切函数)的定义和性质;2. 给予学生更多的应用题目和实例,提高学生运用锐角三角函数解决实际问题的能力;3. 鼓励学生自主学习和探索,拓宽数学知识的广度和深度。

【教学评估】:1. 课堂练习:通过课堂练习,检查学生对锐角三角函数的理解和掌握程度;2. 作业布置:布置相关的作业题目,让学生巩固和应用所学知识;3. 个人表现评估:评估学生在课堂讨论、问题解答和实际应用中的表现。

人教版九年级数学下册教案:28.1锐角三角函数

人教版九年级数学下册教案:28.1锐角三角函数
d值的变化规律,提高其几何直观能力。
e.关系难点:通过具体例题和图示,帮助学生理解互为余角的三角函数关系,并能够灵活运用。
举例:针对计算难点,可以设计一道题目,要求计算一个非特殊角度(如37°)的正弦值。教师引导学生使用计算器或查表法,并解释这些方法的原理,从而帮助学生突破计算难关。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
e.互为余角的两个角的三角函数关系,sin(90°-α) = cosα,cos(90°-α) = sinα。
举例:在讲解特殊角的三角函数值时,可以通过绘制精确的直角三角形,让学生直观地看到边长比例与函数值之间的关系。
2.教学难点
-难点内容:学生对三角函数概念的理解及其应用,特别是在非特殊角度的计算。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义及特殊角的函数值。对于难点部分,如非特殊角度的计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量教室中某物体的高度,演示锐角三角函数的基本原理。
-教学策略:
a.理解难点:通过动态演示或实物模型,帮助学生理解锐角三角函数的概念,特别是在直角三角形中的实际意义。

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案教学目标:本课程旨在通过探究锐角三角函数,使学生掌握当锐角固定时,对边与斜边的比值是固定值的概念,并能正确进行计算。

同时,通过研究锐角三角函数,培养学生观察、比较、分析、概括等逻辑思维能力,以及独立思考、勇于创新的精神和良好的研究惯。

教学重点:理解认识正弦(sinA)概念,掌握当锐角固定时,对边与斜边的比值是固定值的概念。

教学难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

教学过程:一、复旧知、引入新课老师通过一个实际问题的引入,让学生了解锐角三角函数的实际应用。

例如,测量旗杆高度的问题。

二、探索新知通过问题引入的方式,让学生探索锐角三角函数的概念和应用。

活动一:问题的引入老师通过引入实际问题,让学生思考如何应用锐角三角函数来解决问题。

例如,在绿化荒山的问题中,通过计算斜坡与水平面所成角的度数和出水口的高度,求解需要准备多长的水管。

活动二:问题的探索老师通过问题的探索,让学生比较、分析并得出结论。

例如,在任意画一个Rt△ABC,使∠C=90o,∠A=45o的问题中,让学生计算∠A的对边与斜边的比,从而得出结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于2.活动三:问题的拓展老师通过问题的拓展,让学生进一步探索锐角三角函数的应用。

例如,在∠A取其他一定度数的锐角时,让学生比较、分析并得出结论:对任意锐角,它的对边与斜边的比值是固定值。

三、总结归纳老师通过总结归纳,让学生掌握锐角三角函数的概念和应用,以及对边与斜边的比值是固定值的事实。

同时,让学生反思并总结研究锐角三角函数的方法和策略,以便更好地掌握和应用相关知识。

四、作业布置老师布置相关作业,让学生巩固和拓展所学知识。

例如,让学生通过计算和实际应用,进一步掌握锐角三角函数的概念和应用。

同时,让学生思考如何将锐角三角函数与其他数学知识和实际问题相结合,更好地应用所学知识。

九年级锐角三角函数全章教案

九年级锐角三角函数全章教案
锐角三角函数的运用
通过具体例题,演示如何运用锐角三角函数解决实际问题。
03 教学重点与难点
教学重点
锐角三角函数的定义
01
学生需要掌握锐角三角函数的定义,包括正弦、余弦和正切的
定义。
锐角三角函数的性质
02
学生需要理解并掌握锐角三角函数的性质,如正弦、余弦和正
切的取值范围、周期性、奇偶性等。
锐角三角函数的应用
教学方法是否得当
在锐角三角函数的教学过程中,是否采用了多种教学方法,如讲解、 演示、练习等,是否能够帮助学生更好地理解和掌握知识。
学生参与度如何
在教学过程中,学生的参与度如何,是否能够积极思考和回答问题, 是否能够主动参与到课堂讨论中。
教学效果如何
通过本章节的教学,学生是否能够掌握锐角三角函数的基本概念和性 质,是否能够运用所学知识解决实际问题。
03
学生需要能够运用锐角三角函数解决实际问题,如测量问题、
几何问题等。
教学难点
01
锐角三角函数的图像
学生需要理解并掌握锐角三角函数的图像,包括正弦、余弦和正切的图
像。
02

锐角三角函数的变换
学生需要理解并掌握锐角三角函数的变换,如平移、伸缩等。
03
锐角三角函数与其他知识的综合应用
学生需要能够将锐角三角函数与其他知识进行综合应用,如与几何、代
过程与方法
通过实际操作和观察,掌握锐 角三角函数的计算方法。
通过小组合作和交流,理解锐 角三角函数的意义和应用。
通过实例分析和练习,提高解 决实际问题的能力。
情感、态度与价值观
培养对数学的兴趣和热爱。 培养自主探究和合作学习的精神。
培养解决实际问题的意识和能力。

九年级数学下册(人教版)28.1锐角三角函数教学设计

九年级数学下册(人教版)28.1锐角三角函数教学设计
(2)组织学生进行小组讨论,推导出锐角三角函数的基本关系式,并进行验证;
(3)结合实际例题,让学生运用锐角三角函数知识进行分析和求解。
3.巩固练习
设计不同难度的练习题,让学生在课堂上独立完成,巩固所学知识。同时,针对学生的错误,进行及时指导和纠正。
4.课堂小结
通过师生互动,总结本节课所学的主要内容,强化学生对锐角三角函数的认识。
2.提出问题:引导学生回顾直角三角形的性质和勾股定理,为新课的学习做好知识储备。
3.引入新课:在此基础上,引出本节课的主题——锐角三角函数,激发学生的好奇心和学习兴趣。
(二)讲授新知
1.锐角三角函数的定义:
(1)通过观察直角三角形,引导学生发现锐角三角函数的定义;
(2)结合图形,解释正弦、余弦、正切函数的概念;
三、教学重难点和教学设想
(一)教学重难点
1.重点:锐角三角函数的定义、基本关系式以及在实际问题中的应用。
2.难点:
(1)锐角三角函数的定义及其在直角三角形中的图形表示;
(2)锐角三角函数的基本关系式的推导和应用;
(3)将实际问题转化为锐角三角函数问题,并运用相关知识进行求解。
(二)教学设想
1.采用情境教学法,引入生活中的实际问题,让学生感受到数学知识的实用价值,激发他们的学习兴趣。
2.通过直观的图形演示,引导学生发现锐角三角函数的定义,培养他们的观察能力和抽象思维能力。
3.运用启发式教学法,引导学生通过自主探究、小组讨论等方式,推导出锐角三角函数的基本关系式,提高他们的逻辑思维能力和团队协作能力。
4.设计具有梯度的问题和练习,针对不同层次的学生进行差异化教学,使每个学生都能在原有基础上得到提高。
(3)利用计算器或计算工具,验证锐角三角函数的值。

第28章-锐角三角函数-全章教案

第28章-锐角三角函数-全章教案
求 sinA 就是要确定∠
====Word 行业资料分享--可编辑版本--双击可删====
一、在 Rt△ABC 中,∠C =90°: B
a 对边
c 斜边
视,对学习基 A 的对边与斜边的比;
础 较 弱 的 学 求 sinB 就是要确定∠B
生 及 时 给 予 的对边与斜边的比.
指点.
教师引导学
生作知识总
结,不断扩充
培养学生概括的能
学 生 的 知 识 力,使知识形成体系,
结构,学习新 并渗透数学思想方法。
的解题方法.
Cb
A
五、体验 收获

sin
A
A的对边 斜边
a c

同样 sinB= B的对边 斜边
b c
当∠A=300 时,sinA=? 当∠A=450 时,sinA=? 当∠A=600 时,sinA=?
也随之确
定”.但是怎
样证明这个
C
A C1
A!
命题呢?学
生这时的思
经过学生的实验和证明,得出:
维很活跃.对
于这个问题,
在 Rt△ABC 中,∠C=90°,我们把锐
部分学生可
角 A 的对边与斜边的比叫做∠A 的正弦
能能解决
(sine),记作:sinA,
它.因此教师
此时应让学
B
生展开讨论,
独立完成.
a 对边
长 50m,那么斜坡与水平面所成角的度数是多少
呢?
二、探究 1.请每一位同学拿出自己的三角板,分别测量并 教 师 提 出 问 在培养学生动手能力的
====Word 行业资料分享--可编辑版本--双击可删====
说理
三、感悟 深化

人教版九年级数学下册第二十八章《锐角三角函数》教案

人教版九年级数学下册第二十八章《锐角三角函数》教案
举例:重点讲解正弦函数的定义,通过具体角度的计算让学生理解正弦函数的值是如何得出来的,如sin30°=1/2。
2.教学难点
-函数图像的绘制和理解:对于一些空间想象力较弱的学生,理解函数图像可能会存在困难。
-锐角三角函数特殊角的记忆:特殊角的函数值是解决实际问题的关键,但记忆这些值可能对学生来说是一个挑战。
其次,在案例分析环节,我尝试让同学们通过小组讨论的方式,将所学知识应用到实际问题中。这个过程中,同学们表现出了很高的积极性,但也暴露出了一些问题。有些同学在分析问题时,容易陷入死记硬背公式,而忽略了解题思路和方法。针对这一点,我将在后续教学中加强对解题方法的指导,引导同学们如何将实际问题转化为数学模型,并运用所学知识解决问题。
人教版九年级数学下册第二十八章《锐角三角函数》教案
一、教学内容
人教版九年级Biblioteka 学下册第二十八章《锐角三角函数》主要包括以下内容:
1.正弦、余弦和正切的定义:引导学生理解锐角三角函数的概念,掌握三个函数的定义。
2.锐角三角函数的图像:让学生通过观察图像,了解三个函数随角度变化的规律。
3.锐角三角函数的值:学习如何查表得到锐角三角函数的值,并掌握一些特殊角的函数值。
-实际问题的解决方法:如何将实际问题转化为数学模型,并运用锐角三角函数解决问题,是学生需要克服的难点。
举例:在讲解函数图像时,可以通过动态演示或实物模型来帮助学生形象地理解函数图像的绘制过程。对于特殊角的记忆,可以引导学生发现这些角度的函数值之间的规律,如30°、45°、60°的特殊角的正弦、余弦、正切值,通过规律记忆而非死记硬背。
针对实际问题的解决方法,可以通过以下步骤帮助学生:
a.分析问题:明确问题中涉及的角度和边长,确定需要使用的三角函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学教案第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学"相似三角形""勾股定理"等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sinA 、 cosA 、 tanA 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。

(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。

你想知道小明怎样算出的吗??34110下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦二、探索新知、分类应用【活动一】问题的引入【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。

现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m ,那么需要准备多长的水管? 分析:问题转化为,在Rt△ABC 中,∠C=90o ,∠A=30o,BC=35m,求AB根据“再直角三角形中,30o角所对的边等于斜边的一半”,即 可得AB=2BC=70m.即需要准备70m 长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于21 【问题二】如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比ABBC,能得到什么结论?(学生思考) 结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角都等于22。

形的大小如何,这个角的对边与斜边的比值【问题三】一般地,当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o ,∠A=∠A`=α,那么与有什么关系分析:由于∠C=∠C` =90o,∠A=∠A`=α,所以R t△ABC∽Rt△A`B`C`,,即结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比也是一个固定值。

【活动二】认识正弦如图,在Rt △ABC 中,∠A 、∠B 、∠C 所对的边分别记为a 、b 、c 。

师:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦。

记作sinA 。

板书:sinA =A aA c∠=∠的对边的斜边 (举例说明:若a=1,c=3,则sinA=31) 【注意】:1、sinA 不是 sin 与A 的乘积,而是一个整体;ABCD 2、正弦的三种表示方式:sinA 、sin56°、sin ∠DEF 3、sinA 是线段之间的一个比值;sinA 没有单位。

提问:∠B 的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?【活动三】正弦简单应用 例1 如课本图28.1-5,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.教师对题目进行分析:求sinA 就是要确定∠A 的对边与斜边的比;求sinB•就是要确定∠B 的对边与斜边的比.我们已经知道了∠A 对边的值,所以解题时应先求斜边的高.三、总结消化、整理笔记在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比都是一个固定值. 在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。

四、书写作业、巩固提高练习:做课本第77页练习.五、教学后记28.1 锐角三角函数(2)第二课时教学目标:知识与技能:1、了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA•表示直角三角形中两边的比.2、逐步培养学生观察、比较、分析、概括的思维能力. 过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.理解余弦、正切的概念.2.难点:熟练运用锐角三角函数的概念进行有关计算.教学过程:一、复习旧知、引入新课【复习】1、口述正弦的定义2、(1)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3. 则sin ∠BAC= ;sin ∠ADC= .(2)﹙2006成都﹚如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。

已知AC= 5 ,BC=2,那么sin ∠ACD =( ) AB .23CD二、探索新知、分类应用【活动一】余弦、正切的定义一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠B=∠B`=α,那么与有什么关系?分析:由于∠C=∠C` =90o,∠B=∠B`=α,所以Rt△ABC∽Rt△A`B`C`,,即结论:在直角三角形中,当锐角B的度数一定时,不管三角形的大小如何,∠B的邻边与斜边的比也是一个固定值。

如图,在Rt△ABC中,∠C=90o,把锐角B的邻边与斜边的比叫做∠B的余弦,记作cosB即把∠A的对边与邻边的比叫做∠A的正切.记作tanA,即锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数.【活动二】余弦、正切简单应用教师解释课本第78页例2题意:如课本图28.1-7,在Rt△ABC中,∠C=90°,BC=6,sinA=35,求cosA、tanB的值.教师对解题方法进行分析:我们已经知道了直角三角形中一条边的值,要求余弦,正切值,就要求斜边与另一个直角边的值.我们可以通过已知角的正弦值与对边值及勾股定理来求.教师分析完后要求学生自己解题.学生解后教师总结并板书.三、总结消化、整理笔记在直角三角形中,当锐角A的大小确定时,∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,把∠A的对边与斜边的比叫做∠A的正切,记作tanA.四、书写作业、巩固提高学生做课本第78页练习1、2、3题.分层作业五、教学后记28.1 锐角三角函数(3)第三课时教学目标:知识与技能:1、使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.2、使学生了解同一个锐角正弦与余弦之间的关系3、使学生了解正切与正弦、余弦的关系4、使学生了解三角函数值随锐角的变化而变化的情况过程与方法:1.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.2.锐角正弦、余弦和正切与正弦、余弦之间的关系,了解锐角三角函数的内涵。

情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯,让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.重难点、关键:1.重点:三个锐角三角函数间几个简单关系.2.难点:能独立根据三角函数的定义推导出三个锐角三角函数间几个简单关系.教学过程:一、复习旧知、引入新课【复习】叫学生结合直角三角形说出正弦、余弦、正切的定义二、探索新知、分类应用【活动一】锐角三角函数间几个简单关系讨论:1、从定义可以看出sin A 与cos B 有什么关系?sin B 与cos A 呢? 满足这种关系的A ∠与B ∠又是什么关系呢?2、利用定义及勾股定理你还能发现sin A 与cos A 的关系吗?3、再试试看tan A 与sin A 和cos A 存在特殊关系吗?经过教师引导学生探索之后总结出如下几种关系:结论:(1)若90A B ∠+∠=o那么sin A =cos B 或sin B =cos A (2)22sin cos 1A A += (3)sin tan cos AA A=4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余弦呢?正切呢?通过一番讨论后得出:结论:(1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。

【活动二】题型分析 (1)判断题:i 对于任意锐角α,都有0<sin α<1和0<cos α<1 ( ) ii 对于任意锐角α1,α2,如果α1<α2,那么cos α1<cos α2 ( )iii 如果sin α1<sin α2,那么锐角α1<锐角α2I ( ) iv 如果cos α1<cos α2,那么锐角α1>锐角α2 ( ) (2)在Rt △ABC 中,下列式子中不一定成立的是______A .sinA =sinB B .cosA =sinBC .sinA =cosBD .sin(A+B)=sinC ((3)390,sin .cos ,sin tan 5ABC C A A B A ∠==o V 中,求和的值 (4)sin 272°+sin 218°的值是( ).A .1B .0C .12D 三、总结消化、整理笔记1、一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系:sin A =cos B 或sin B =cos A2、使学生了解同一个锐角正弦与余弦之间的关系:3、使学生了解正切与正弦、余弦的关系4、使学生了解三角函数值随锐角的变化而变化的情况四、书写作业、巩固提高分层作业五、教学后记28.1 锐角三角函数(4)第四课时教学目标:知识与技能:1.能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.能熟练计算含有30°、45°、60°角的三角函数的运算式.过程与方法:知道30°,45°,60°角的三角函数值,并且进行运算. 情感态度与价值观:让学生经历观察、操作等过程,知道特殊三角函数值,从事锐角三角函数基本性质的探索活动,进一步发展空间观察,增强审美意识.重难点、关键:1.重点:熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式.2.难点:30°、45°、60°角的三角函数值的推导过程.教学过程:一、复习旧知、引入新课【引入】还记得我们推导正弦关系的时候所到结论吗?即01sin 302=,0sin 452=你还能推导出0sin 60的值及30°、45°、60°角的其它三角函数值吗?二、探索新知、分类应用【活动一】30°、45°、60°角的三角函数值【探索】1.让学生画30°45°60°的直角三角形,分别求sia 30° cos45° tan60° 归纳结果例 求下列各式的值:1.师生共同完成课本第79页例3:求下列各式的值. (1)cos 260°+sin 260°. (2)cos 45sin 45︒︒-tan45°.教师以提问方式一步一步解上面两题.学生回答,教师板书. 2.师生共同完成课本第80页例4:教师解答题意:(1)如课本图28.1-9(1),在Rt △ABC 中,∠C=90,,,求∠A 的度数.(2)如课本图28.1-9(2),已知圆锥的高AO 等于圆锥的底面半径OB 倍,求a .教师分析解题方法:要求一个直角三角形中一个锐角的度数,可以先求它的某一个三角函数的值,如果这个值是一个特殊解,那么我们就可以求出这个角的度数. 【活动三】提高知识1、tan45°·sin60°-4sin30°·cos45°·tan30°2、已知sinA ,sinB 是方程4x 2-2mx+m-1=0的两个实根,且∠A ,∠B 是直角三角形的两个锐角,求:(1)m 的值;(2)∠A 与∠B 的度数.三、总结消化、整理笔记本节课应掌握:30°、45°、60°角的三角函数值,并且进行计算;四、书写作业、巩固提高(一)巩固练习:课本80练习1、2(二)分层作业五、教学后记28.1 锐角三角函数(5)第五课时教学目标:知识与技能:1.让学生熟识计算器一些功能键的使用.2.会熟练运用计算器求锐角的三角函数值和由三角函数值来求角.过程与方法:自己熟悉计算器,在老师的知道下求一般锐角三角函数值.情感态度与价值观:让学生通过独立思考,自主探究和合作交流进一步体会函数的数学内涵,获得知识,体验成功,享受学习乐趣.重难点、关键:1.重点:运用计算器处理三角函数中的值或角的问题.2.难点:正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理.教学过程:一、复习旧知、引入新课【引入】通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以用计算器来求锐角的三角函数值。

相关文档
最新文档