锐角三角函数全章教案

合集下载

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案【教案名称】:人教版九年级锐角三角函数全章教案【教学目标】:1. 了解锐角三角函数的概念和基本性质;2. 掌握锐角三角函数的定义和计算方法;3. 能够应用锐角三角函数解决实际问题;4. 培养学生的数学思维和解决问题的能力。

【教学内容】:本教案共包含以下内容:1. 锐角三角函数的引入和概念介绍;2. 正弦函数、余弦函数和正切函数的定义和计算方法;3. 锐角三角函数的性质和关系;4. 锐角三角函数的应用。

【教学步骤】:一、引入和概念介绍1. 通过引导学生观察直角三角形中的角度和边长关系,引入锐角三角函数的概念;2. 介绍正弦函数、余弦函数和正切函数的定义和符号表示;3. 通过实例演示和练习,让学生掌握锐角三角函数的计算方法。

二、正弦函数、余弦函数和正切函数的性质和关系1. 通过图像和表格展示正弦函数、余弦函数和正切函数的周期性、奇偶性和单调性;2. 引导学生观察和总结正弦函数、余弦函数和正切函数之间的关系,如正弦函数与余弦函数的关系、正切函数与正弦函数的关系等;3. 练习题目让学生巩固和应用正弦函数、余弦函数和正切函数的性质和关系。

三、锐角三角函数的应用1. 通过实际问题引导学生应用锐角三角函数解决实际问题,如测量高楼的高度、计算斜坡的坡度等;2. 练习题目和实例让学生掌握如何运用锐角三角函数解决实际问题。

【教学重点】:1. 锐角三角函数的定义和计算方法;2. 正弦函数、余弦函数和正切函数的性质和关系;3. 锐角三角函数的应用。

【教学扩展】:1. 引导学生探究其他三角函数(割函数、余割函数和余切函数)的定义和性质;2. 给予学生更多的应用题目和实例,提高学生运用锐角三角函数解决实际问题的能力;3. 鼓励学生自主学习和探索,拓宽数学知识的广度和深度。

【教学评估】:1. 课堂练习:通过课堂练习,检查学生对锐角三角函数的理解和掌握程度;2. 作业布置:布置相关的作业题目,让学生巩固和应用所学知识;3. 个人表现评估:评估学生在课堂讨论、问题解答和实际应用中的表现。

第二十八章 锐角三角函数(全章)教案

第二十八章 锐角三角函数(全章)教案

第二十八章锐角三角函数(全章教案)情 感 态 度 价值观教学重点 要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.教学难点要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.教学准备 教师 多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图(一)回忆知识1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:tanA=的邻边的对边A A ∠∠(二)新授概念 1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.2.例1如图(6-16),某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 距离(精确到1米)斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin解:在Rt △ABC 中sinB=AB AC∴AB=B AC sin =2843.01200=4221(米)答:飞机A 到控制点B 的距离约为4221米.例2.2012年6月18日“神州”九号载人航天飞船发射成功。

当飞船完成变轨后,就在离地形表面350km 的圆形轨道上运行。

如图,当飞船运行到地球表面上P 点的正上方时,从飞船上能直接看到地球上最远的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6400km ,结果精确到0.1km )分析:从飞船上能看到的地球上最远的点,应是视线与地球相切时的切点。

将问题放到直角三角形FOQ 中解决。

.解决此问题的关键是在于把它转化为数学问题,利用解直角三角形知识来解决,在此之前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重请学生画几何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角α得出Rt △ABC 中的∠ABC ,进而利用解直角三角形的知识就可以解此题了.例1小结:本章引言中的例子和例1正好属于应用同一关系式 sinA=斜边的对边A ∠ 来解决的两个实际问题即已知α∠和斜边,求∠α的对边;以及已知∠α和对边,求斜边.(三).巩固练习1.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋楼底部的俯角为600,热气球与高楼的水平距离为120m ,这栋高楼有多高(结果精确到0.1`m ) 2.如图6-17,某海岛上的观察所A 发现海上某船只B 并测得其俯角α=80°14′.已知观察所A 的标高(当水位为0m 时的高度)为43.74m ,当时水位为+2.63m ,求观察所A 到船只B 的水平距离BC(精确到1m) 教师在学生充分地思考后,应引导学生分析: (1).谁能将实物图形抽象为几何图形?请一名同学上黑板画出来. (2).请学生结合图形独立完成。

三角函数全章教案

三角函数全章教案

三角函数全章教案第一课时课题锐角三角函数(一)教学目标一.知识目标: 初步了解正弦、余弦、正切概念;能较正确地用sinA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

二.能力目标 : 逐步培养学生观察、比较、分析,概括的思维能力。

三.情感目标: 提高学生对几何图形美的认识。

(二).教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组sinA 、cosA 、tanA 表示正弦,余弦,正切(三)教学程序一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2.归纳三角函数定义。

sinA= ,cosA= ,tanA=3例1.求如图所示的Rt ⊿ABC 中的sinA,cosA,tanA 的值。

二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sin 30°cos45 tan60°归纳结果2. 求下列各式的值(1)sin 30°+ cos30° (2)2sin 45°—cos30°(3) +ta60°-tan30°三.拓展提高 1. P82例4.(略)2. 如图,在⊿ABC 中,∠A=30°,tanB= AC=23,求 AC200cos3045sia 12A ∠的对边斜边A ∠的邻边斜边A A ∠∠的对边的邻边四.小结五.作业课本p86 2,3,6,7,8,10第二课时课题解直角三角形应用(一)一.教学目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA ba (2)三边之间关系 a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B ∠=350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. (三) 巩固练习在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案教学目标:本课程旨在通过探究锐角三角函数,使学生掌握当锐角固定时,对边与斜边的比值是固定值的概念,并能正确进行计算。

同时,通过研究锐角三角函数,培养学生观察、比较、分析、概括等逻辑思维能力,以及独立思考、勇于创新的精神和良好的研究惯。

教学重点:理解认识正弦(sinA)概念,掌握当锐角固定时,对边与斜边的比值是固定值的概念。

教学难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

教学过程:一、复旧知、引入新课老师通过一个实际问题的引入,让学生了解锐角三角函数的实际应用。

例如,测量旗杆高度的问题。

二、探索新知通过问题引入的方式,让学生探索锐角三角函数的概念和应用。

活动一:问题的引入老师通过引入实际问题,让学生思考如何应用锐角三角函数来解决问题。

例如,在绿化荒山的问题中,通过计算斜坡与水平面所成角的度数和出水口的高度,求解需要准备多长的水管。

活动二:问题的探索老师通过问题的探索,让学生比较、分析并得出结论。

例如,在任意画一个Rt△ABC,使∠C=90o,∠A=45o的问题中,让学生计算∠A的对边与斜边的比,从而得出结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于2.活动三:问题的拓展老师通过问题的拓展,让学生进一步探索锐角三角函数的应用。

例如,在∠A取其他一定度数的锐角时,让学生比较、分析并得出结论:对任意锐角,它的对边与斜边的比值是固定值。

三、总结归纳老师通过总结归纳,让学生掌握锐角三角函数的概念和应用,以及对边与斜边的比值是固定值的事实。

同时,让学生反思并总结研究锐角三角函数的方法和策略,以便更好地掌握和应用相关知识。

四、作业布置老师布置相关作业,让学生巩固和拓展所学知识。

例如,让学生通过计算和实际应用,进一步掌握锐角三角函数的概念和应用。

同时,让学生思考如何将锐角三角函数与其他数学知识和实际问题相结合,更好地应用所学知识。

锐角三角函数的教案

锐角三角函数的教案

锐角三角函数的教案【篇一:锐角三角函数教案】第二十八章锐角三角函数【篇二:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。

锐角三角函数优秀教案

锐角三角函数优秀教案

教学目标第一章直角三角形的边角关系第 1 课时§1.1.1 锐角三角函数1、经历探索直角三角形中边角关系的过程。

2、理解正切的意义及与现实生活的探索。

3、逐步学习利用数形结合的思想分析问题和解决问题。

4、提高解决实际问题的能力。

教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。

这一章,我们继续学习直角三角形的边角关系。

师生共同研究形成概念1、梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。

这就涉及到倾斜角的问题。

用倾斜角刻画倾斜程度是非常自然的。

但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。

1)(重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡;2)如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡;3)如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。

2、想一想(比值不变)☆想一想书本P2想一想通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。

3、正切函数(1)明确各边的名称B斜边∠A的对边(2)tan A A的对边A的邻边A∠A的邻边C(3)明确要求:1)必须是直角三角形;2)是∠ A的对边与∠ A 的邻边的比值。

A☆巩固练习a、如图,在△ ACB中,∠ C = 90 °,1)tanA = ;tanB = ;AC B2)若AC = 4 ,BC = 3 ,则tanA = ;tanB = ;3)若AC = 8 ,AB = 10 ,则tanA = ;tanB = B;Cb、如图,在△ACB中,tanA = 。

九年级锐角三角函数全章教案

九年级锐角三角函数全章教案
锐角三角函数的运用
通过具体例题,演示如何运用锐角三角函数解决实际问题。
03 教学重点与难点
教学重点
锐角三角函数的定义
01
学生需要掌握锐角三角函数的定义,包括正弦、余弦和正切的
定义。
锐角三角函数的性质
02
学生需要理解并掌握锐角三角函数的性质,如正弦、余弦和正
切的取值范围、周期性、奇偶性等。
锐角三角函数的应用
教学方法是否得当
在锐角三角函数的教学过程中,是否采用了多种教学方法,如讲解、 演示、练习等,是否能够帮助学生更好地理解和掌握知识。
学生参与度如何
在教学过程中,学生的参与度如何,是否能够积极思考和回答问题, 是否能够主动参与到课堂讨论中。
教学效果如何
通过本章节的教学,学生是否能够掌握锐角三角函数的基本概念和性 质,是否能够运用所学知识解决实际问题。
03
学生需要能够运用锐角三角函数解决实际问题,如测量问题、
几何问题等。
教学难点
01
锐角三角函数的图像
学生需要理解并掌握锐角三角函数的图像,包括正弦、余弦和正切的图
像。
02

锐角三角函数的变换
学生需要理解并掌握锐角三角函数的变换,如平移、伸缩等。
03
锐角三角函数与其他知识的综合应用
学生需要能够将锐角三角函数与其他知识进行综合应用,如与几何、代
过程与方法
通过实际操作和观察,掌握锐 角三角函数的计算方法。
通过小组合作和交流,理解锐 角三角函数的意义和应用。
通过实例分析和练习,提高解 决实际问题的能力。
情感、态度与价值观
培养对数学的兴趣和热爱。 培养自主探究和合作学习的精神。
培养解决实际问题的意识和能力。

锐角三角函数教案

锐角三角函数教案

第一章 直角三角形的边角关系1.1 锐角三角函数(2)一、知识点1. 认识锐角三角函数——正弦、余弦2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.B 1B 2AC 1C 2它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sinA,即sinA=________.2、余弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠A的余弦,记作cosA,即cosA=_ _____.3、锐角A的正弦,余弦,正切和余切都叫做∠A的三角函数.温馨提示(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA 越,梯子越陡.探究活动3:如图,在Rt△ABC中,∠C=90°,AB=20,,求BC和cosB.BA C通过上面的计算,你发现sinA与cosB有什么关系呢? sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的 .设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°, BC=3,AB=5,求A的三个三角函数值.类型二:利用三角函数值求线段的长度例2、如图,在Rt△ABC中,∠B=90°,AC=200,sinA= ,求BC的长七、总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻..八、 随堂小测1、下图中∠ACB=90° ,CD ⊥AB 指出∠A2、1题中如果CD=5,AC=10,则sin ∠ACD= sin ∠DCB=3、如图:在等腰△ABC 中,AB=AC=5,BC=6.求: sinB,cosB,tanB设计意图:设计各种题型,可以检验学生的方法掌握情况,同时巩固学生的知识,提高学生的运用能力,若时间不允许该部分也可作为课后作业完成.BCABCsin a A c=cos b A c =sin b B c=cos a B c=bABCa┌csinA=cosB ,cosA=sinB (∠A+∠B=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.1.1锐角三角函数初三备课组教学目标1.知识与技能(1)了解锐角三角函数的概念,能够正确应用sinA、表示直角三角形中两边的比;记忆30°、45°、60°的正弦函数值,并会由一个特殊角的三角函数值说出这个角;(2)能够正确地使用计算器,由已知锐角求出它的三角函数值,•由已知三角函数值求出相应的锐角.2.过程与方法通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.3.情感、态度与价值观引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重点与难点1.重点:正弦三角函数概念及其应用.2.难点:使学生知道当锐角固定时,它的对边与斜边的比值也是固定的这一事实.用含有几个字母的符号组sinA表示正弦,正弦概念.教学过程情境引入比萨斜塔1350 年落成时就已倾斜,其塔顶中心点偏离垂直中心线2.1 m.至今,这座高54.5 m 的斜塔仍巍然屹立.你能用“塔身中心线与垂直中心线所成的角θ”来描述比萨斜塔的倾斜程度吗?问题1为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35 m,需要准备多长的水管?这个问题可以归结为:在Rt△ABC 中,∠C=90°,∠A=30°,BC=35 m,求AB.在上面的问题中,如果出水口的高度为50 m,那么需要准备多长的水管?思考:由这些结果,你能得到什么结论?结论:在直角三角形中,如果一个锐角的度数是30°,那么不管三角形的大小如何,这个角的对边与斜边的比值是一个固定值,为0.5 .问题2:如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A 的对边与斜边的比.B22==∠AB BC A 斜边的对边如图,任意画一个 Rt △ABC ,使∠C =90°,∠A =60°,计算∠A 的对边与斜边的比23==∠AB BC A 斜边的对边在直角三角形中,如果一个锐角的度数是 45°,那么不管三角形的大小如何,这个角的对边与斜边的比是一个固定值,为 22.22450==AB BC 斜边角的对边在直角三角形中,如果一个锐角的度数是 60°,那么不管三角形的大小如何,这个角的对边与斜边的比是一个固定值,为 23.23600==AB BC 斜边角的对边在直角三角形中,当锐角 A 的度数一定时,不管三角形的大小如何,它的对边与斜边的比是一个固定值.问题3 任意画 Rt △ABC 和 Rt △'''C B A ,使得∠C =∠C '=90°.∠A =∠A ',那么 AB BC与 ''''B A C B 有什么关系.你能解释一下吗?解:∵ ∠C = ∠C '=90°,∠A =∠A '.∴ Rt △ABC ∽Rt △C B A ''' ∴B A C B ABBC ''''= ∴B A AB C B BC ''=''在 Rt △ABC 中,∠C =90°,我们把锐角 A 的对边与斜边的比叫做∠A 的正弦,记作 sin A ,即EMBED Equation.3 sin A=c a A =∠斜边的对边sin 30°=21,sin 45°= 22,sin 60°=23例 如图,在 Rt △ABC 中,∠C =90°,求 sin A 和 sin B 的值. 练习提高,提升能力练习1 如下三幅图,在 Rt △ABC 中,∠C =90°,求 sin A 和 B 的值练习2 判断下列结论是否正确,并说明理由.(1)在 Rt △ABC 中,锐角 A 的对边和斜边同时扩大 100 倍,sin A 的值也扩大 100 倍; (2)如图所示,△ABC 的顶点是正方形网格的格点,则sin B= = . 反思与小结1.本节课我们学习了哪些知识?2.研究锐角正弦的思路是如何构建的?课后作业1.教科书第 64 页练习.2.课外探究:在直角三角形中,锐角 A 的邻边与斜边的比是否也是一个固定值. 教学反思28.1.2 锐角三角函数 教学目标1.知识与技能(1)了解锐角三角函数的概念,能够正确应用sinA 、tan A 表示直角三角形中两边的比;记忆30°、45°、60°的正弦函数值,并会由一个特殊角的三角函数值说出这个角;(2)能够正确地使用计算器,由已知锐角求出它的三角函数值,•由已知三角函数值求出相应的锐角.2.过程与方法通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.C 3 4 A B C C2 6 26BBC AC 4103.情感、态度与价值观引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯. 重点与难点1.重点:正弦、正切三角函数概念及其应用.2.难点:使学生知道当锐角固定时,它的对边与斜边、对边与邻边的比值也是固定的这一事实.用含有几个字母的符号组sinA 表示正弦、正切,正弦和正切概念.教学过程类比推理,提出概念请同学们回顾一下,我们是如何得到锐角正弦的概念的?在 Rt △ABC 中,∠C =90°,当∠A 确定时,∠A 的对边与斜边比随之确定.此时,其他边之间的比是否也随之确定呢?证明推理,引出概念如图:在△ABC 和△DEF 中,∠A =∠D ,∠C =∠F=90°, AB AC 与 DE DF 相等吗? AC BC 与 DF EF呢?证明推理,得到概念在 Rt △ABC 中,当锐角 A 的度数一定时,无论这个直角三角形大小如何,∠A 的邻边与斜边的比、对边与邻边的比都是一个固定值.在直角三角形中,锐角的邻边与斜边的比叫做这个锐角的余弦,记作 cos A .在直角三角形中,锐角的对边与邻边的比叫做这个锐角的正切,记作tan A .证明推理,得到概念∠A 的正弦、余弦、正切都是∠A 的锐角三角函数.巩固概念如图,在 Rt △ABC 中,∠C =90°,AB =10,BC =6,求 sin A ,cos A ,tan A 的值.小结反思1.通过本节课的学习,我们一共学习了哪几种锐角三角函数,它们是如何定义的?2.在本节课的学习中,我们用到了哪些数学思想方法?课后作业教科书第 68 页习题28.1 第 1 题.教学反思28.1.4 锐角三角函数课型:习题课教学目标:1.主进一步认识锐角三角函数2.准确把握锐角的正弦、余弦和正切间的联系与区别,进而灵活运用锐角三角函数的概念解决问题.学习目标:1.进一步认识锐角正弦、余弦和正切;2.能根据锐角三角函数的定义解决与直角三角形有关的简单计算.学习重点:根据锐角三角函数的定义解决与直角三角形有关的简单计算.知识梳理问题1 锐角三角函数是如何定义的?总结锐角三角函数的定义过程,并写出如图所示的直角三角形中两个锐角的三角函数.问题2 借助两块三角尺说明 30°, 45°,60°角的三角函数值.典型例题例1 已知,如图,Rt △ABC 中,∠C =90°,∠BAC =30°,延长 CA 至 D 点,使AD =AB .求∠D ,tan D .例2 已知,如图,⊙O 的半径 OA =4,弦 AB = 34 ,求劣弧 AB 的长.例3 已知,如图,钝角△ABC 中,AC =12 cm ,AB =16 cm ,sin A =31.求 tan B . 小结与反思回顾上述三个例题的解题思路,思考:在解题过程中,求一个锐角的三角函数的实质是求什么?已知一个锐角的三角函数值可以转化为怎样的条件?在这一过程中应该注意什么?布置作业1.如图,在平面直角坐标系中,直径为 10 的⊙A 经过点C (0,5)和点O (0,0),与x 轴交于另一点D ,点 B 是优弧 ODC 上一点,求∠OBC 的余弦值.2.已知:如图,⊙O 的半径 OA =16 cm ,OC ⊥AB 于 C 点,sin ∠AOC =43,求 AB 及 OC 的长.3.已知:如图△ABC 中,D 为 BC 中点,且∠BAD =90°,tan B =31,求∠CAD 三角函数值.28.2.1解直角三角形及其应用课型:新授课教学目标1.结合已学过的勾股定理和三角形内角和定理,研究解直角三角形的方法.2.了解解直角三角形的意义和条件;3.能根据已知的两个条件(至少有一个是边),解直角三角形.教学重点、难点:解直角三角形的依据和方法.教学过程实例引入,初步体验问题1 设塔顶中心点为 B ,塔身中心线与垂直中心线的夹角为∠A ,过点 B 向垂直中心线引垂线,垂足为点 C (如图).在 Rt △ABC 中,∠C =90°,BC =5.2 m , AB = 54.5 m ,求∠A 的度数.概念一般地,在直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.(1)三边之间的关系a 2+b 2=c 2(勾股定理) ;(2)两锐角之间的关系∠A +∠B =90°;(3)边角之间的关系sin A =c a , cos A =c b , tan A =b asin B =c b , cos B =c a , tan B = a b.问题3 从问题 1 的解答过程看,在直角三角形中,知道斜边和一条直角边,可以求其余的三个元素.那么,“知道五个元素中的两个元素(至少有一个是边) ,可以求其余元素”,还有哪几种情况呢?例题示范,方法探究例1 在 Rt △ABC 中,∠C =90°,AC =2 ,BC =6,解这个直角三角形.例2 如图,在 Rt △ABC 中,∠C =90°,∠B =35°,b =20,解这个直角三角形(结果保留小数点后一位).应用迁移,巩固提高练习:编写一道解直角三角形的题并解答.归纳:在直角三角形中,知道五个元素中的两个元素(至少有一个是边),我们就可以解这个直角三角形.一般有两种情况:(1)已知两条边;(2)已知一条边和一个锐角.归纳交流,总结反思1.什么叫解直角三角形?直角三角形中,除直角外,五个元素之间有怎样的关系?2.两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一条边和一个锐角,或两边,就能解这个直角三角形?3.你能根据不同的已知条件,归纳相应的解直角三角形的方法吗?课后作业教科书第74 页练习;教科书习题28.2第1 题.教学反思28.2.2解直角三角形及其应用课型:习题课教学目标1.利用解直角三角形进行几何图形的简单计算.2.熟练掌握解直角三角形的方法;3.能灵活运用解直角三角形解决与直角三角形有关的图形计算问题.教学重难点灵活运用解直角三角形解决与直角三角形有关的图形计算问题.知识梳理问题1什么叫解直角三角形?为什么在直角三角形中已知一条边和一个锐角,或已知两边,能够解这个直角三角形?问题2根据不同的已知条件,归纳相应的解直角三角形的方法,完成下表填空.典型例题例1在Rt△ABC 中,∠C=90°,根据下列条件解直角三角形:(1)a=3,c=6;(2)∠B =60°,b =4;(3)∠A =60°,△ABC 的面积 S = 312 .例2 在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与 BC 相交于点 D ,且 AB =4,求 AD 的长.例3 在△ABC 中,∠B =30°,∠C =45°,AC =4,求 AB 和 BC .布置作业1.已知在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为 D ,若∠B =30°,CD =6,求 AB 的长.2.AD ⊥CD ,AB =10,BC =20,∠A =∠C =30°,求 AD ,CD 的长.教学反思28.2.3 解直角三角形及其应用教学目标1.能利用直角三角形中的这些关系解直角三角形.2.使学生把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决,进一步提高数学建模能力3.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.教学重点将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识解决实际问题.教学过程复习引入,知识储备问题1 如图,P A 切⊙O 于点 A ,PO 交⊙O 于点 B ,⊙O 的半径为 1 cm ,PB =1.2 cm ,则∠AOB = , 弧AB= .问题2三种:重叠、向上和向下.应用知识,解决问题问题3 2012 年 6 月 18轨道上运行,如图,当组合体运行到地球表面 表面最远P 点的距离是多少(地球半径约为 6 400 km ,π 取3.142,结果取整数)? P 水平线铅垂视线视点俯从组合体中能直接看到的地球表面最远的点在什么位置?从组合体中能直接看到的地球表面最远点,应是视线与地球相切时的切点.在平面图形中,用什么图形可表示地球,用什么图形表示观测点,请根据题中的相关条件画出示意图.如图,用⊙O 表示地球,点 F 是组合体的位置,FQ是⊙O 的切线,切点Q 是从组合体观测地球时的最远点.问题中求最远点与P 点的距离实际上是要求什么?需先求哪个量?怎样求?弧PQ的长就是地面上P、Q 两点间的距离,为计算弧PQ 的长需先求出∠POQ(即α).应用知识,解决问题问题4热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?(1)从热气球看一栋楼顶部的仰角为30°→α=30°(2)从热气球看一栋楼底部的俯角为60°→β=60°(3)热气球与高楼的水平距离为120 m→AD=120 m,AD⊥BC.(4)这个问题可归纳为什么问题解决?怎样解决?在直角三角形中,已知一锐角和与这个锐角相邻的直角边,可以利用解直角三角形的知识求这个锐角所对的直角边,再利用两线段之和求解.归纳总结应用解直角三角形的方法解决实际问题的一般步骤:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件,适当选用锐角三角函数解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.如果问题不能归结为一个直角三角形,则应当对所求的量进行分解,将其中的一部分量归结为直角三角形中的量.布置作业教科书习题28.2第2,3,4 题教学反思28.2.4解直角三角形及其应用教学目标1.“在航海中确定轮船距离灯塔有多远”的实际问题理解解直角三角形的理论在实际中的应用,进一步领悟解直角三角形的知识也是解决实际问题的有效数学工具。

相关文档
最新文档