锐角三角函数-正切教学设计

合集下载

24.1锐角的三角函数(第一课时)教案

24.1锐角的三角函数(第一课时)教案

24.1锐角的三角函数——锐角的正切(第一课时)授课对象: 中学九年级班教学安排:一课时授课教师:一、教学背景分析(一)教材分析:1.教材的地位及作用《锐角的三角函数》是沪科版九年级数学上册第24章第一节的内容。

锐角的三角函数的概念是以前面学习的相似三角形、勾股定理的知识为基础的,本章内容是三角学中最基础的内容,也是今后进一步学习三角学的必要知识准备。

2.教材处理本节教材共分三课时完成,;第一课时是正切概念的建立及其简单应用;第二课时是正弦、余弦概念的建立及其简单应用;第三课时是综合应用。

(二)学情分析:九年级的学生具备了一定的逻辑思维能力和推理能力。

通过以前的合作学习,具备了一定的合作交流的能力.二、教学目标知识与技能: 1. 理解锐角正切(tanA)、坡度、坡角的意义;2.学会根据定义求锐角的正切值.过程与方法: 1. 经历锐角的正切的探求过程,体会数形结合的思想方法.2.三角函数的学习中,初步体验探索、讨论、论证对学习数学的重要性。

情感态度价值观:1. 在活动中培养学生乐于探究、合作交流的习惯。

2. 感受数学来源于生活又应用于生活,从而激发学生学习数学的兴趣。

三、教学重、难点教学重点:锐角的正切、坡度、坡角的定义。

教学难点:理解Rt△中一个锐角的对边与其邻边比值的对应关系。

四、教学用具多媒体课件(PPT)、几何画板五、教学过程(一)创设情境、导入新课(5分钟)利用多媒体播放“人民英雄纪念碑——民族的自豪”短片,引导学生思考:如何测量出人民英雄纪念碑的高度呢?要求学生自主探究,积极思考,回答测量高度的方法,教师引导学生分析,如直接测量法和相似法的弊端,从而导入新课——锐角的正切。

(板书课题)【设计意图】通过视频的展示,让学生身临其境地感受人民英雄纪念碑的雄伟,激发学生强烈的爱国热情和民族自豪感,同时,通过对纪念碑高度的测量自然地导入今天的教学重点。

体现新课标的要求:在关注学生数学学习水平的同时,关注学生德育教育和情感态度的发展。

《锐角三角函数》教学设计

《锐角三角函数》教学设计

《锐角三角函数》教学设计一、引言三角函数是高中数学的重要内容之一。

而锐角三角函数则是三角函数中的一个重要分支,涉及到正弦函数、余弦函数和正切函数。

本教学设计旨在帮助学生全面理解锐角三角函数的基本概念、性质和应用,并通过多种教学方法来提高学生的学习兴趣和掌握程度。

二、教学目标1. 理解锐角三角函数的定义及其基本性质;2. 掌握锐角三角函数的计算方法,并能在实际问题中应用;3. 培养学生的空间观念和逻辑思维能力。

三、教学重点1. 锐角三角函数的定义及基本性质;2. 锐角三角函数的计算方法;3. 锐角三角函数在实际问题中的应用。

四、教学内容及方法1. 锐角三角函数的定义及基本性质1.1 正弦函数的定义及性质1.2 余弦函数的定义及性质1.3 正切函数的定义及性质1.4 锐角三角函数的周期性质教学方法:通过课堂讲述、示意图和实例演示来介绍每个函数的定义及其性质,引导学生从几何角度理解函数的含义。

2. 锐角三角函数的计算方法2.1 正弦函数的计算2.2 余弦函数的计算2.3 正切函数的计算教学方法:以求解简单的三角函数值为例,引导学生利用单位圆、特殊角和三角函数定义来计算锐角三角函数的值,并通过练习巩固掌握。

3. 锐角三角函数在实际问题中的应用3.1 三角函数的应用于三角恒等变换3.2 三角函数在直角三角形中的应用3.3 三角函数在航空航天中的应用教学方法:通过实际例子和应用场景,引导学生将锐角三角函数应用于实际问题中,培养学生的问题解决能力和数学思维。

五、教学过程安排1. 引入锐角三角函数的概念和意义,解释本节课的教学目标。

2. 讲解锐角三角函数的定义及性质,通过示意图和实例演示来帮助学生理解。

3. 引导学生进行锐角三角函数的计算练习,提供不同难度的题目进行巩固。

4. 探究三角函数的恒等变换及其应用,让学生发现三角函数之间的关系。

5. 教学直角三角形中的三角函数应用,以实例演示和问题解决为主,培养学生的问题分析与解决能力。

【教案】 锐角的三角函数——正切

【教案】 锐角的三角函数——正切

23.1.1 锐角的三角函数——正切教学目标【知识与技能】1.了解锐角三角函数的概念,能够正确应用tanA表示直角三角形中两边的比.2.理解坡度的概念,并能够计算坡面的坡度.【过程与方法】通过锐角三角函数的学习进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的应用.【情感、态度与价值观】1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.重点难点【重点】锐角三角函数的概念,坡比的概念.【难点】锐角三角函数概念的理解.教学过程一、创设情境,导入新知师:高架桥的起始一段有倾斜的部分,这个坡面的坡度或者说倾斜程度是怎样度量的呢?学生思考.二、共同探究,获取新知1.正切的概念.教师多媒体课件出示:在下图中,有两个直角三角形,直角边AC与A1C1表示水平面,斜边AB与A1B1分别表示两个不同的坡面,坡面AB和A1B1哪个更陡?你是怎样判断的?生:A1B1更陡.师:你是怎样判断的呢?生甲:这两个中同样是100的一段,对应的高度A1B1上升得多.生乙:(2)倾斜得厉害. 教师多媒体课件出示:师:这个图里,你能判断坡面AB和A1B1哪个更陡吗?学生观察后回答:A1B1更陡.师:为什么?生:……教师多媒体课件出示:如图,在锐角A的一边上任取一点B,自点B向另一边作垂线,垂足为C,得到Rt△ABC;再任取一点B1,自点B1向另一边作垂线,垂足为C1,得到另一个Rt△AB1C1……这样,我们可以得到无数个直角三角形,这些直角三角形都相似.在这些直角三角形中,锐角A的对边与邻边之比、、……究竟有怎样的关系?教师读题后学生思考.生:锐角A的这些对边与邻边之比都是相等的.师:对,在这些直角三角形中,当锐角A的大小确定后,无论直角三角形的大小怎样变化,∠A的对边与邻边的比值总是一个定值.教师边操作边讲解:在这个直角三角形ABC中,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA===.2.坡度、坡角的概念.教师边作图边讲解:正切经常用来描述坡面的坡度.坡面的铅直高度h和水平长度l的比叫做坡面的坡度(或坡比),记作i,即i=,坡度通常写成h∶l的形式.坡面与水平面的夹角叫做坡角(或称倾斜角),记作α,于是有i==tanα.你能得到坡度与坡角之间的关系吗?生:能.坡度越大,坡角越大,坡面就越陡.师:很好!三、举例应用,巩固新知教师多媒体课件出示:【例1】如图,在Rt△ABC 中,∠C=90°,AC=4,BC=3,求tanA和tanB.tanA===.师:你能计算出∠A和∠B的正切吗?学生思考后回答:能.师:怎样计算?教师找一生回答.生:tanA==,tanB==师:你回答得很好!现在请同学们看课本第114页练习的第3题.学生读题后,教师找两生板演,其余同学在下面做,然后集体订正.解:AC===≈199.64,∴引桥的坡度为:tan∠BAC===≈0.06.四、练习新知1.师:下面让我们一起来看几道习题.教师板书习题:(1)为测量如图所示的上山坡道的倾斜度,小明测得数据如图所示,则该坡道倾斜角α的正切值是( )A. B.4 C. D.【答案】C(2)晓敏由地面沿坡度i=1∶2的坡面向上前进了10 m,此时她距离地面的高度为( )A.5 mB.4 mC.2 mD. m【答案】C(3)在Rt△ABC中,∠C=90°,BC=4,AC=6,则tanA的值为 .【答案】(4)在△ABC中,∠C=90°,BC=6,tanA=,则AC的长是 .【答案】9五、课堂小结师:本节课你又学习了什么内容?学生回答.师 :你还有什么疑问?学生提问,教师解答.教学反思本节课采用问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动.用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图、找边角、计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后探究:三角函数与直角三角形的边、角有什么关系?三角函数与三角形的形状有关系吗?整节课都在紧张而愉快的气氛中进行.学生非常活跃,大部分人都能积极动脑、积极参与.教学中,我一直比较关注学生的情感态度,对那此积极动脑、热情参与的同学都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证教学活动的有效性.。

湘教版九年级数学上册第4章锐角三角函数4.2正切教学设计

湘教版九年级数学上册第4章锐角三角函数4.2正切教学设计

湘教版九年级数学上册第4章锐角三角函数4.2正切教学设计一. 教材分析湘教版九年级数学上册第4章锐角三角函数4.2正切教学设计,本节课主要让学生了解正切的概念,掌握正切的定义和性质,并能运用正切解决一些实际问题。

教材通过引入直角三角形的边长关系,引导学生探究正切的概念,并通过例题和练习让学生熟练掌握正切的运算方法。

二. 学情分析学生在学习本节课之前,已经学习了直角三角形、锐角三角函数等知识,对三角函数有一定的了解。

但学生对正切的概念和性质的认识还不够深入,需要通过本节课的学习来进一步巩固和提高。

三. 教学目标1.了解正切的概念,掌握正切的定义和性质。

2.能运用正切解决一些实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.正切的概念和性质。

2.运用正切解决实际问题。

五. 教学方法1.情境教学法:通过引入直角三角形的边长关系,引导学生探究正切的概念。

2.例题教学法:通过典型例题,让学生掌握正切的运算方法。

3.实践教学法:让学生通过动手操作,巩固正切的知识。

六. 教学准备1.教学课件:制作教学课件,包括正切的概念、性质和例题。

2.练习题:准备一些练习题,用于巩固学生的正切知识。

3.教学工具:准备直尺、三角板等教学工具,用于引导学生动手操作。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如测量山的高度、计算建筑物的斜坡度等,引导学生思考如何利用数学知识解决这些问题。

然后引入正切的概念,激发学生的学习兴趣。

2.呈现(10分钟)通过展示直角三角形的边长关系,引导学生探究正切的定义。

利用多媒体动画展示直角三角形中,正切的概念和性质。

让学生了解正切的概念,并掌握正切的性质。

3.操练(10分钟)让学生利用直尺、三角板等工具,自己动手操作,验证正切的性质。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成一些正切的练习题,巩固所学知识。

教师选取部分题目进行讲解,纠正学生的错误。

锐角三角函数教案设计

锐角三角函数教案设计

锐角三角函数教案设计锐角三角函数教案设计锐角三角函数教案设计篇1知识目的:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。

2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。

才能、情感目的:1.经历由情境引出问题,探究掌握数学知识,再运用于理论过程,培养学生学数学、用数学的意识与才能。

2.体会数形结合的数学思想方法。

3.培养学生自主探究的精神,进步合作交流才能。

重点、难点:1.直角三角形锐角三角函数的意义。

2.由直角三角形的边长求锐角三角函数值。

教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。

但有些问题单靠相似与勾股定理是无法解决的。

同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、答复各种方法。

老师加以评论。

总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。

因此,我们换个角度,假如可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。

〔由一个学生比拟熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。

由此导入新课〕二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°,C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 〔学生探究,引导学生积极考虑,利用相似发现比值相等〕〔〕假设在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探究问题的过程,你发现了什么?〔学生讨论〕结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。

在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A 表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。

锐角三角函数-正切教学设计

锐角三角函数-正切教学设计

23.1锐角的三角函数1. 锐角的三角函数第一课时正切教学目标◆知识与技能1.初步了解角度与数值的一一对应的函数关系。

2.会求直角三角形中某个锐角的正切值。

3.了解坡度的有关概念。

◆过程与方法让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。

◆情感态度通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。

教学重点:1.从现实情境中探索直角三角形的边角关系。

2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。

教学难点:锐角三角函数的概念的理解。

教学准备多媒体课件制作教学设计一、导入新课导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡?陡峭堪比过山车!不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。

大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么?(导入课题锐角三角函数)二、推进新课1.交流合作【问题1】在图23-2中有两个直角三角形,直角边AC与A1C1表示水平面,斜边AB与A1B1分别表示两个不同的坡面,哪个更陡?你是怎么判断的?学生可由水平长度相等,铅直高度不同进行判断.【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB与A1B 1哪个更陡?你又是如何判断呢?设计意图:引发学生的争论,激发学生的求知欲.从而教师可提出能否用铅直高度与水平长度的比值进行衡量呢?【问题3】 如图,在锐角A 的一边上任取一点B ,自点B 向另一边作垂线,垂足为C ,得到Rt △ABC ;再任取一点B 1,自点B 1向另一边作垂线,垂足为C 1,得到Rt △33AB C ……,这样,我们可以得到无数个直角三角形.在这些直角三角形中,锐角A 的对边与邻边之比BC AC ,111B C AC ,222B C AC ……有怎样的关系?请同学们小组合作测量并计算它们的近似值,看看会有什么发现?同学们得到近似相等的值,我们猜测它们是相等的,是不是这样的呢,下面我们从理论角度来验证。

人教版数学九年级下册《锐角三角函数——正切》教学设计

人教版数学九年级下册《锐角三角函数——正切》教学设计

《锐角三角函数——正切》教学设计一、教材与学情分析◆教材分析:本节教材是初中数学九年级上册第一节内容,是初中数学的重要内容之一。

一方面,这是在学习了相似三角形、直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础。

鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

◆学情分析:九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

前面已经掌握直角三角形中各边和各角的关系,通过这节课学习要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。

学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。

二、教学重难点:◆重点:理解锐角三角函数-正切的意义,会将某些实际问题转化为解直角三角形的问题。

◆难点:理解直角三角形中锐角与两直角边比值之间一一对应的关系,从而引入正切函数,并用符号tan A来表示.三、教学目标◆知识与技能:1.理解并掌握正切的含义,并能够举例说明;2.会在直角三角形中求出某个锐角的正切值;3.了解锐角的正切值随锐角的增大而增大.◆过程与方法:1. 经历正切的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力。

2. 逐步学习利用数形结合的思想分析问题和解决问题。

◆情感态度与价值观:1. 使学生在学习数学的过程中体会数学与生活的密切联系,激发学生学习数学的兴趣。

2 . 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯。

四、教学方法:利用多媒体教学平台,采用教师引导,学生自主探索和小组合作相结合的教学方式,渗透函数、数形结合、转化等数学思想方法。

探究教学法:提出问题,让学生通过自主探究,解决问题,掌握新知。

1.1锐角三角函数第1课时正切(教案)

1.1锐角三角函数第1课时正切(教案)
1.讨论主题:学生将围绕“正切在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
-正切表的使用:学会查找和利用正切表解决实际问题,这是进行进一步三角函数学习的基础。
-正切函数性质的探索:了解正切函数的周期性、奇偶性等性质,为学习其他三角函数性质打下基础。
举例:通过具体的直角三角形图形,引导学生理解正切值是如何计算的,以及如何判断正切值的正负。
2.教学难点
-正切概念的内化:学生需要将正切概念从具体的直角三角形中抽象出来,内化为一般的数学定义。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正切的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了锐角三角函数中的正切概念。我发现学生们对于正切的定义和应用有着不错的理解和接受度,但在具体的计算和应用中,还存在一些困难。这让我意识到,在今后的教学中,我需要更加注重以下几个方面:
1.1锐角三角函数第1课时正切(教案)
一、教学内容
《人教版八年级下册数学》第十章“锐角三角函数”第1课时“正切”。本节课主要内容包括以下部分:
1.理解正切的概念:通过对直角三角形的观察,引导学生发现锐角与对边、邻边的比值关系,引出正切函数的定义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.1锐角的三角函数
1. 锐角的三角函数
第一课时正切
教学目标
◆知识与技能
1.初步了解角度与数值的一一对应的函数关系。

2.会求直角三角形中某个锐角的正切值。

3.了解坡度的有关概念。

◆过程与方法
让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。

◆情感态度
通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。

教学重点:
1.从现实情境中探索直角三角形的边角关系。

2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。

教学难点:
锐角三角函数的概念的理解。

教学准备
多媒体课件制作
教学设计
一、导入新课
导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡?陡峭堪比过山车!
不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。

大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么?
(导入课题锐角三角函数)
二、推进新课
1.交流合作
【问题1】在图23-2中有两个直角三角形,直角边AC与A
1C
1
表示水平面,斜
边AB与A
1B
1
分别表示两个不同的坡面,哪个更陡?你是怎么判断的?
学生可由水平长度相等,铅直高度不同进行判断.
【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB
与A
1B 1
哪个更陡?你又是如何判断呢?
设计意图:引发学生的争论,激发学生的求知欲.从而教师可提出能否用铅直高度与水平长度的比值进行衡量呢?
【问题3】 如图,在锐角A 的一边上任取一点B ,自点B 向另一边作垂线,垂足为C ,得到Rt △ABC ;再任取一点B 1,自点B 1向另一边作垂线,垂足为C 1,得到Rt △33AB C ……,这样,我们可以得到无数个直角三角形.在这些直角三角形中,锐角A 的对边与邻边之比BC AC ,111B C AC ,222B C AC ……有怎样的关系?
请同学们小组合作测量并计算它们的近似值,看看会有什么发现?
同学们得到近似相等的值,我们猜测它们是相等的,是不是这样的呢,下面我们从理论角度来验证。

引导学生独立证明:易知,BC ∥11B C ∥22B C ∥33B C ∥…, ∴△ABC ∽△11AB C ∽△22AB C ∽△33AB C ∽…, ∴BC AC =111B C AC =222
B C
AC =….
因此,在这些直角三角形中,∠A 的对边与邻边的比值是一个固定值. 设计意图:理论证明太过抽象性,让学生经历“操作—猜测—论证—归纳”的自我体验过程,达到教学目标,培养了学生发现问题、解决问题的能力. 3. 正切函数概念的提出
在日常生活和数学活动中,上面所得出的结论是非常有用的.为了叙述方便,作出如下规定:
如图25-5,在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与邻边的比叫做
∠A 的正切,记作tan A ,即tan A=
注意:正切的定义是在直角三角形中,相对其锐角而定义的,实质是两条线段长度的比,它只是一个数值,没有单位,其大小只与角的大小有关,与三角形的大小无关. 4.坡度和坡角
对于交流中“当水平长度和铅直高度都不相等时,判断坡度的大小”,你现在能判断了吗?
结合图形,教师讲述坡度概念,并板书:
坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比), 一般用i 表示,即i =h l

把坡面与水平面的夹角α叫做坡角(或称倾斜角).
A a
A b
∠=
∠的对边的邻边
引导学生结合图形思考,坡度i 与坡角α之间具有什么关系?
i =h
l
=tan α. 你们能计算一下课本图23-2、图23-3中坡面AB 与和坡面A 1B 1的坡度吗? 显然,坡度i 越大,坡角α越大,坡面就越陡 三、拓展延伸
例1.在Rt △ABC 中,∠C=90°,AC=4,BC=3,求tanA 和tanB .
解:
思考:tanA 和tanB 的值有什么样的关系?如右图tanA =a b 和tanB =b
a
又有怎样的关系?
学生总结: 当两个互余锐角的正切互为倒数。

即:若∠A+∠B=90°,则有tanA ·tanB =1
设计意图:由题目的结果,让学生自己找出三角函数中的相互关系。

而不是教师直接的灌输。

四、巩固应用
现在大家能理解开始我们对于那座桥出现的两个数据的含义了吗?6.1%是桥的 坡度i ,4度是坡角。

那么从数据上看桥面是否如我们看到的那样陡呢?
4
tan 3
AC B BC =
=3
tan 4BC A AC =
=
江岛大桥全长约1446米,高约44米,桥下可供5000吨级的轮船通过。

一侧的斜率为6.1%,你能计算出这一侧的水平长度约有多长吗?坡面的长度大约是多少呢?
设计意图:善始善终,回归生活实际,用知识来解决实际问题,激发学生应用新知的意识,巩固所学。

五、课堂小结
学生自主小结,在相互的交流中,感知本节课学习的体会和收获。

可能在讨论中会存在一些困惑。

此时,教师及时点拨,合作完成课堂小结。

1、直角三角形两条直角边的比随着直角三角形中锐角大小的确定而唯一确定。

2、正切的概念。

3、两个互余锐角的正切互为倒数。

即:若∠A+∠B=90°,则有tanA·tanB=1
设计意图:体现教学的民主性,同时培养学生归纳、概括问题的能力和团队合作精神,教师适当引导学生反思学习过程,增强信心,提高兴趣。

六、课后作业
P114练习第2、3题
奥赛链接
如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处,已知AB =8,BC =10,则tan ∠EFC 的值为( ).
A .34
B .43
C .35
D .45
板书设计。

相关文档
最新文档