锐角三角函数---余弦、正切

合集下载

锐角三角函数(正弦、余弦和正切)

锐角三角函数(正弦、余弦和正切)

2.同一锐角三角函数的关系:
如图, 在 Rt△ ABC中,∠ C=90°, sin A
a ,cos A
b

c
c
则 sin2 A cos2 A
2
a
c
2
b
c
a2 b2 c2
c2 c2
1,即同一锐角的
正弦、余弦的平方和等于
1,或者说若
α
为锐角, 则
sinห้องสมุดไป่ตู้
2
2
α+cos α =1.
规律 学习锐角三角函数时,应明确三角函数值的两个变化规律: 1.特殊角的三角函数值的记忆规律:
Rt△ ABC中,∠ A+∠ B=90°,由
三角函数定义得
sin A
a ,cos(90
a
b
A) cosB ,cos A
sin B sin(90
A) ,
c
c
c
所以 sin A=cos(90° - A),cos A= sin (90° - A).即任意锐角的余弦值等于它的余角的正
弦值,任意锐角的正弦值等于它的余角的余弦值.
锐角三角函数教案
概念
1.在直角三角形中,斜边大于直角边且各边均为正数,正弦、余弦都是直角边与斜边
的比值,正切是两直角边的比值,因此正弦值、余弦值都是小于
1 的正数,正切值是大于零
的数,并且都没有单位,即 0<sin A<1,0<cos A<1, tan A>0(∠ A为锐角).
2.每一个三角函数都是一个完整的符号, 如 sin A不能理解为 sin · A,sin A 中的“ A”
2.锐角三角函数值的增减性:锐角 α 的正弦 sin α 值随着∠ α 的增大而增大;锐角

初三数学锐角三角函数通用版

初三数学锐角三角函数通用版

初三数学锐角三角函数通用版【本讲主要内容】锐角三角函数包括:正弦、余弦、正切。

【知识掌握】 【知识点精析】1. 在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。

即c aA A sin ==斜边的对边∠;把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c bA A cos =∠=斜边的邻边;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即b aA A A tan =∠∠=的邻边的对边。

2. 锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。

3. 特殊角的三角函数值:30°45°60°sin α 12 22 32 cos α 32 2212tan α331 34. 记忆方法:【解题方法指导】例1. (2000年成都市)如图,在△ABC 中,∠C =90°,∠ABC =60°,D 是AC 的中点,那么tan ∠DBC 的值是________。

锐角α三角函数分析:在Rt △ABC 中,由∠ABC =60°,可知3BCAC60tan == ,即AC =3BC ,又CD =12AC ,tan ∠DBC 可求。

解:在△ABC 中,∵∠C =90°,∠ABC =60°, ∴tan ∠ABC =tan60°=3BCAC=, ∴AC =3BC 。

又D 是AC 中点, ∴DC =12AC =32BC 。

∴23BC BC23BC DC DBC tan ===∠。

评析:在解题中紧紧扣住tan α的定义。

例2. (2001年四川)在Rt △ABC 中 ,CD 是斜边AB 上的高,已知32ACD sin =∠,那么=ABBC______。

分析:由Rt △ABC 中CD ⊥AB 于D ,可得∠ACD =∠B ,由sin ∠ACD =23,那么sinB =23,设AC =2,AB =3,则BC =32522-=,则AB BC 可求。

锐角三角函数知识点归纳总结

锐角三角函数知识点归纳总结

锐角三角函数知识点归纳总结锐角三角函数是中学数学中的一门重要概念,涵盖了三角函数的绝大部分知识点。

掌握锐角三角函数是解决三角函数问题的关键,也是解决初等三角方程的基础。

本文将就锐角三角函数的相关知识点进行归纳总结,便于读者进行系统地学习和掌握。

一、正弦函数正弦函数是最基本的三角函数之一,在锐角三角函数中有着重要的地位。

正弦函数在数学中的表达式为sinx,其定义域为实数集合R,值域为闭区间[-1,1]。

具体来说,正弦函数在锐角三角形中,它的值等于对边长度与斜边长度的比值。

正弦函数在锐角三角函数中的性质:1. 周期性:sin(x+2kπ)=sinx,其中k为任意整数。

2. 对称性:sin(-x)=-sinx。

3. 奇偶性:sin(-x)=-sinx,sin(x+π)=-sinx。

4. 增减性:在区间[0,π/2]上,sinx单调递增;在区间[π/2,π]上,sinx单调递减。

5. 值域:正弦函数在[-π/2,π/2]上单调递增,值域为[-1,1]。

在求解三角函数的数值计算时,使用正弦函数的一般方法是将角度转换为弧度,然后采用计算器进行计算。

二、余弦函数余弦函数是一种最为常见的三角函数之一,通常在三角函数的解题中被广泛应用。

余弦函数在数学中的表达式为cosx,其定义域为实数集合R,值域为闭区间[-1,1]。

具体来说,余弦函数在锐角三角形中,它的值等于邻边长度与斜边长度的比值。

余弦函数在锐角三角函数中的性质:1. 周期性:cos(x+2kπ)=cosx,其中k为任意整数。

2. 对称性:cos(-x)=cosx。

3. 奇偶性:cos(-x)=cosx,cos(x+π)=-cosx。

4. 增减性:在区间[0,π/2]上,cosx单调递减;在区间[π/2,π]上,cosx单调递增。

5. 值域:余弦函数在[0,π]上单调递减,值域为[1,-1]。

三、正切函数正切函数是三角函数中的一种,通常用于解决三角函数运算或求解空间中的几何问题。

中考复习: 锐角三角函数

中考复习: 锐角三角函数

中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。

把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。

锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。

当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。

2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。

3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。

4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。

5、正、余弦的平方关系:sin 2α+ cos 2α=1。

二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。

1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。

锐角三角函数的增减性锐角三角函数的关系式锐角三角函数特殊公式

锐角三角函数的增减性锐角三角函数的关系式锐角三角函数特殊公式

一、锐角三角函数的增减性当角度在0°~90°之间变化时:1.正弦值随着角度的增大而增大;2.余弦值随着角度的增大而减小;3.正切值随着角度的增大而增大。

4.锐角三角函数值都是正值.5.正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);6.正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大);7.正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。

8.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°<A0, cotA>0。

二、锐角三角函数:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。

所谓锐角三角函数是指:我们初中研究的都是锐角的三角函数。

初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。

正弦:在直角三角形中,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;余弦:在直角三角形中,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;正切:在直角三角形中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即,锐角A的正弦、余弦、正切都叫做A的锐角三角函数。

三、锐角三角函数的关系式:同角三角函数基本关系式tanα·cotα=1sin2α·cos2α=1cos2α·sin2α=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα(sinα)2+(cosα)2=11+tanα=secα1+cotα=cscα诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)二倍角、三倍角的正弦、余弦和正切公式Sin(2α)=2sinαcosαCos(2α)=(cosα)2-(sinα)2=2(cosα)2-1=1-2(sinα)2Tan(2α)=2tanα/(1tanα)sin(3α)=3sinα4sin3α=4sinα·sin(60°+α)sin(60°α)cos(3α)=4cos3α3cosα=4cosα·cos(60°+α)cos(60°α)tan(3α)=(3tanαtan3α)/(13tan2α)=tanαtan(π/3+α)tan(π/3α)和差化积、积化和差公式sinα+sinβ=2sin[(α+β)/2]·cos[(αβ)/2]sinαsinβ=2cos[(α+β)/2]·sin[(αβ)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(αβ)/2] cosαcosβ=2sin[(α+β)/2]·sin[(αβ)/2] sinαcosβ=[sin(α+β)+sin(α-β)] sinαsinβ=[1][cos(α+β)cos(αβ)]/2 cosαcosβ=[cos(α+β)+cos(αβ)]/2 sinαcosβ=[sin(α+β)+sin(αβ)]/2 cosαsinβ=[sin(α+β)sin(αβ)]/2。

锐角三角函数

锐角三角函数

初中数学锐角三角函数初中知识点一、锐角三角函数的定义1.勾股定理:直角三角形两直角边a .b 的平方和等于斜边c 的平方。

222c b a =+ 在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B ):定 义表达式 取值范围 关 系正弦 斜边的对边A A ∠=sin c aA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=coscbA =cos1cos 0<<A(∠A 为锐角)正切的邻边的对边A tan ∠∠=A Aba A =tan 0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A Atan α=sin cos αα,cot α=cos sin αα余切的对边的邻边A A A ∠∠=cotab A =cot 0cot >A(∠A 为锐角)注意:(1)正弦.余弦.正切.余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;(2)sinA 不是sin 与A 的乘积,是三角形函数记号,是一个整体。

“sinA ”表示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。

例题:1.在Rt △ABC 中,∠C 为直角,a =1,b =2,则cosA =________ ,tanA =_________.2. 在Rt △ABC 中,∠C 为直角,AB =5,BC =3,则sinA =________ ,tanA =_________.3.在Rt △ABC 中,∠C 为直角, ∠A =300,b =4,则a =__________,c =__________4.(2008·威海中考)在△ABC 中,∠C =90°,tanA =31,则sinB =( ) A .1010B .23 C .34D .310105.在△ABC 中,∠C =90°,a, b, c 分别为∠A ,∠B ,∠C 的对边,下列各式错误的是( )A .a =c ·sinAB .b =c ·cosBC .b =a ·tanBD .a =b ·tanA6.在△ABC 中,∠C =90°,(1)已知:c = 83,∠A =60°,求∠B .a .b . (2) 已知:a =36, ∠A =30°,求∠B .b .c .7.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan 的值是( )A .35B .43 C .34D .45练习:1.在Rt △ABC 中,∠C 为直角,若sinA =53,则cosB =_________. 2.已知cosA =23,且∠B =900-∠A ,则sinB =__________. 3.∠A 为锐角,已知sinA =135,那么cos (900-A)=___________ . 4.在Rt △ABC 中,∠C 为直角,AC =4,BC =3,则sinA =( ) A .43 B .34 C . 53 D .54 5.在Rt △ABC 中,∠C 为直角,sinA =22,则cosB 的值是( ) A .21 B .23 C .1D .22知识点二、特殊角所对的三角函数值1. 0°.30°.45°.60°.90°特殊角的三角函数值(重要)三角函数0° 30°45°60°90° αsin0 2122 231 αcos1 23 22210 αtan 0 331 3- αcot-3133注意:记忆特殊角的三角函数值,可用下述方法:0°.30°.45°.60°.90°的正弦值分别是02.12.22.32.42,而它们的余弦值分别是42.32.22.12.02;30°.45°.60°的正切值分别是13.22.31,而它们的余切值分别是31.22.13。

高数三角函数大总结

高数三角函数大总结

三角函数锐角三角函数公式正弦:sin α =∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式sin2A=2sinA?cosAcos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1 tan2A=(2tanA)/(1-tan^2A)三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)^2-sin^2a]=4sina(sin^260°-sin^2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa[cos^2a-(√3/2)^2]=4cosa(cos^2a-cos^230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式其它公式(1)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

锐角三角函数(余弦、正切)

锐角三角函数(余弦、正切)

振动与波动
余弦函数在振动和波动的研究中有广泛 应用。例如,简谐振动的位移、速度和 加速度都可以表示为余弦函数的形式。
03
正切函数
正切函数的定义与性质
正切函数的定义
正切函数是锐角三角函数的一种,定义为直角三角形中锐角的对边与邻边的比 值,记作tan(α),其中α为锐角。
正切函数的性质
正切函数具有连续性、周期性、奇偶性等性质。在区间(0,π/2)和(π/2,π)内,正 切函数是单调递增的,而在区间(-π/2,0)和(π/2,3π/2)内,正切函数是单调递减 的。
01
余弦函数和正切函数的定义
余弦函数和正切函数是锐角三角函数的重要组成部分,它们分别描述了
直角三角形中锐角对应的邻边和斜边的比值,以及锐角对应的对边和邻
边的比值。
02
基本性质和应用
余弦函数和正切函数具有周期性、奇偶性等基本性质,这些性质在解决
几何、物理和工程问题中有着广泛的应用。例如,在计算角度、长度、
工程学中的应用
结构设计
在建筑和机械工程中,锐 角三角函数用于设计各种 结构,如桥梁、建筑和机 器部件。
控制系统
在控制工程中,锐角三角 函数用于设计和分析控制 系统,以确保系统的稳定 性和性能。
信号处理
在电子和通信工程中,锐 角三角函数用于信号处理, 如滤波、调制和解调等。
06
总结与展望
锐角三角函数的总结
正切函数的图像与周期性
正切函数的图像
正切函数的图像是一条周期函数,其周期为π,且在每一个周期 内,图像呈现出先增后减的趋势。
正切函数的周期性
由于正切函数的周期为π,因此对于任意整数k,tan(x+kπ) = tan(x),即正切函数在每个周期内具有相同的形状,但位置会随 着k的变化而变化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A
3
D
6
C
A
7. 在Rt△ABC中,∠C=Rt∠, BC:AC=1:2,则sinA= 5 。
8.如图, 在Rt△ABC中,∠B=Rt∠,b=
c= 3 ,则sin(90°-A)=
C a B
3 5
5
B
C
5
A

15 5

b
c A
B
C
9. 在Rt△ABC中,∠C=Rt∠,若sinA= 2 ∠A= 45°. ∠B= 45° .
补充练习
1、在等腰△ABC中,AB=AC=5,BC=6, 求sinB,cosB,tanB.
A
B
D
C
补充练习
A
2、如图所示,在△ABC中,∠ACB =90°,AC=12,AB=13, ∠BCM=∠BAC,求sin∠BAC和 点B到直线MC的距离.
B
M
C
3、如图所示,CD是Rt△ABC的斜边AB上的高, 2 求证:
sin A
A 的对边 斜边 A 的邻边 斜边 A 的对边 A 的邻边

a c
cos A

b c
对于锐角A的每一 个确定的值,sinA有 唯一确定的值与它对 应,所以sinA是A的函 数。
同样地, cosA, tanA也是A的函数。
tan A

a b
锐角A的正弦、余弦、 正切都叫做∠A的锐角三 角函数.
6
2
8, 4 3 .
, B tan
AC BC

例2 如图,在Rt△ABC中,∠C=90°,BC=2, AB=3,求∠A,∠B的正弦、余弦、正切值.
解:在 Rt ABC 中, AC AB
2
B 2
C
3
BC 2 3 5 3
2

3 2
2
2
2 3
5, 5 3 , A tan
(AC )
AB
= CD ( BC ) = BD ( CD)
(BC )
AB
1.分别求出下列直角三角形中两个锐角的 正弦值、余弦值和正切值.
2.在Rt△ABC中,如果各边长都扩大2倍, 那么锐角的正弦值、余弦值和正切值有什么变 化?
3.如图,在Rt△ABC中,∠C=900, AC=8,tanA=
3 4
BC
AB BD .
C
A D B
rldmm8989889
试一试:
下图中∠ACB=90°,CD⊥AB,垂足为D. 指出∠A和∠B的对边、邻边. (CD ) (1) sinA = = BC B (AB ) AC D (AD) (2) cosA = = AC (AB ) AC A C (3) sinB= (4) cosB=
例1 如图,在Rt△ABC中,∠C=90°, BC=6, A 3 ,求cosA和tanB的值. sin
5
解: sin A AB 又 AC cos A BC sin A AB AC AB
2
B
6
BC AB
, 5 3 10 .
2
A
C
6
BC 4 5

10
2
余弦(cosine),记作cosA, 即
cos A A 的邻边 斜边 b c
A B 斜边c 对边a C
邻边b
★我们把锐角A的对边与邻边的比叫做∠A的 正切(tangent),记作tanA, 即
tan A A 的对边 A 的邻边 a b
注意
• cosA,tanA是一个完整的符号,它表示 ∠A的余弦、正切,记号里习惯省去角的 符号“∠”; • cosA,tanA没有单位,它表示一个比值, 即直角三角形中∠A的邻边与斜边的比、 对边与邻边的比; • cosA不表示“cos”乘以“A”, tanA不表 示“tan”乘以“A”
新知探索: 1、你能将“其他边之比”用比例的 式子表示出来吗?这样的比有多少? B
c a
b c
a b
A
b
C
2、当锐角A确定时,∠A的邻边与斜边的比, ∠A 的对边与邻边的比也随之确定吗?为什么?交流并 说出理由。
方法一:从特殊到一般,仿照正弦的研究过程;
方法二:根据相似三角形的性质来说明。
如图,在Rt△ABC中,∠C=90°, ★我们把锐角A的邻边与斜边的比叫做∠A的
求sinA、cosB的值.
4 .如图,Rt△ABC中,∠C=90度,CD⊥AB,图 中tanB可由 哪两条线段比求得。
C
A
D
B
5、在Rt△ABC中,∠C=90°,BC=8, sinA=4/5, 求cosA、tanA的值。
B A
C
6、如图,在Rt△ABC中,∠C=90°, CD⊥AB于D。求出∠BCD的三个锐角三角 函数值。
2
,则

sin A= cos A=

A 的对边 斜边
在Rt△ABC中,∠C=Rt∠,我们把:
分别叫做锐角 ∠A的正弦、余 弦、正切、, 统称为锐角∠A 的三角函数.
A 的邻边 斜边
A 的对边 A 的邻边
tan A=
0<sin A<1,0<cos A<1
A
sin A
BC AB
, cos A
AC AB
BC AC
5 n B
AC AB

, B cos
BC AB

, B tan
AC BC

延伸:由上面的计算,你能猜想∠A,∠B的正弦、余弦值 有什么规律吗? 结论:一个锐角的正弦等于它余角的余弦,或一个锐角的 余弦等于它余角的正弦。
新人教版九年级数学(下册)第二十八章
§28.1 锐角三角函数(2)
——余弦、正切
复习与探究:
B c

Rt ABC中, C 90
1.锐角正弦的定义
a
∠A的正弦: si n A
A的 对 边 斜边

BC AB

a c
A
b
C
2、当锐角A确定时,∠A的对边与斜边的比就随之 确定。此时,其他边之间的比是否也随之确定?为 什么?
相关文档
最新文档