公开课教案3——耐克函数的最值
函数最值教案

函数最值教案一、教学目标1. 知识目标:了解函数的最值概念,掌握函数最大值与最小值的求解方法。
2. 技能目标:能够通过求导或化简的方式求解函数的最大值与最小值。
3. 情感目标:培养学生对数学探究的兴趣,加深对函数最值概念的理解。
二、教学重点与难点1. 教学重点:函数最值的概念及求解方法。
2. 教学难点:如何通过求导或化简的方式求解函数的最值问题。
三、教学准备1. 教师准备:教案、教材、教具、黑板、彩色粉笔。
2. 学生准备:参与课堂讨论。
四、教学过程1. 导入新课(5分钟)教师出示一道经典的函数最值问题:给定函数f(x)=3x^2-2x+4,求函数f(x)的最值。
请同学们思考并回答。
2. 什么是函数最值(5分钟)教师解释函数的最大值与最小值的概念,并引导学生通过分析函数的图像来理解最值的概念。
指出最大值是函数图像上的最高点,最小值是函数图像上的最低点。
3. 函数最值的求解方法(15分钟)在导数概念教学的基础上,教师提醒学生函数最值的求解方法可以通过求导或化简两种途径。
然后通过例题进行分析与练习。
例1:函数f(x)=3x^2-2x+4的最值如何求解?例2:函数f(x)=1/x的最值如何求解?4. 求解函数最值的步骤(15分钟)教师总结函数最值的求解步骤,并通过例题进行练习。
步骤如下:(1)求函数的导数或化简成一次函数。
(2)令导数等于0,解出x的值。
(3)将x带入原函数的表达式,得到相应的y值。
(4)比较求得的y值,得到函数的最值。
5. 继续练习(15分钟)教师布置一些练习题,并让学生在课堂上解答。
鼓励学生互相讨论,学生之间互相交流。
6. 归纳总结(5分钟)教师与学生共同总结函数最值的概念与求解方法。
确保学生正确掌握知识点。
七、作业布置布置相应的练习题,鼓励学生独立完成,并写出解题思路和步骤。
八、板书设计函数最值1. 概念:函数最大值与最小值的定义。
2. 求解方法:分析图像、求导和化简的方法。
3. 求解步骤:求导(化简)→令导数(化简后的函数)等于0→解出x的值→带入原函数得到y值→比较y值得到函数的最值。
《函数的最值》示范教学方案

《函数的最值》教学设计◆教学目标1.能从特殊到一般抽象出最大(小)值的定义,理解函数最大(小)值的定义,提升学生的数学抽象素养.2.能根据函数图象直观判断得出函数的最大(小)值,提升学生的直观想象素养.3.理解函数的最大(小)值与函数单调性的联系,对已经学习过的简单函数,能根据函数最大(小)值的定义求出其最大(小)值,提升学生的逻辑推理和数学运算素养.◆教学重难点◆教学重点:能用函数图象和最大(小)值的定义得出函数的最大(小)值.教学难点:根据函数最大(小)值的定义求出其最大(小)值.◆课前准备PPT课件.◆教学过程一、问题导入问题1:观察图1中的三个函数图象,你能发现它们的共同特征吗?图1师生活动:学生观察容易发现这三个图象都有最高点,老师顺势引出课题.预设的答案:图象的共同特征是它们都有最高点.设计意图:直接引出课题,形成对函数最大值的直观感受.引语:我们总是对函数图象中最高点格外关注,本节课我们就来一起学习与之相关的函数性质--单调性与最大(小)值.(板书:单调性与最大(小)值)设计意图:以具体的函数为例,借助图象直观感受函数的最大值的特征.同时将图形语言转化为函数语言,为后续定量刻画做准备.2.定量刻画函数的最大(小)值问题3:你能用符号语言刻画函数f(x)=-x2+1的最大值吗?师生活动:学生根据问题2的铺垫,可以总结出最大值的部分特征:∀x∈R,都有f(x)≤1.老师针对学生遗漏的部分再做启发和引导,最后强调1必须是值域中的元素.预设的答案:(1)∀x∈R,都有f(x)≤1;(2)1是值域中的元素,即存在自变量0,使得f(0)=1.追问1:你能用符号语言刻画函数f(x)的最大值吗?师生活动:学生类比f(x)=-x2+1的例子进行尝试,老师完善.预设的答案:设函数y=f(x)的定义域为I,如果存在实数M满足:(1)∀x∈I,都有f(x)≤M;(2)∃x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值.追问2:你能仿照最大值的定义,给出函数f(x)的最小值的定义吗?图3师生活动:学生在类比的过程中若有困难,老师可以举具体的例子加以引导直至学生完整地阐述.预设的答案:设函数y =f (x )的定义域为I ,如果存在实数m 满足:(1)∀x ∈I ,都有f (x )≥m ;(2)∃x 0∈I ,使得f (x 0)=m .那么,我们称m 是函数y =f (x )的最小值.设计意图:问题3以学生熟悉的二次函数为素材,挖掘最大值的本质;追问1实现了从特殊到一般的跨越,抽象出最大值的概念;追问2是让学生学会用类比的方法获得最小值的概念.3.最大(小)值的应用例1 “菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距底面的高度h (单位:m )与时间t (单位:s )之间的关系为h (t )=-4.9t 2+14.7t +18,那么烟花冲出去后什么时候是它爆裂的最佳时刻?这时距底面的高度是多少(精确到1m )?师生活动:在处理应用题时,首先是从题目中抓取关键信息,即引导学生思考什么是“爆裂的最佳时刻”,学生带着问题阅读题目,确定爆裂的最佳时刻就是烟花轨迹最高点对应的时间,然后将实际问题转化为二次函数的最大值问题.接着,学生根据二次函数的相关知识就可以顺利解答.预设的答案:解:画出函数h (t )=-4.9t 2+14.7t +18的图象(图3).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数,我们有:当t =-14.72×(-4.9)=1.5时,函数有最大值h =4×(-4.9)×18-14.724×(-4.9) ≈29. 于是,烟花冲出去1.5 s 是它爆裂的最佳时刻,这时距地面的高度约为29 m .追问:你能说说计算烟花爆裂的最佳时刻的意义吗?(烟花设计者就可以根据这个数据设定引信的长度,以达到施放烟花的最佳效果.)设计意图:根据函数图象确定函数的最大值,提升学生的直观想象素养;体会函数模型可以用来刻画现实世界中的现象,从而借助函数性质就可以进行有效的规划和设计,感受学习函数的意义.例2已知函数f(x)=2x-1(x ∈[2,6]),求函数的最大值和最小值.师生活动:学生极有可能直接将2,6代入解析式求值,并误以为求解了本题.老师通过问题的方式启发学生明确函数的最大值和最小值是整体性的性质,需要单调性作衬托才能凸显.追问1:有同学计算f(2)=2,f(6)=0.4,f(2)>f(6),则最大值是2,最小值是0.4,你能说说这个做法有什么问题吗?(f(2)>f(6),这个式子只说明x=2时的函数值比x=6时的函数值大,并不能说明它与区间(2,6)上的其它函数值的大小关系,没有验证最大值定义中的第一条.)追问2:为了解决上述解法中的问题,你认为应该借助函数的什么性质研究最大(小)值?(要说明f(2)与f(x)(∀x1,x2∈(2,6))的大小关系,我们只要将两者作差判断符号即可.更一般地,对于∀x1,x2∈[2,6],且x1<x2,都可以判断f(x1)-f(x2)的符号,本质上就是先确当函数的单调性,弄清楚这个函数在区间[2,6]上的增减情况才能把握在哪里取到最大(小)值.)追问3:如何确定该函数的单调性?(图象法探路,先描点画图,然后用软件绘制函数f(x)=2x-1(x∈[2,6])的图象(图4),可知函数f(x)=2x-1在[2,6]上单调递减;再用单调性定义证明.)预设的答案:解:∀x1,x2∈[2,6],且x1<x2,则f(x1)-f(x2)=2x1-1-2x2-1=2[(x2-1)-(x1-1)](x1-1)(x2-1)=2(x2-x1)](x1-1)(x2-1).由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,于是f(x1)-f(x2)>0,即f(x1)>f(x2).所以,函数f(x)=2x-1在区间[2,6]上单调递增.因此,函数f(x)=2x-1在区间[2,6]的两个端点上分别取得最大值与最小值.在x=2时取得最大值,最大值是2;在x=6时取得最小值,最小值是0.4.图4设计意图:通过例2掌握根据函数最大(小)值的定义求解其最大(小)值的思路,培养学生数学表达的严谨性和书写过程的规范性,提升学生的逻辑推理和数学运算素养.三、归纳小结,布置作业问题4:本节课我们主要学习了函数的最大(小)值,什么是函数的最大(小)值?你能说说求解函数的最大(小)值需要注意什么吗?师生活动:师生一起总结.预设的答案:概念略;因为是函数的整体性质,所以必须先确定函数在整个定义域上的单调性,才能求解最大(小)值.设计意图:通过梳理本节课的内容,让学生明确最值与单调性的联系.四、目标检测设计1.整个上午(8:00~12:00)天气越来越难,中午时分(12:00~13:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:00~20:00期间气温作为时间函数的一个可能的图象(示意图),并说出所画函数的单调区间.设计意图:训练学生讲文字语言转化为图象语言的能力,考查单调性的定义.2.设函数f (x )的定义域为[-6,11].如果f (x )在区间[-6,-2]上单调递减,在区间[-2,11]上单调递增,画出f (x )的一个大致的图象,从图象上可以发现f (-2)是函数f (x )的一个________.设计意图:考查最小值的定义.3.已知函数f (x )=1x,求函数在区间[2,6]上的最大值和最小值. 设计意图:考察用单调性定义求解函数的最大(小)值.参考答案:1.单调递增区间为[8,12],[13,18];单调递减区间为[12,13],[18,20].2.最小值.3.最大值是12,最小值是16,证明略. 第1题答案。
函数的最值教案

函数的最值教案教案标题:函数的最值教案教案概述:本教案旨在帮助学生掌握函数的最值概念及相关概念,通过实际生活中的问题和实例引导学生理解函数的最值在实际问题中的应用,并培养学生解决问题的思维能力。
教案目标:1. 了解函数的最值概念,包括最大值和最小值;2. 能够根据给定函数求解函数的最值;3. 能够通过函数的最值解决实际问题。
教学步骤与内容:1. 引入(5分钟)- 引导学生回顾函数的概念,并复习函数的定义和图像表达方式。
- 提问学生:你们是否知道函数可以有最大值和最小值?这些最值又代表什么意义呢?2. 讲解(15分钟)- 通过一个实际问题引导学生了解函数的最值概念:假设有一个果汁机,它可以将苹果蓉榨取成苹果汁。
每分钟能榨取的苹果蓉量可以用函数f(x)表示,其中x代表榨取时间(分钟)。
请问,对于给定的时间范围内,果汁机每分钟最多能榨取多少苹果蓉?最少能榨取多少苹果蓉?- 讲解最大值和最小值的定义,并以图表和函数表达方式进行演示。
3. 实践(20分钟)- 分发练习题集,让学生在课堂上独立完成练习题。
- 指导学生如何通过给定函数求解最值。
首先,观察函数的图像或函数表达式,找出函数的定义域(可能需要学生回顾函数的定义);然后,通过计算或分析函数的变化趋势,找到函数的最值。
- 鼓励学生在纸上绘制函数图像,辅助他们解决问题。
4. 总结讨论(10分钟)- 请学生上台讲解一到两道练习题的解题思路和方法。
- 引导学生总结解决最值问题的一般步骤。
5. 应用(10分钟)- 设计一个与实际生活相关的问题,要求学生应用所学的知识解决。
- 鼓励学生积极思考,在小组内讨论并给出解决方案。
- 提醒学生合理估算问题的范围,以确定函数的定义域。
6. 反思与拓展(5分钟)- 向学生征询对本节课的反馈与感悟,并解答他们的问题。
- 引导学生思考函数最值在其他学科中的应用,如物理、经济等领域。
教学资源:- 函数的最值练习题集- 染色笔和白板/黑板评估方式:- 课堂练习题的答案与解答思路- 学生对应用问题的解决方案的正确性和合理性- 学生对最值概念的理解是否准确拓展活动:- 探索应用函数的最值概念解决更复杂的实际问题;- 设计函数的最值课堂游戏,让学生在竞争中加深对最值概念的理解。
函数的最值教案

函数的最值教案函数的最值教案一、教学目标1. 知识目标:了解函数的最大值和最小值的概念,掌握求函数最值的方法。
2. 能力目标:能够运用求函数最值的方法解决实际问题。
3. 情感目标:培养学生对数学的兴趣和学习动力。
二、教学重点和难点1. 教学重点:概念的讲解和求函数最值的方法。
2. 教学难点:运用求函数最值的方法解决实际问题。
三、教学过程Step 1:引入通过提出以下问题引入本课的话题:1. 如果有一块面积固定的矩形土地,我们应该如何确定矩形的长和宽,使得矩形的周长最长/最短?2. 在一次销售活动中,如果要使得销售额最大,我们应该如何定价?Step 2:概念讲解1. 函数的最大值和最小值的概念函数的最大值和最小值是指在定义域内,函数取得的最大值和最小值。
2. 函数最值的求法(1)对于定义域为有限区间的函数,可以通过求导数的方法找到函数的最值点。
(2)对于定义域为整个实数集的函数,可以通过函数的图像和性质来判断函数的最值。
Step 3:例题讲解例题1:已知函数f(x) = x^2 + 2x + 1,求函数f(x)的最小值。
解:对函数f(x)求导,得到f'(x) = 2x + 2。
令f'(x) = 0,解方程得到x = -1。
将x = -1代入函数f(x),得到f(-1) = (-1)^2 + 2(-1) + 1 = 0。
所以函数f(x)的最小值为0。
例题2:若函数g(x) = 3x^2 - 4x + 2,在区间[-1, 2]上取得最大值,求最大值点的横坐标。
解:对函数g(x)求导,得到g'(x) = 6x - 4。
根据最值点的性质,最大值点处的导数等于0。
令g'(x) = 0,解方程得到x = 2/3。
所以最大值点的横坐标为x = 2/3。
Step 4:讨论通过讨论以下问题,进一步加深学生对函数最值的理解和应用。
1. 函数在什么情况下没有最大值或最小值?2. 如果函数的定义域是无穷区间,我们如何判断函数的最大值和最小值?Step 5:运用给出一道实际问题,让学生运用所学知识求解。
函数的最值教学设计

函数的最值教学设计引言:在数学中,函数的最值计算是常见的问题之一、学生需要了解如何找出函数的最值,以便在实际问题中做出正确的决策。
本教学设计将详细介绍如何有效地教授学生寻找函数的最值,并提供了一系列的实践活动和练习来加深学生的理解。
一、目标:1.学习函数的最值的概念和意义。
2.理解寻找函数的最大值和最小值的方法。
3.运用函数的最值概念解决实际问题。
二、教学过程:1.导入阶段:引导学生复习函数的定义和性质,确保学生对函数的基本概念有一定的了解。
2.概念教学:解释函数的最值概念,并介绍最大值和最小值的定义。
强调函数的最值与自变量的取值范围、函数的性质和图像之间的关系。
3.寻找最值的方法:3.1基础方法:讨论如何通过绘制函数的图像来估计函数的最值,并强调在可行的情况下,数值计算是最准确的方法。
3.2函数导数法:引入导数概念,并介绍如何通过一阶导数的零点来确定函数的极值点。
强调导数法的有效性和简便性。
4.实践活动:4.1图像观察:给出一系列函数的图像,让学生观察并推测函数的最值。
4.2寻找最值练习:提供一组函数和自变量范围,让学生使用基础方法和导数法来寻找最值,并与实际计算结果进行对比。
5.拓展应用:给学生提供一些实际问题,引导他们将函数的最值概念应用到实际环境中,如优化问题、经济学问题等。
6.总结与归纳:复习本节课的内容,总结如何寻找函数的最大值和最小值的方法,并让学生分享实践活动和拓展应用中的心得体会。
三、教学资源:1.教材:准备一份教科书或相关教材,以供学生参考和复习。
2.图像观察:准备一些函数的图像,可通过数学软件绘制或寻找相关实例。
确保图像能够展示函数的最值。
3.寻找最值练习:提供一组函数和自变量范围,编制练习册让学生通过基础方法和导数法来求解函数的最值,并提供答案和解析。
4.拓展应用:编制一些实际问题,让学生将函数的最值概念应用到不同领域的问题中。
问题应具有一定的挑战性和启发性。
四、教学评估:1.学生表现评估:观察学生在课堂上的参与度和回答问题的情况,评估他们对函数的最值概念和求解方法的理解程度。
函数的最值 教学设计

课题:函数的最值(复习)【教学目标】1、回顾函数最值的概念,同时通过错解的分析,进一步加深对于概念的理解;2、掌握求函数最值的几种基本方法,体验数学运算的严谨美、数形结合的简洁美;3、在复习探究的过程中,培养学生阅读与表达、纠错与反思、化归与转化的能力,提升学生数学抽象、逻辑推理、数学运算、直观想象、数据分析等数学素养。
【教学重难点】1、教学重点:回顾并进一步加深对于函数最值概念的理解,掌握求函数最值的几种基本方法。
2、教学难点:培养学生阅读与表达、纠错与反思、化归与转化的能力,提升学生数学抽象、逻辑推理、数学运算、直观想象、数据分析等数学素养。
【教学过程】一、错解驱动,概念理解1、求函数2y =的最小值。
学生解法:222y ===≥,所以min 2y =.函数最小值的定义:一般地,设函数()x f y =在0x 处的函数值是()0x f 。
如果_____________________________ ________________,那么)(0x f 叫做函数)(x f y =的最小值。
记作:()min 0y f x =。
函数最大值的定义:_____________________________________________________________________________________________________________________________________________________________。
2、求函数sin y x x =,0,2x π⎡⎤∈⎢⎥⎣⎦的最值。
学生解法:sin 2sin 3y x x x π⎛⎫=+=+⎪⎝⎭0,2x π⎡⎤∈⎢⎥⎣⎦51,sin ,133632x x ππππ⎡⎤⎛⎫⎡⎤∴+∈⇒+∈ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦ []1,2y ∴∈二、例题剖析,深入挖掘【例一】(自编)定义在R 上的奇函数()x f y =,其在[)∞+,0上的单调性见表1,则以下说法中,正确的有__________。
函数的最值教案

函数的最值教案课题:函数的最值教案教学目标:1. 理解函数的最值的概念2. 能够通过求导数找到函数的最大值和最小值3. 能够应用最值的概念解决相关问题教学步骤:步骤一:引入问题老师可以通过一个例子引入问题,比如一个盒子的侧面长方形是80平方厘米,问长方形的长和宽分别是多少时,长方形的周长最小?通过这个问题,让学生思考如何确定函数的最小值,引出函数的最值的概念。
步骤二:函数的最大值和最小值1. 定义函数的最大值和最小值,并给出相关的数学表达式。
2. 通过图像展示函数的最大值和最小值的概念,引导学生通过观察图像来推测函数的最值。
3. 引导学生思考如何通过求导数来找到函数的最值。
4. 通过示例演示如何通过求导数找到函数的最值。
步骤三:应用最值的概念解决问题1. 给出一个实际问题,例如:一块长方形草坪靠墙种植一排树木,要种树木的面积为300平方米,问如何种树木使得周长最小。
让学生用函数的最值的概念解决这个问题。
2. 引导学生列出函数和约束条件,然后通过求导数找到函数的最值。
步骤四:练习和讲解1. 给学生一些练习题,让他们应用最值的概念解决问题,并检查答案。
2. 讲解练习题的解法,让学生更好地理解函数的最值的概念和求解方法。
步骤五:总结与归纳学生回顾课堂内容,总结函数的最值的概念和求解方法,并归纳应用最值的思想解决问题的步骤。
步骤六:拓展与应用学生以小组形式展示一个自己设计的用到函数的最值的问题,并给出解答过程和结果。
其他同学可以提问和讨论,扩展应用最值的思想。
步骤七:作业布置布置一些与函数的最值相关的作业题,让学生独立完成,并提供解析。
教学资源:1. 例子:一个盒子的侧面长方形是80平方厘米,问长方形的长和宽分别是多少时,长方形的周长最小?2. 实际问题:一块长方形草坪靠墙种植一排树木,要种树木的面积为300平方米,问如何种树木使得周长最小?3. 练习题:一些与函数的最值相关的计算题和实际问题。
评估与反馈:通过学生在课堂练习和作业中的表现来评估他们是否掌握了函数的最值的概念和求解方法。
函数的最值教案范文

函数的最值教案范文【教案名称】:函数的最值【教学目标】:1.了解函数的最值的概念和意义2.能够找到函数在给定区间上的最值3.掌握最值问题在现实生活中的应用【教学重点】:1.函数最大值、最小值的定义和求解方法2.最值问题在实际问题中的应用【教学难点】:1.函数最值问题的思考方式与解题方法2.实际问题中最值问题的转化与解决方法【教学工具】:多媒体课件、计算器【教学过程】:一、导入新知识(15分钟)1.引导学生回顾函数的定义和性质,复习函数取值范围的概念。
2.引出函数最值的概念:函数最大值和最小值,即在给定的定义域上,函数输出的最大和最小值。
3.以实际问题为例,引导学生思考最值问题的意义和应用。
二、函数的最值概念与性质(20分钟)1.给出数列的最值定义,并引导学生用图像表示法来理解最值的概念。
2.讲解函数最值的定义和求解方法:a. 最大值:对于定义在闭区间[a, b]上的函数f(x),如果存在x0∈[a, b],使得f(x0)≥f(x),则称f(x0)是f(x)在闭区间[a, b]上的最大值,记为f(x0)=max{f(x),x∈[a, b]}。
b. 最小值:对于定义在闭区间[a, b]上的函数f(x),如果存在x0∈[a, b],使得f(x0)≤f(x),则称f(x0)是f(x)在闭区间[a, b]上的最小值,记为f(x0)=min{f(x),x∈[a, b]}。
3.引导学生举例并求解具体最值问题。
三、最值问题的讨论及应用(30分钟)1.讲解最值问题在实际生活中的应用,如最大利润、最小花费、最高速度等。
2.根据实际问题,引导学生将最值问题转化成数学问题,通过解方程、求导等方法求解。
3.通过实际案例的讨论,培养学生分析问题、归纳规律和解决问题的能力。
四、进行小组合作探究(25分钟)1.将学生分为小组,每组选取一道最值问题,利用课上学到的方法进行解答,要求全组成员积极参与并记录解题过程。
2.每组选择一名代表展示解题过程,并与其它组员分享思路和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形如
()(0)a f x x a x
=+>的最值 一、教学目标: 掌握利用基本不等式求最值须满足的条件;利用单调性求函数的最值。
二、教学重点和难点:
①分类讨论能力,使学生掌握分类的依据,当含有字母时应对其对应区间特别是区间两
端点的位置关系进行讨论。
②数形结合能力,利用函数的单调性求最值。
三、教学过程:
1、复习提问: 复习()(0)a f x x a x
=+>的图像与性质: (1)图像:(通过几何画板演示得出)
(2)性质:
①定义域:()(),00,-∞+∞;
②值域: ()
,2,a ⎡-∞-+∞⎣; ③奇偶性:奇函数;
④单调性:当()f x 在(,-∞及)
+∞上是增函数;
当()f x 在)⎡⎣及(上是减函数; 2、新课讲解:
例1、设4()f x x x
=+,试求()f x 的最小值。
(1)(]0,1x ∈;(2)(]0,3x ∈;
思考1、(3)当(]()0,0x n n ∈>,
例2、设函数(),0a f x x a x =+
>,[]1,2x ∈;试求()f x 的最小值。
(1)14
a =;(2)5a =;(3)2a =;
思考2:设函数()a f x x x =+,0a >,[]1,2x ∈,试求()f x 的最小值。
课堂小结:
思考3:设函数(),0a f x x a x =+
>,[]1,2x ∈;试求()f x 的最大值。
(1)14
a =
;(2)5a =;(3)2a =;
3、作业:练习册37页。