半导体激光器的工作特性
半导体激光器工作原理及基本结构

工作三要素:
01
受激光辐射、谐振腔、增益大于等于损耗。
02
半导体激光器工作原理
02
在材料设计时,考虑将p区和n区重掺杂等工艺,使得辐射光严格在pn结平面内传播,单色性较好,强度也较大,这种光辐射叫做受激光辐射。
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激光器(普通条形)和折射率波导条形激光器(掩埋条形、脊形波导)。
”
增益波导条形激光器 (普通条形)
特点:只对注入电流的侧向扩展和注入载流子的侧向扩散有限制作用,对光波侧向渗透没有限制作用。 我们的808大功率激光器属于这种结构:把p+重掺杂层光刻成条形,限制电流从条形部分流入。但是在有源区的侧向仍是相同的材料,折射率是一样的,对光场的侧向渗透没有限制作用,造成远场双峰或多峰、光斑不均匀,同时阈值高、光谱宽、多纵摸工作,有时会出现扭折问题。
半导体激光器材料和器件结构
808大功率激光器结构
采用MOCVD方法制备外延层,外延层包括缓冲层、限制层、有源层、顶层、帽层。有源层包括上下波导层和量子阱。
有源层的带隙比P型和N型限制层的小,折射率比它们大,因此由P面和N面注入的空穴和电子会限制在有源区中,它们复合产生的光波又能有效地限制在波导层中。大大提高了辐射效率。
最上面的一层材料(帽层)采用高掺杂,载流子浓度高,目的是为了与P面金属电极形成更好的欧姆接触,降低欧姆体激光器器件制备
大片工艺包括:材料顶层光刻腐蚀出条形、氧化层制备光刻、P面和N面电极制备、衬底减薄。 条形结构:在平行于结平面方向上也希望同垂直方向一样对载流子和光波进行限制,因此引进了条形结构。 条形结构的优点: 1. 使注入电流限制在条形有源区内,限制载流子的侧向扩散, 使 阈值电流降低; 2. 有源区工作时产生的热量能通过周围四个方向的无源区传递而逸散,提高器件的散热性能; 3. 有源区尺寸减小了,提高材料均匀的可能性; 4. 器件的可靠性提高、效率提高、远场特性改善。
半导体激光治疗仪工作原理

半导体激光治疗仪工作原理半导体激光治疗仪是一种利用激光光源进行医疗治疗的设备,常用于皮肤美容、生物医学和物理治疗等领域。
其工作原理涉及到激光的生物效应和治疗机制。
以下是半导体激光治疗仪的一般工作原理:1.激光发射:半导体激光治疗仪使用半导体激光器(如激光二极管)作为光源。
当电流通过半导体激光器时,会激发半导体内的电子,导致光子的产生,从而产生激光。
2.激光特性选择:激光器产生的激光具有单色性、相干性和方向性。
这使得激光能够以高度聚焦的方式传递到治疗区域,同时减少对周围组织的影响。
3.生物效应:激光在生物组织中的作用可以通过光生物学效应来解释。
这包括光热效应(光能被组织吸收并转化为热能)、生物刺激效应(对生物体细胞和组织有促进作用)、生物抑制效应(对生物体细胞和组织有抑制作用)等。
4.治疗目标选择:半导体激光治疗仪的治疗目标通常是生物体组织中的某些分子或细胞。
不同的波长和能量的激光可以选择性地影响不同的生物分子,实现不同的治疗效果。
5.治疗过程:在治疗过程中,患者暴露于激光束中,激光通过皮肤表面,照射到目标组织。
激光的能量被目标组织吸收,从而引起一系列生物效应,如促进细胞代谢、减轻炎症、促进愈合等。
6.控制参数:半导体激光治疗仪通常具有可调节的参数,如激光功率、脉冲频率、脉宽等,以便医疗专业人员根据患者的具体情况进行个性化的治疗。
总体而言,半导体激光治疗仪通过激光的生物效应,以非侵入性的方式对生物组织进行治疗。
然而,在实际应用中,具体的治疗机制和效果会受到多种因素的影响,包括激光参数的选择、治疗区域的性质等。
因此,在使用半导体激光治疗仪时,需要经过专业人员的评估和指导。
半导体激光器的工作原理及应用

半导体激光器的工作原理及应用摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。
由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。
从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,是半导体激光器开启了激光应用发展的新纪元。
关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器The working principle of semiconductor lasers and applications ABSTRACT: The machanism of lasing by semiconductor laser,which requires set up specially designated reverse of beam of particles among energy stages,and appropriate optical syntonic coelenteronAs the specificity of structure from semiconductor and moving electrons.something interesting happens.On the one hand,the specific process in producing lase,on the other hand,the beam of light has unique advantages。
As the reasons above,we can easily found it all quartersof the society.From homojunction to heterojunction,from informatics to power,the advantages of laser are in evidence,the wide spectrum,the semiconductor open the epoch in the process of laser. Key worlds: stimulated radiation; optical field; homojunction; heterojunction; high-power semiconductor laser 0 前言半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。
半导体激光器实验报告

半导体激光器实验报告摘要:本文旨在通过对半导体激光器的实验研究,探索其基本原理、结构和性能,并分析实验结果。
通过实验,我们了解了激光器的工作原理、调制和控制技术以及其应用领域。
在实验过程中,我们测量了激光器的输出功率、光谱特性和波长调制特性等参数,并对实验结果进行了分析和讨论。
1.引言半导体激光器是一种利用半导体材料作为活性介质来产生激光的器件。
由于其小尺寸、高效率和低成本等优点,半导体激光器被广泛应用于通信、光存储、医学和科学研究等领域。
本实验旨在研究不同结构和参数的半导体激光器的性能差异,并通过实验数据验证理论模型。
2.实验原理2.1 半导体激光器的基本结构半导体激光器由活性层、波导结构和光学耦合结构组成。
活性层是激光器的关键部分,其中通过注入电流来激发电子和空穴复合形成激光。
波导结构用于限制光的传播方向,并提供反射面以形成光腔。
光学耦合结构用于引导激光光束从激光器中输出。
2.2 半导体激光器的工作原理半导体激光器利用注入电流激发活性层中的电子和空穴,使其发生复合并产生激光。
通过适当选择材料和结构参数,使波导结构中的光在垂直方向形成反射,从而形成光腔。
当光经过活性层时,激发的电子和空穴产生辐射跃迁,并在激光器中形成激光。
随着光的多次反射和放大,激光逐渐增强,最终从光学耦合结构中输出。
3.实验步骤3.1 实验器材本实验使用的主要器材有半导体激光器装置、电源、光功率计、多道光谱仪等。
3.2 实验过程首先,将半导体激光器装置与电源连接,并通过电源控制激光器的注入电流。
然后,使用光功率计测量激光器的输出功率,并记录相关数据。
接下来,使用多道光谱仪测量激光器的光谱特性,并记录各个波长的输出光功率。
最后,调节激光器的注入电流,并测量波长调制特性。
完成实验后,对实验数据进行分析和讨论。
4.实验结果与分析通过实验测量,我们得到了半导体激光器的输出功率、光谱特性和波长调制特性等数据,并对其进行了分析。
实验结果显示,随着注入电流的增加,激光器的输出功率呈现出递增趋势,但当电流达到一定值后,增长速度逐渐减慢。
半导体激光器实验报告

半导体激光器实验报告半导体激光器实验报告引言:半导体激光器是一种重要的光电子器件,具有广泛的应用领域,如通信、医疗、工业等。
本实验旨在通过搭建实验装置,研究半导体激光器的工作原理和性能特点,并探索其在光通信领域的应用。
实验一:激光器的工作原理激光器的工作原理是基于光放大和光反馈的原理。
在实验中,我们使用一台半导体激光器,通过电流注入激发半导体材料,产生光子。
这些光子在激光腔中来回反射,不断受到增益介质的放大,最终形成激光束。
实验装置中的关键组件包括半导体激光器、激光腔、准直器和光探测器。
半导体激光器通过电流注入,激发载流子跃迁,产生光子。
光子在激光腔中来回反射,经过准直器调整光束的方向,最后被光探测器接收。
实验二:激光器的性能特点在实验中,我们测试了激光器的输出功率、波长和光谱宽度等性能指标。
通过改变注入电流和温度等参数,我们研究了激光器的输出特性。
首先,我们测试了激光器的输出功率。
通过改变注入电流,我们观察到激光器输出功率随电流增加而增加的趋势。
然而,当电流达到一定值后,激光器的输出功率不再增加,甚至出现下降。
这是由于激光器的光子数饱和效应和损耗机制导致的。
其次,我们测量了激光器的波长。
通过调节激光腔的长度,我们观察到激光器的波长随腔长的变化而变化。
这是由于激光腔的谐振条件决定了激光器的输出波长。
最后,我们研究了激光器的光谱宽度。
通过光谱仪测量激光器的光谱分布,我们发现激光器的光谱宽度与注入电流和温度有关。
随着注入电流的增加和温度的降低,激光器的光谱宽度变窄,光纤通信系统中要求的窄光谱宽度可以通过适当的调节实现。
实验三:半导体激光器在光通信中的应用半导体激光器在光通信领域有着重要的应用。
我们通过实验研究了激光器在光纤通信中的应用。
首先,我们将激光器的输出光束通过光纤传输。
通过调节激光器的输出功率和波长,我们实现了光纤通信中的光信号传输。
通过光探测器接收光信号,并通过示波器观察到了传输过程中的光信号波形。
半导体激光器的能级系统

半导体激光器的能级系统1.引言1.1 概述概述半导体激光器是一种利用半导体材料的能级系统来产生激光的器件。
它是现代光电子技术领域中非常重要的一种光源,广泛应用于通信、医疗、材料加工等领域。
半导体激光器的能级系统是其产生激光的关键部分。
在半导体材料中,存在多个能级,通过在这些能级之间跃迁产生光子,从而形成激光。
半导体材料是一种带有间隙的材料,其能带结构对其电学和光学性质起着至关重要的作用。
半导体材料可分为价带和导带,价带上的能级被电子占据,而导带上的能级则是未被电子占据的。
当激发能量传递给半导体材料时,电子可以从价带跃迁到导带上的空能级,形成电子空穴对。
这种跃迁称为光吸收。
然而,光吸收只是半导体激光器能级系统的一部分。
要产生激光,还需要在半导体材料中形成一种称为反转粒子的状态。
反转粒子是指半导体材料中导带上粒子数目大于价带上的粒子数目,即导带发射激光。
然而,由于材料本身的特性,导带上的粒子会很快地回到价带,这导致了反转粒子的损失。
为了解决这个问题,半导体激光器可以通过引入外界能量,如电流注入或光束照射,来保持导带上粒子数目的超过价带上的粒子数目,从而形成反转粒子状态。
在这种状态下,当一个光子激发到导带上的粒子时,它会引发一系列级联的,相干的光子发射,并最终形成激光。
半导体激光器的能级系统是实现激光发射的重要基础。
通过对其能级结构的深入研究,可以对半导体激光器的工作原理和性能进行深入理解。
因此,对半导体激光器能级系统的研究具有重要的科学和应用价值。
1.2文章结构文章结构部分的内容可以包括以下方面:本文主要围绕半导体激光器的能级系统展开论述,以便深入理解半导体激光器的工作原理及其应用。
文章分为引言、正文和结论三个部分。
引言部分首先对半导体激光器进行了概述,介绍了该领域的研究背景和重要性。
然后,简要说明了文章的结构安排,以便读者可以清晰地了解整篇文章的布局和内容。
最后,明确了本文的目的,即探讨半导体激光器的能级系统,为读者提供相关的理论知识和应用指导。
《激光原理》5-4半导体激光器

图(5-25) 费米能级的位置与杂质类型及掺杂浓度关系
③在重掺杂P型半导体中,费米能级向下移到价带中,低于费米能级的能带被电子 填满,高于费米能级的能态都是空的,价带中出现空穴——P型简并半导体 (图c);
④在重掺杂N型半导体中,费米能级向上移到导带中,低于费米能级的能带被电子填 满,高于费米能级的能态都是空的,导带中也有自由电子——N型简并半导体 (图e);
满带:若能带中各个能级全部被电子填满,则称为满带。 非满带:若能带中只有一部分能级填入电子,则称为非满带。 空带:若能带中各个能级都没有电子填充,则称为空带。 价带:价电子的能级所分裂而形成的能带称为价带。 导带:空带和未被价电子填满的价带称为导带。
二、绝缘体、导体和半导体
1、绝缘体
导带(空带)
能带的特征:(1)只有满带和空带;(2)满 带和空带之间有较宽的禁带,禁带宽度一般大 于3eV。(约3~6 eV)
Si Si Si Si
Si Si
+ B
Si
N型半导体(电子型):
四价元素Si,Ge,掺五价元 素P,Sb,Td
导带 施主能级
价带
五价原子将在代替四价元素的原子,多出的一个价电子只在杂质离子的电场
范围内运动。杂质原子称为施主原子,相应的杂质能级称为施主能级。量子
力学表明,这种掺杂后多余的电子的能级在禁带中紧靠空带处, 极易形成电子
对于重掺杂的 GaAs P-N 结,在P-N 结的附近,导带中有电子而价带中有空穴, 这一小段区域称为“作用区”。如果电子从导带中向价带中跃迁,则将释放光子,并 在谐振腔的反馈作用下,产生受激辐射。当然,价带中的电子也可能在光子的激发下 跃迁到导带中,即所谓受激吸收,而要产生激光输出自然要求受激发射光子的速率大 于受激吸收光子的速率。
半导体激光器的模式及特性

激光器发射光功率
p
激光器辐射的光功率 激光器消耗的电功率
VjI
Pex I 2Rs
激光器结电压
激光器串联电阻
注入电流
4.2.6 半导体激光器的基本特性
3.激光器效率 (b)内量子效率
内量子效率I=
有源区内每秒钟产生的光子数 有源区内每秒钟注入的电子-空穴对数
(c)外量子效率
外量子效率ex= 有源区内每秒钟发射的光子数
4.2.6 半导体激光器的基本特性
5.光谱特性
(1) 峰值波长 在规定输出光功率时,激光光谱内强度最大的光谱波长被定 义为峰值波长。
(2)中心波长
在光源的发射光谱中,连接50%最大幅度值线段的中点所对 应的波长称为中心波长
(3)谱宽与线宽 包含所有振荡模式在内的发射谱总的宽度称为激光器的谱宽; 某一单独模式的宽度称为线宽。
激光器组件是指在一个紧密结构中(如管壳中),除激光二极管(LD) 芯片外,还配置其他元件和和实现LD工作必要的少量电路块的集成器 件。主要包括:
(1)光隔离器:其作用是防止LD输出的激光反射,实现光的单向传输。 位于LD的输出光路上;
(2)监视光电二极管(PD):其作用是监视LD的输出功率变化,通常用 于自动功率控制。位于LD背出光面;
64 56
80o 40o 0
40o 80o
角度
垂直于结平面方向
I =80mA 72
64 60
56
40o 20o 0
20o 40o
角度
平行于结平面方向
4.2.5 半导体激光器的模式
2.纵模的概念与性质
4.2.5 半导体激光器的模式
1)纵模数随注入电流变化
当激光器仅注入直流电流时, 随注入电流的增加纵模数减少 。