2016-2017学年浙江省杭州市拱墅区七年级(上)期末数学试卷
2016~2017学年浙江杭州拱墅区初一上学期期末数学试卷

选择题(共30分,每小题3分)1.A. B. C. D.计算的结果是( ).−+1∣∣∣32∣∣∣521−12−142.A. B. C. D.峰会年月在杭州召开之后,来杭州旅游度假的游客暴增,据统计今年国庆期间西湖风景区平均每天接待游客达到万人,将万用科学记数法表示,以下表示正确的是( ).G2020169250250250×104 2.5×105 2.5×106 2.5×1073.A. B. C. D.下列各图中,与是对顶角的是( ).∠1∠24.A. B. C. D.合并同类项,结果正确的是( ).2b −2a −b a 2b 2a 20−b a 2−1b −2a a 2b 25.A. B. C. D.求的算术平方根,以下结果正确的是( ).27−−√333√±3±3√6.A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( ).7.A.或 B.或 C. D.已知,互为相反数,,互为倒数,的绝对值是,计算( ).a b c d x 2−cd ⋅x +=x 2(a +b )20172−226238.以下关于的叙述,错误的是( ).8√填空题(共24分,每小题4分)A.面积为的正方形边长是B.是无理数C.在数轴上没有对应的点D.介于整数和之间88√8√8√8√239.A. B.C. D.某区今年暑假选派了名教师担任交通引导志愿者、名教师担任安全维护志愿者,现要把一部分安全维护志愿者调到交通引导志愿者队伍中,使安全维护志愿者人数占交通引导志愿者人数的,设把名安全维护志愿者调到交通引导志愿者队伍中,则可列方程( ).180G208030%x 80−x =30%×(180+x )80−x =30%×180180+x =30%×(80−x )80−x =30%×26010.A. B. C. D.已知两个完全相同的大长方形,长为,各放入四个完全一样的白色小长方形后,得到图()、图(),那么,图()阴影部分的周长与图()阴影部分的周长的差是( ).(用含的代数式表示)a 1212a a 12a 34a a 5411.下列个数:,,,,中,最小的数是 ;最大的数是 .5212−12−3012.用四舍五入法对下列各数取近似值:()(精确到);()(精确到个位),得到的近似值是() ,() .18.1550.012106.491213.将下列实数按从小到大的顺序排列,用“”连接:,,,, .<−5√8√3π−2√14.已知代数式的值是,则代数式的值是 .x −3y 25−2x +6(x −3)y 22y 215.一件商品成本为元,商店按成本价提高后作为标价出售,节日期间促销,按标价打折后售价为元,则成本价 元.x 40%81232x =16.如图所示,以为端点画六条射线:,,,,,,再从射线上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为,,,,,,,那么按图中规律,所描的第个点在射线 上,第个点在射线 上.O OA OB OC OD OE OF OA 123456 (592017)解答题(共66分)17.计算:.+7−(−)176718.计算:.×÷32(−)1335319.计算:.40−30×(−+)12234520.(1)计算(结果用度表示).(2)已知,求的余角.回答问题:125−60∘24′∘36′∠α=22∘22′∠α21.(1).(2).已知线段,,用直尺和圆规作图(不写作法,保留痕迹):a b a +b 2a −b 22.化简并求值:,其中.(+2m )−2×(+3m )m 212m 2m =3423.化简并求值:,其中,,满足.(2a −a )+(b −a )−(b +b −a )b 2b 2a 2a b |a +3|+=0(b −2)224.解方程:.2(2x −1)=3x −1的代数式分别表示裁剪出的侧面和底面个数;若裁剪出的侧面和底面恰好全部用完,问A,叫做三角数,它有一定的规律性,若把第一个三角数记为,a1。
[已校验]2016-2017学年浙江省杭州市西湖区七年级(上)期末数学试卷
![[已校验]2016-2017学年浙江省杭州市西湖区七年级(上)期末数学试卷](https://img.taocdn.com/s3/m/83a7d337581b6bd97f19ea89.png)
2016学年第一学期七年级期末教学质量调研数学试题卷一、选择题(本题共10小题,每题3分,共30分)1、下列四个数中,结果为负数的是:A. ﹣1B. 1-C. 2)1(-D. )1(--2、实数33,2π,722,0.131131113…(两个“3”之间依次多一个“1”)其中是分数的为( )A. 33B. 2πC. 722D. 0.131131113…(两个“3”之间依次多一个“1”)3、下列四个数中,在﹣2和﹣1之间的是( ) A. 101- B. 109- C. 1011- D. 1023-4、计算77107.3108.3⨯-⨯,结果用科学计数法表示为( )A. 7101.0⨯B. 6101.0⨯C. 7101⨯D. 6101⨯5、如图,若A 是实数a 在数轴上对应的点,则关于a 、﹣a 、1的大小关系表示正确的是( )A. a<1<﹣aB. a<﹣a <1C. 1<﹣a <aD. 1< a <﹣a6、若2(a+3)的值与4互为相反数,则a 的值为( )A. ﹣1B. ﹣3.5C.﹣5D. 0.57、小明同学用手中衣服三角尺想摆成∠α与∠β互余,下面摆放方式中符合要求的是( )A B C D8、如图,B 、C 两点把线段AD 分成2:3:4三部分,E 是AD 的中点,CD=8,则线段EC 的长为( )A. 21B. 1C. 23D. 29、数轴上A 、B 两点,A 表示的数是13-,B 表示的数是3的平方根,则A 、B 两点之间的距离为()A. 132-B. 1或32-C. 132-或32-D. 1或132-10、如图,将长方形ABCD 分割成1个灰色长方形和148个面积相等的小正方形,若灰色长方形的长与宽比是5:3,则AD :AB=( )A. 45:26B. 27:16C. 23:14D. 47:29二、填空题(本题共6小题,每题4分,共24分)11、8的立方根是: ,4的平方根是: 。
2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。
学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。
2016-2017学年浙江省杭州市余杭区七年级上学期期末数学试卷(解析版)

)
10. (3 分)如图,平面内有公共端点的六条射线 OA,OB,OC,OD,OE,OF, 从射线 OA 开始按逆时针方向依次在射线上写出数字 1,2,3,4,5,6,7,…, 则数字“2016”在( )
A.射线 OA 上 B.射线 OB 上 C.射线 OD 上 D.射线 OF 上
二、填空题(每小题 4 分,共 24 分) 11. (4 分)圆周率 π=3.1415926…,取近似值 3.142,是精确到 数 2.428×105 精确到 位. ; 位;近似
19. (8 分) 已知线段 CD, 按要求画出图形并计算: 延长线段 CD 到 B, 使 DB= CB, 延长 DC 到点 A,使 AC=2DB.若 AB=8cm,求出 CD 与 AD 的长. 20. (12 分)解方程 (1)6x﹣7=4x﹣5 (2) + =2﹣
(3) {x﹣ [x﹣ (x﹣ )]﹣ }=x+ . 21. (10 分)已知关于 x 的方程(m+3)x m 4 +18=0 是一元一次方程,试求:
的运算结果应在(
A.6 与 7 之间 B.7 与 8 之间 C.8 与 9 之间 D.9 与 10 之间 9. (3 分)有一块长为 a,宽为 b 的长方形铝片,四个角上剪去一个边长为 x 的
第 1 页(共 14 页)
相同的正方形后,折成一个无盖的盒子,则此盒子的容积 V 的表达式是( A.V=x2(a﹣x)b(b﹣x) B.V=x(a﹣x) (x﹣b) C.V= x(a﹣2x) (b﹣2x) D.V=x(a﹣2x) (b﹣2x)
16 . (4 分)对于两个不相等的实数 a、b,定义一种新的运算如下, ,如: 那么 6*(5*4)= . ,
三、解答题(本题有 7 小题,共 66 分,解答应写出文字说明、证明过程或演算 步骤) 17 . ( 6 分)某同学在做整式加减法时看错了运算符号,把一个整式减去﹣ 4a2+2b2+3c2 错看为加上﹣4a2+2b2+3c2,结果算出的答案是 a2﹣4b2﹣2c2,求原题 的正确答案. 18. (8 分)计算. (1) (﹣ )+(﹣3 )﹣1.4﹣(﹣ (3) ﹣ ×(2×5)2. )
杭州市西湖区2017学年第一学期七年级数学期末试卷及答案

杭州市西湖区2017学年第一学期七年级数学期末试卷及答案2017学年第一学期七年级期末教学质量调研数学试题卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。
2.答题前,必须在答题卷上填写校名、班级、姓名、座位号。
3.不允许使用计算器进行计算。
凡题目中没有要求取近似值的,结果中应保留根号或π。
一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1、下列计算正确的是()A。
-2+2=0B。
-2-2=0C。
2÷1=1D。
2³=62、在下列实数中,无理数是()A。
3.xxxxxxxx4B。
-2C。
4D。
π4、在解方程x-1/2x+3/23=1时,去分母正确的是()A。
3(x-1)-2(2x+3)=1B。
3(x-1)-2(2x+3)=6C。
3x-3-4x+6=1D。
3x-3-4x-3=65、如图,点A、B在数轴上对应的实数分别为m、n,则下列结论一定成立的是()A。
m>0B。
m-n>0C。
m³>0D。
mn<06、如图,阴影部分的面积是()第5题)7、为了迎接“双十一”,甲、乙、丙三家店铺为标价相同的同一种商品搞促销活动。
甲店铺连续两次降价15%,乙店铺一次性降价30%,丙店铺第一次降价20%,第二次降价10%。
此时XXX想要购买这种商品更划算,应选择的店铺是()A。
甲B。
乙C。
丙D。
都一样8、如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=74°,则∠BOM的度数为()第8题)9、化简:1-1-2的结果是()A。
-2B。
2+2C。
2-2D。
1/210、如图,在锐角∠AOB内部,画1条射线,可得3个锐角;画2条不同的射线,可得6个锐角;画3条不同的射线,可得10个锐角。
画4条不同的射线,可得锐角的个数是()1.本文中没有明显的段落问题,只有一些格式问题需要修改。
2016-2017七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。
2016-2017年浙江省杭州市拱墅区初一上学期期末数学试卷及解析

22. (12 分) (1)已知一个角的余角是这个角的补角的 ,求这个角的度数以及 这个角的余角和补角. (2)已知线段 AB 长为 9,点 C 是线段 AB 上一点,满足 AC= CB,点 D 是直线 AB 上一点,满足 BD= AC,①求出线段 AC 的长;②求出线段 CD 的长. 23. (12 分) (1)如图,直线 AB、CD、EF 相交于点 O,且 AB⊥CD,OG 平分∠ BOE,如果∠EOG= ∠AOE,求∠EOG 和∠DOF 的度数.
13. (4 分)将下列实数按从小到大的顺序排列,用“<”连接:﹣ ﹣ .
14. (4 分)已知代数式 x﹣3y2 的值是 5,则代数式(x﹣3y2)2﹣2x+6y2 的值 是 .
15. (4 分)一件商品成本为 x 元,商店按成本价提高 40%后作为标价出售,节 日期间促销,按标价打 8 折后售价为 1232 元,则成本价 x= 元.
19. (8 分)化简并求值: (1) (m2+2m)﹣2( m2+3m) ,其中 m= . (2) (2ab2﹣a)+(b﹣ab2)﹣(a2b+b﹣a) ,其中 a,b,满足|a+3|+(b﹣2)
2
=0.
20. (10 分)解下列方程: (1)2(2x﹣1)=3x﹣1 (2) (3) = ﹣ =1.5
第 1 页(共 17 页)
A.2分)以下关于
的叙述,错误的是( B. D. 是无理数
)
A.面积为 8 的正方形边长是 C.在数轴上没有对应 的点
介于整数 2 和 3 之间
9. (3 分)某区今年暑假选派了 180 名教师担任 G20 交通引导志愿者、80 名教 师担任安全维护志愿者, 现要把一部分安全维护志愿者调到交通引导志愿者队伍 中,使安全维护志愿者人数占交通引导志愿者人数的 30%,设把 x 名安全维护志 愿者调到交通引导志愿者队伍中,则可列方程( A.80﹣x=30%×(180+x) B.80﹣x=30%×180 C.180+x=30%×(80﹣x) D.80﹣x=30%×260 10. (3 分)已知两个完全相同的大长方形,长为 a,各放入四个完全一样的白色 小长方形后,得到图(1) 、图(2) ,那么,图(1)阴影部分的周长与图(2)阴 影部分的周长的差是( ) (用含 a 的代数式表示) )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年浙江省杭州市拱墅区七年级(上)期末数学试卷一、选择题(本题共10个小题,每小题3分,共30分)1.(3分)计算|﹣|+1的结果是()A. B.1 C.﹣D.﹣2.(3分)G20峰会2016年9月在杭州召开之后,来杭州旅游度假的游客暴增,据统计今年国庆期间西湖风景区平均每天接待游客达到250万人,将250万用科学记数法表示,以下表示正确的是()A.250×104B.2.5×105C.2.5×106D.2.5×1073.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(3分)合并同类项2a2b﹣2ab2﹣a2b,结果正确的是()A.0 B.﹣a2b C.﹣1 D.a2b﹣2ab25.(3分)求的算术平方根,以下结果正确的是()A.3 B. C.±3 D.±6.(3分)如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线7.(3分)已知a,b互为相反数,c,d互为倒数,x的绝对值是2,计算x2﹣cd•x+(a+b)2017=()A.2或﹣2 B.2或6 C.2 D.38.(3分)以下关于的叙述,错误的是()A.面积为8的正方形边长是B.是无理数C.在数轴上没有对应的点D.介于整数2和3之间9.(3分)某区今年暑假选派了180名教师担任G20交通引导志愿者、80名教师担任安全维护志愿者,现要把一部分安全维护志愿者调到交通引导志愿者队伍中,使安全维护志愿者人数占交通引导志愿者人数的30%,设把x名安全维护志愿者调到交通引导志愿者队伍中,则可列方程()A.80﹣x=30%×(180+x)B.80﹣x=30%×180C.180+x=30%×(80﹣x)D.80﹣x=30%×26010.(3分)已知两个完全相同的大长方形,长为a,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)A.a B.a C.a D.a二、认真填一填(本大题共6小题,每小题4分,共24分)11.(4分)下列5个数:2,,﹣,﹣3,0中,最小的数是;最大的数是.12.(4分)用四舍五入法对下列各数取近似值:(1)8.155(精确到0.01);(2)106.49(精确到个位),得到的近似值是(1);(2).13.(4分)将下列实数按从小到大的顺序排列,用“<”连接:﹣,,π,﹣.14.(4分)已知代数式x﹣3y2的值是5,则代数式(x﹣3y2)2﹣2x+6y2的值是.15.(4分)一件商品成本为x元,商店按成本价提高40%后作为标价出售,节日期间促销,按标价打8折后售价为1232元,则成本价x=元.16.(4分)如图所示,以O为端点画六条射线:OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,…,那么按图中规律,所描的第59个点在射线上,第2017个点在射线上.三、全面答一答(本大题共7小题,共66分)17.(6分)计算:(1)+7﹣(﹣)(2)32×(﹣)3÷(3)40﹣30×(﹣+)18.(8分)(1)①计算125°24′﹣60°36′(结果用度表示);②已知∠α=22°22′,求∠α的余角;(2)已知线段a,b,用直尺和圆规作图(不写作法,保留痕迹):①a+b②2a﹣b.19.(8分)化简并求值:(1)(m2+2m)﹣2(m2+3m),其中m=.(2)(2ab2﹣a)+(b﹣ab2)﹣(a2b+b﹣a),其中a,b,满足|a+3|+(b﹣2)2=0.20.(10分)解下列方程:(1)2(2x﹣1)=3x﹣1(2)=(3)﹣=1.5(4)﹣x=1﹣.21.(10分)如图,长方体盒子是用大长方形硬纸片裁剪制作的,每个盒子由4个小长方形侧面和上下2个正方形底面组成,大长方形硬纸片按两种方法裁剪:A所示方法剪4个侧面:B所示方法剪6个底面.现有112张大长方形硬纸片全部用于裁剪制作长方体盒子,设裁剪时x张用A方法,其余用B方法.(1)请用含x的代数式分别表示裁剪出的侧面和底面个数;(2)若裁剪出的侧面和底面恰好全部用完,问A方法、B方法各裁剪几张?能做多少个盒子?22.(12分)(1)已知一个角的余角是这个角的补角的,求这个角的度数以及这个角的余角和补角.(2)已知线段AB长为9,点C是线段AB上一点,满足AC=CB,点D是直线AB 上一点,满足BD=AC,①求出线段AC的长;②求出线段CD的长.23.(12分)(1)如图,直线AB、CD、EF相交于点O,且AB⊥CD,OG平分∠BOE,如果∠EOG=∠AOE,求∠EOG和∠DOF的度数.(2)希腊数学家把一组数1,3,6,10,15,21,…,叫做三角数,它有一定的规律性,若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为a n;①计算a1+a2=,a2+a3=,a3+a4=;②写出a7=,a6+a7=.③观察以上计算结果,分析推断:a2016+a2017=.2016-2017学年浙江省杭州市拱墅区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.(3分)计算|﹣|+1的结果是()A. B.1 C.﹣D.﹣【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=+1=,故选A【点评】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.(3分)G20峰会2016年9月在杭州召开之后,来杭州旅游度假的游客暴增,据统计今年国庆期间西湖风景区平均每天接待游客达到250万人,将250万用科学记数法表示,以下表示正确的是()A.250×104B.2.5×105C.2.5×106D.2.5×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:250万用科学记数法表示为2.5×106,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【分析】根据对顶角的定义对各图形判断即可.【解答】解:A、∠1和∠2不是对顶角,故选项错误;B、∠1和∠2不是对顶角,故选项错误;C、∠1和∠2是对顶角,故选项正确;D、∠1和∠2不是对顶角,故选项错误.故选C.【点评】本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.4.(3分)合并同类项2a2b﹣2ab2﹣a2b,结果正确的是()A.0 B.﹣a2b C.﹣1 D.a2b﹣2ab2【分析】首先找出同类项进而合并求出答案.【解答】解:2a2b﹣2ab2﹣a2b=(2﹣1)a2b﹣2ab2=a2b﹣2ab2.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.5.(3分)求的算术平方根,以下结果正确的是()A.3 B. C.±3 D.±【分析】先求,再求它的算术平方根,选择答案即可.【解答】解:=3,3的算术平方根,故选B.【点评】本题考查了立方根、算术平方根,掌握它们的计算方法是解题的关键.6.(3分)如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线【分析】根据两点之间,线段最短进行解答.【解答】解:小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:C.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.7.(3分)已知a,b互为相反数,c,d互为倒数,x的绝对值是2,计算x2﹣cd•x+(a+b)2017=()A.2或﹣2 B.2或6 C.2 D.3【分析】根据a、b互为相反数,可得a+b=0;根据c、d互为倒数,可得cd=1;根据x的绝对值是2,可得x=±2,x2=4,据此求出x2﹣cd•x+(a+b)2017的值是多少即可.【解答】解:∵a、b互为相反数,∴a+b=0;∵c、d互为倒数,∴cd=1;∵x的绝对值是2,∴x=±2,x2=4,∴当x=﹣2时,x2﹣cd•x+(a+b)2017=4+2+0=6;当x=2时,x2﹣cd•x+(a+b)2017=4﹣2+0=2.故选:B.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.(3分)以下关于的叙述,错误的是()A.面积为8的正方形边长是B.是无理数C.在数轴上没有对应的点D.介于整数2和3之间【分析】根据实数的意义解答即可.【解答】解:∵实数与数轴上的点是一一对应关系,∴在数轴上有对应的点,故选C.【点评】本题考查了实数,知道实数与数轴上的点是一一对应关系是解题的关键.9.(3分)某区今年暑假选派了180名教师担任G20交通引导志愿者、80名教师担任安全维护志愿者,现要把一部分安全维护志愿者调到交通引导志愿者队伍中,使安全维护志愿者人数占交通引导志愿者人数的30%,设把x名安全维护志愿者调到交通引导志愿者队伍中,则可列方程()A.80﹣x=30%×(180+x)B.80﹣x=30%×180C.180+x=30%×(80﹣x)D.80﹣x=30%×260【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,80﹣x=30%×(180+x),故选A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.(3分)已知两个完全相同的大长方形,长为a,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)A.a B.a C.a D.a【分析】设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.【解答】解:设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a﹣x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b﹣2y)=2a+2b﹣4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)﹣(2a+2b﹣4y)=4y=a,故选:C.【点评】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、认真填一填(本大题共6小题,每小题4分,共24分)11.(4分)下列5个数:2,,﹣,﹣3,0中,最小的数是﹣3;最大的数是2.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【解答】解:∵﹣3<﹣<0<<2,∴最小的数是﹣3;最大的数是2.故答案为:﹣3,2.【点评】此题考查了有理数大小比较,关键是熟练掌握有理数大小比较的法则.12.(4分)用四舍五入法对下列各数取近似值:(1)8.155(精确到0.01);(2)106.49(精确到个位),得到的近似值是(1)8.16;(2)106.【分析】根据近似数的精确度求解.【解答】解:(1)8.155≈8.16(精确到0.01);(2)106.49≈106(精确到个位).故答案为8.16,106.【点评】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.13.(4分)将下列实数按从小到大的顺序排列,用“<”连接:﹣,,π,﹣﹣<﹣<<π.【分析】首先得出=2,﹣<﹣,进而比较得出答案.【解答】解:=2,∵>,∴﹣<﹣,则﹣<﹣<<π.故答案为:﹣<﹣<<π.【点评】此题主要考查了实数比较大小,正确把握比较方法是解题关键.14.(4分)已知代数式x﹣3y2的值是5,则代数式(x﹣3y2)2﹣2x+6y2的值是15.【分析】观察所求代数式可知,可以将已知整体代入求代数式的值.【解答】解:∵x﹣3y2=5,∴(x﹣3y2)2﹣2x+6y2=(x﹣3y2)2﹣2(x﹣3y2)=25﹣2×5=25﹣10=15.故答案为:15.【点评】本题考查了代数式的求值运算,根据式子的特点,采用整体代入的方法.15.(4分)一件商品成本为x元,商店按成本价提高40%后作为标价出售,节日期间促销,按标价打8折后售价为1232元,则成本价x=1100元.【分析】根据成本价与售价间的关系结合现售价为1232元,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:(1+40%)×0.8x=1232,解得:x=1100.故答案为:1100.【点评】本题考查了一元一次方程的应用,找准等量关系,列出关于x的一元一次方程是解题的关键.16.(4分)如图所示,以O为端点画六条射线:OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,…,那么按图中规律,所描的第59个点在射线OE上,第2017个点在射线OA上.【分析】根据1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD 上,5在射线OE上,6在射线OF上,7在射线OA上,…得出每6个数为一周期.用2017除以6,根据余数来决定数2017在哪条射线上.【解答】解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,59÷6=9…5,2017÷6=336…1,∴所描的第59个点在射线和5所在射线一样所描的第2017个点在射线和1所在射线一样,∴所描59个点在射线OE上,第2013个点在射线OA上.故答案为:OE,OA.【点评】此题主要考查了数字变化规律,根据数的循环规律决定数的位置是解题关键.三、全面答一答(本大题共7小题,共66分)17.(6分)计算:(1)+7﹣(﹣)(2)32×(﹣)3÷(3)40﹣30×(﹣+)【分析】(1)根据有理数的加减法可以解答本题;(2)根据幂的乘方、有理数的乘除法可以解答本题;(3)根据乘法分配律和有理数的加减法可以解答本题.【解答】解:(1)+7﹣(﹣)==8;(2)32×(﹣)3÷=9×=﹣;(3)40﹣30×(﹣+)=40﹣=40﹣15+20﹣24=21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.(8分)(1)①计算125°24′﹣60°36′(结果用度表示);②已知∠α=22°22′,求∠α的余角;(2)已知线段a,b,用直尺和圆规作图(不写作法,保留痕迹):①a+b②2a﹣b.【分析】(1)根据角度和差的计算即可得;(2)①分别作AB=a、BC=b,即可得AC=a+b;②先作AC=2a,再在AC上截取CD=b,AD即是所求.【解答】解:(1)①125°24′﹣60°36′=124°84′﹣60°36′=64°48′=64.8°;②∠α的余角为90°﹣∠α=90°﹣22°22′=89°60′﹣22°22′=67°38′;(2)①如图1所示,AC=a+b;②如图2所示,AD=2a﹣b.【点评】本题主要考查角度的和差计算和线段的和差作图,熟练掌握角度的换算和作一条线段等于已知线段是解题的关键.19.(8分)化简并求值:(1)(m2+2m)﹣2(m2+3m),其中m=.(2)(2ab2﹣a)+(b﹣ab2)﹣(a2b+b﹣a),其中a,b,满足|a+3|+(b﹣2)2=0.【分析】(1)原式去括号合并得到最简结果,把m的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:(1)原式=m2+2m﹣m2﹣6m=﹣4m,当m=时,原式=﹣3;(2)原式=2ab2﹣a+b﹣ab2﹣a2b﹣b+a=ab2﹣a2b,∵|a+3|+(b﹣2)2=0,∴a=﹣3,b=2,则原式=﹣12﹣18=﹣30.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(10分)解下列方程:(1)2(2x﹣1)=3x﹣1(2)=(3)﹣=1.5(4)﹣x=1﹣.【分析】两方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣2=3x﹣1,4x﹣3x=2﹣1,∴x=1;(2)去分母得:3(3x+4)=2(2x+1)9x+12=4x+2,∴x=﹣2;(3)化简得:5x﹣15+10x=1.5,∴x=1.1;(4)去分母得:2(3x﹣1)﹣6x=6﹣(4x﹣1),6x﹣2﹣6x=6﹣4x+1,∴x=.【点评】此题考查了解一元一次方程,熟记其步骤是解题的关键.21.(10分)如图,长方体盒子是用大长方形硬纸片裁剪制作的,每个盒子由4个小长方形侧面和上下2个正方形底面组成,大长方形硬纸片按两种方法裁剪:A所示方法剪4个侧面:B所示方法剪6个底面.现有112张大长方形硬纸片全部用于裁剪制作长方体盒子,设裁剪时x张用A方法,其余用B方法.(1)请用含x的代数式分别表示裁剪出的侧面和底面个数;(2)若裁剪出的侧面和底面恰好全部用完,问A方法、B方法各裁剪几张?能做多少个盒子?【分析】(1)根据题意可以分别用代数式表示出裁剪出的侧面和底面个数;(2)根据题意可以列出相应的方程,从而可以解答本题.【解答】解:(1)由题意可得,裁剪出的侧面个数是:4x,裁剪出的底面个数是:6(112﹣x)=﹣6x+672;(2)由题意可得,4x=2×(﹣6x+672),解得,x=84,∴112﹣84=28,即A方法裁剪84张,B方法裁剪28张,能做84个盒子.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,侧面的个数是底面个数的2倍,利用方程的思想解答.22.(12分)(1)已知一个角的余角是这个角的补角的,求这个角的度数以及这个角的余角和补角.(2)已知线段AB长为9,点C是线段AB上一点,满足AC=CB,点D是直线AB上一点,满足BD=AC,①求出线段AC的长;②求出线段CD的长.【分析】(1)设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,再根据题意列出方程,求出x的值,进一步求解即可.(2)①由AB的长,即AC为BC的一半求出AC与BC的长;②由BD为AC一半求出BD的长,由BC﹣BD及BD+BC即可求出CD的长.【解答】解:(1)设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=(180°﹣x),解得x=67.5°,90°﹣x=22.5°,180°﹣x=112.5°.故这个角的度数是67.5°,这个角的余角是22.5°,补角是112.5°.(2)如图1,2,分两种情况讨论:①由题意得AC=3,BC=6,BD=1.5,②由图1得CD=BC﹣BD=4.5,由图2得CD=BC+BD=7.5.故线段CD的长为4.5或7.5.【点评】本题考查的是余角及补角的定义,两点间的距离,能根据题意列出关于x的方程,熟悉线段的加减运算是解答此题的关键.23.(12分)(1)如图,直线AB、CD、EF相交于点O,且AB⊥CD,OG平分∠BOE,如果∠EOG=∠AOE,求∠EOG和∠DOF的度数.(2)希腊数学家把一组数1,3,6,10,15,21,…,叫做三角数,它有一定的规律性,若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为a n;①计算a1+a2=4,a2+a3=9,a3+a4=16;②写出a7=28,a6+a7=49.③观察以上计算结果,分析推断:a2016+a2017=20172.【分析】(1)首先根据角平分线的性质可得∠EOG=∠BOG,设∠AOE=x°,进而得到∠EOG=∠GOB=x°,再根据平角为180°可得x+x+x=180,解出x可得∠EOG,进而可得∠DOF的度数.(2)①代入计算可求a1+a2,a2+a3,a3+a4的值;②根据规律求出a7,再代入计算可求a6+a7的值;③根据规律可以推算a2016+a2017的值.【解答】解:(1)∵OG平分∠BOE,∴∠EOG=∠BOG,设∠AOE=x°,∴∠EOG=∠GOB=x°,∴x+x+x=180,解得:x=110,∴∠EOG=110°×=35°,∵AB⊥CD,∴∠BOC=90°,∴∠DOF=∠COE=90°﹣35°﹣35°=20°.(2)①计算a1+a2=4,a2+a3=9,a3+a4=16;②写出a7=28,a6+a7=49③观察以上计算结果,分析推断:a2016+a2017=20172.故答案为:4,9,16;28,49;20172.【点评】此题考查了垂线、角平分线,关键是掌握角平分线可以把角分成相等的两部分.同时考查了规律型:数字变化类,解题的关键是学会从一般到特殊的探究方法,找到规律后即可解决问题,属于中考常考题型.。