高考数学模拟复习试卷试题模拟卷180

合集下载

2023届新高考高三模拟数学试题

2023届新高考高三模拟数学试题

2023年普通高等学校招生全国统一考试模拟演练数学(考试时间120分钟,满分150分)注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合A {}01242<--∈x x Z x ,{}R x x e y y B ∈=,sin ,求B A (){}2,1,0,1,2.--A {}21.<<-x x B {}2,1,0,1.-C {}12.-≤≥x x x D ,2、化简=++-3)]60sin 60)(cos 2321[( i i ()1.-A 1.B iC .iD -.3、在ABC ∆中,点D 在BC 边上,且DC BD =,点E 在AC 边上,且AC AE 54=,连接DE ,若AC n AB m DE +=,则=+n m ()51.-A 54.B 54.-C 51.D 4、日常生活中,我们定义一个食堂的菜品受欢迎程度为菜品新鲜度。

其表达式为NR σ=,其中R 的取值与在本窗口就餐人数有关,其函数关系式我们可简化为xy 75.56.81470-+=,其中y 为就餐人数(本窗口),x 为餐品新鲜度(R ),则当2000,2==σN 时,y 近似等于()(已知675.51023.46.8--⨯≈)470.A 471.B 423.C 432.D 5、素数对)2,(+p p 称为孪生素数,将素数17拆分成n 个互不相等的素数之和,其中任选2个数构成素数对,则为孪生素数的概率为()51.A 31.B 41.C 21.D 6、设)2023.0sin(,20232024ln ,2023120231===c b e a ,则()ba c A >>.cb a B >>.ca b C >>.ab c D >>.7、已知空间四边形ABCD ,BC DB AC BC AB ⊥==,,且6,4==BD BC ,面ABC 与面BCD 夹角正弦值为1,则空间四边形ABCD 外接球与内切球的表面积之比为()363301172.+A 365301172.+B 363172301.+C 365172301.+D 8、已知函数3)ln )(1()(++-+=x x a xe x f x ,对于[)+∞∈∀,0x ,4)(≥x f 恒成立,则满足题意的a 的取值集合为(){}0.A {}1,0.B {}1,0,1.-C {}1.D 二、多项选择题:本题共4小题,每小题5分,共20分。

高考数学模拟复习试卷试题模拟卷第01节 随机事件的概率 2

高考数学模拟复习试卷试题模拟卷第01节 随机事件的概率 2

高考模拟复习试卷试题模拟卷第01节 随机事件的概率A 基础巩固训练1.(·江西南昌检测)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A .“至少有1个白球”和“都是红球”B .“至少有1个白球”和“至多有1个红球”C .“恰有1个白球”和“恰有2个白球”D .“至多有1个白球”和“都是红球”[答案]C[解析] 该试验有三种结果:“恰有1个白球”“恰有2个白球”“没有白球”,故“恰有1个白球”和“恰有2个白球”是互斥事件且不是对立事件.2.(文)(·滨州模拟)在区间[0,1]上任取两个数a ,b ,则函数f(x)=x2+ax +b2无零点的概率为( )A .12B .23C .34D .14[答案] C3. 甲、乙两人喊拳,每人可以用手出0,5,10三个数字,每人则可喊0,5,10,15,20五个数字,当两人所出数字之和等于某人所喊数字时喊该数字者获胜,若甲喊10,乙喊15时,则 ()A .甲胜的概率大B .乙胜的概率大C .甲、乙胜的概率一样大D .不能确定谁获胜的概率大【答案】A4.(·赤峰模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是( ) A.18B.38C.58D.78【答案】D【解析】至少一次正面朝上的对立事件的概率为18,故P =1-18=78. 5.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是()A .A ∪B 与C 是互斥事件,也是对立事件 B .B ∪C 与D 是互斥事件,也是对立事件C .A ∪C 与B ∪D 是互斥事件,但不是对立事件 D .A 与B ∪C ∪D 是互斥事件,也是对立事件【答案】DB 能力提升训练1.(·济南调研)现釆用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出 0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )A . 0.852B . 0.8192C .0.8D . 0.75[答案] D[解析] 随机模拟产生的20组随机数,表示至少击中3次的组数为15,所以概率为P =1520=0.75. 2.从1,2,3,4,5中随机抽三个不同的数,则其和为奇数的概率为( )A.15B.25C.35D.45【答案】B3. (·浙江台州中学统练)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a 、b ∈{0,1,2,3,4,5},若|a -b|≤1,则称甲乙“心相近”.现任意找两人玩这个游戏,则他们“心相近”的概率为( )A .29B .718C .49D .19[答案] C4. (威海市高三3月模拟考试)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量(,)m a b =与向量(1,1)n =-垂直的概率为(A )16(B )13(C )14(D )12【答案】A【解析】由题意可知(,)m a b =有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5).共12个.m n ⊥即0,m n ⋅=所以1(1)0,a b ⨯+⨯-=即a b =,有(3,3),(5,5)共2个满足条件.故所求概率为16. 5. 从一个三棱柱ABC -A1B1C1的六个顶点中任取四点,这四点不共面的概率是( ) A .15 B .25C .35D .45 [答案] D[解析] 从6个顶点中选4个,共有15种选法,其中共面的情况有三个侧面,∴概率P =15-315=45.C 思维扩展训练1.(·安庆一模)将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设两条直线l1:ax +by =2与l2:x +2y =2平行的概率为P1,相交的概率为P2,则点P(36P1,36P2)与圆C :x2+y2=1 098的位置关系是()A .点P 在圆C 上B .点P 在圆C 外 C .点P 在圆C 内D .不能确定【答案】C2. 设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P(a ,b),记“点P(a ,b)落在直线x +y =n 上”为事件Cn(2≤n ≤5,n ∈N),若事件Cn 的概率最大,则n 的所有可能值为()A .3B .4C .2和5D .3和4【答案】D【解析】P(a ,b)的个数为6个.落在直线x +y =2上的概率P(C2)=16,若在直线x +y =3上的概率P(C3)=26,落在直线x +y =4上的概率P(C4)=26,落在直线x +y =5上的概率P(C5)=16. 3. 某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________. 【答案】3513154. 已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8、0.12、0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为__________,________.【答案】0.970.03【解析】断头不超过两次的概率P1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P2=1-P1=1-0.97=0.03.5. 【雅安中学高三下期3月月考数学】(本小题满分12分)某产品的三个质量指标分别为x, y, z, 用综合指标S = x + y + z 评价该产品的等级. 若S≤4, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下: 产品编号A1 A2 A3 A4 A5 质量指标(x, y, z)(1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A6 A7 A8 A9 A10 质量指标(x, y, z) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅰ) (Ⅱ) 在该样品的一等品中, 随机抽取两件产品,(1) 用产品编号列出所有可能的结果;(2) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项2.【宝鸡市高三数学质量检测(一)】若)21(3x x n -的展开式中第四项为常数项,则=n ( ) A . 4 B. 5 C. 6 D. 73.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .174.【金丽衢十二校高三第二次联考】二项式2111()x x -的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或286.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .77.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30(D )608.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102 D .92 9.【咸阳市高考模拟考试试题(三)】若n x x )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .1210.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( )(A) 1 (B)0 (C)l (D)256 11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 21012.【原创题】210(1)x x -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【大纲高考第13题】8x y y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为.15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332n x x ⎛- ⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数;(3)求展开式中所有的有理项.18.已知223)n x x 的展开式的二项式系数和比(31)n x -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中, (1)二项式系数最大的项;(2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R).(1)求a0+a1+a2+…+a2 013的值;(2)求a1+a3+a5+…+a2 013的值;(3)求|a0|+|a1|+|a2|+…+|a2 013|的值.20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()0()C (1)n k k n k n n k k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小;(3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟试题及答案

高考数学模拟试题及答案

高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。

高考数学模拟试卷复习试题高三教学测试一文科数学 试题卷

高考数学模拟试卷复习试题高三教学测试一文科数学 试题卷

高考数学模拟试卷复习试题高三教学测试(一)文科数学 试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:棱柱的体积公式Sh V =,其中S 表示棱柱的底面积,h 表示棱柱的高. 棱锥的体积公式Sh V 31=, 其中S 表示棱锥的底面积,h 表示棱锥的高. 棱台的体积公式)(312211S S S S h V ++=, 其中21,S S 分别表示棱台的上、下底面积,h 表示棱台的高. 球的表面积公式 24R S π=,其中R 表示球的半径. 球的体积公式334R V π=, 其中R 表示球的半径.第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集=U R ,集合{}0lg ≥=x x A ,{}22≥=x x B ,则B A ⋂为 A .{}1≥x x B .⎭⎬⎫⎩⎨⎧≥21x x C .{}10≤<x x D .⎭⎬⎫⎩⎨⎧≤<210x x 2.已知命题p :若1<a ,则12<a ,下列说法正确的是 A .命题p 是真命题 B .命题p 的逆命题是真命题C .命题p 的否命题是:若1<a ,则 12≥a D .命题p 的逆否命题是:若 12≥a ,则1<a 3.函数)2sin(sin 3)(x x x f ++=π的一条对称轴是A . 6π=x B . 3π=x C . 32π=x D . 65π=x 4.设βα,是两个不同的平面,m ,n 是两条不同的直线,且α⊂m ,β⊂nA . n m ,若是异面直线,则α与β相交B . 若αβ//,//n m 则βα//C . 若n m ⊥,则βα⊥D . 若 β⊥m ,则βα⊥5.已知等差数列{}n a 公差为d ,前n 项和{}n s ,则下列描述不一定正确的是A . 若1a >0,d>0,则n 唯一确定时n s 也唯一确定B .若1a >0,d<0,则n 唯一确定时n s 也唯一确定C .若1a >0,d>0,则n s 唯一确定时n 也唯一确定D .若1a >0,d<0,则n s 唯一确定时n 也唯一确定 6.已知函数[]0,,sin )1()(≠-∈⋅-=x x x xx x f 且ππ,下列描述正确的是 A .函数)(x f 为奇函数B .函数)(x f 既无最大值也无最小值C .函数)(x f 有4个零点D .函数)(x f 在()π,0单调递增7.如图,B 、D 是以AC 为直径的圆上的两点,其中1+=t AB ,2+=t AD ,则⋅= A .1 B .2C .tD .t 28.已知双曲线)0,0(12222>>=-b a b y a x ,若焦点)0,(c F 关于渐近线x aby =的对称点在另一条渐近线x aby -=上,则双曲线的离心率为 A . 2 B . 2 C .3 D .3第Ⅱ卷二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{}n a 满足22=a ,且数列{}n a n 23-为公比为2的等比数列,则=1a ▲ ,数列{}n a 通项公式n a = ▲ .AC(第710.函数⎪⎩⎪⎨⎧<-≥-=0,20,)1()(2x e x x x f x 则)1(-f = ▲ , 若方程m x f =)(有两个不同的实数根,则m 的取值范围为 ▲ .11.已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ▲ , xy y x ++224 的最小值为 ▲ .12.已知实数y x ,满足⎪⎩⎪⎨⎧-≥≥-+≥+-)3(0402x a y y x y x ,(1)当2=a 时,则y x +2的最小值为 ▲ ,(2)若满足上述条件的实数y x ,围成的平面区域是三角形,则实数a 的取值范围是 ▲ .13. ,,,,21n a a a 是按先后顺序排列的一列向量,若)13,2015(1-=a ,且)1,1(1=--n n a a ,则其中模最小的一个向量的序号为 ▲ .14.如图,平面ABC ⊥平面α,D 为线段AB的中点,22=AB ,︒=∠45CDB ,点P 为面α内的动点,且P 到直线CD 的距离为2,则APB ∠的最大值为 ▲ .15.边长为1的正方体1111D C B A ABCD -若将其对角线1AC 与平面α垂直,则正方体1111D C B A ABCD -在平面α上的投影面积为 ▲ .三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分14分)(第14题)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,A=2C, 且31cos =A (Ⅰ)求C cos 的值;(Ⅱ)若ABC ∆的面积为25,求B sin 及边b .17.(本小题满分15分)已知数列{}n a 的前n 项和n s ,满足)6(-=n n s n ,数列{}n b 满足)(3,312*+∈==N n b b b n n(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)记数列{}n c 满足⎩⎨⎧=为偶数,为奇数n b n a c n n n ,,求数列{}n c 的前n 项和n T .18.(本小题满分15分)已知几何体PABCD 如右图,面ABCD 为矩形,面ABCD ⊥面PAB ,且面PAB 为正三角形,若AB=2,AD=1,E 、F 分别为AC 、BP 中点, (Ⅰ)求证EF //面PCD ;(Ⅱ)求直线BP 与面PAC 所成角的正弦.ABPCDEF(第18题)19.(本小题满分15分)已知抛物线C:)0(22>=p py x ,圆E:1)1(22=++y x , 若直线L 与抛物线C 和圆E 分别相切于点A ,B (A,B 不重合) (Ⅰ)当1=p 时,求直线L 的方程;(Ⅱ)点F 是抛物线C 的焦点,若对于任意的0>p ,记△ABF 面积为S ,求1+p S 的最小值.20.(本小题满分15分)已知函数1)(2++=ax x x f ,其中0,≠∈a R a 且(Ⅰ)设)()32()(x f x x h -=,若函数)(x h y =图像与x 轴恰有两个不同的交点,试求a 的取值集合;(Ⅱ)求函数)(x f y =在[]1,0上最大值.(第19高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(文科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<03.(5分)函数y=的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)4.(5分)设P是圆(x﹣3)2+(y+1)2=4上的动点,Q是直线x=﹣3上的动点,则|PQ|的最小值为()A.6 B.4 C.3 D.25.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.66.(5分)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.67.(5分)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.8.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.180 B.200 C.220 D.2409.(5分)已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg (lg2))=()A.﹣5 B.﹣1 C.3 D.410.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是()A.B.C.D.二.填空题:本大题共5小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)已知复数z=1+2i(i是虚数单位),则|z|=.12.(5分)若2、a、b、c、9成等差数列,则c﹣a=.13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.14.(5分)OA为边,OB为对角线的矩形中,,,则实数k=.15.(5分)设0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(13分)设数列{an}满足:a1=1,an+1=3an,n∈N+.(Ⅰ)求{an}的通项公式及前n项和Sn;(Ⅱ)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20.17.(13分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,,,其中,为样本平均值,线性回归方程也可写为.18.(13分)在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+bc.(Ⅰ)求A;(Ⅱ)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.20.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.重庆市高考数学试卷(文科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<0【分析】根据全称命题“∀x∈M,p(x)”的否定为特称命题:“∃x0∈M,¬p(x)”即可得出.【解答】解:根据全称命题的否定是特称命题可得:命题“对任意x∈R,都有x2≥0”的否定为“∃x0∈R,使得”.故选:A.【点评】熟练掌握全称命题“∀x∈M,p(x)”的否定为特称命题“∃x0∈M,¬p(x)”是解题的关键.3.(5分)函数y=的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)【分析】根据“让解析式有意义”的原则,对数的真数大于0,分母不等于0,建立不等式,解之即可.【解答】解:要使原函数有意义,则,解得:2<x<3,或x>3所以原函数的定义域为(2,3)∪(3,+∞).故选:C.【点评】本题主要考查了函数的定义域及其求法,求定义域常用的方法就是根据“让解析式有意义”的原则,属于基础题.4.(5分)设P是圆(x﹣3)2+(y+1)2=4上的动点,Q是直线x=﹣3上的动点,则|PQ|的最小值为()A.6 B.4 C.3 D.2【分析】过圆心A作AQ⊥直线x=﹣3,与圆交于点P,此时|PQ|最小,由此能求出|PQ|的最小值.【解答】解:过圆心A作AQ⊥直线x=﹣3,与圆交于点P,此时|PQ|最小,由圆的方程得到A(3,﹣1),半径r=2,则|PQ|=|AQ|﹣r=6﹣2=4.故选:B.【点评】本题考查线段的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.5.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a <,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.(5分)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.6【分析】由茎叶图10个原始数据数据,数出落在区间[22,30)内的个数,由古典概型的概率公式可得答案.【解答】解:由茎叶图10个原始数据,数据落在区间[22,30)内的共有4个,包括2个22,1个27,1个29,则数据落在区间[22,30)内的概率为=0.4.故选:B.【点评】本题考查古典概型及其概率公式,涉及茎叶图的应用,属基础题.7.(5分)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.【分析】利用不等式的解集以及韦达定理得到两根关系式,然后与已知条件化简求解a的值即可.【解答】解:因为关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),所以x1+x2=2a…①,x1•x2=﹣8a2…②,又x2﹣x1=15…③,①2﹣4×②可得(x2﹣x1)2=36a2,代入③可得,152=36a2,解得a==,因为a>0,所以a=.故选:A.【点评】本题考查二次不等式的解法,韦达定理的应用,考查计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.180 B.200 C.220 D.240【分析】由三视图可知:该几何体是一个横放的直四棱柱,高为10;其底面是一个等腰梯形,上下边分别为2,8,高为4;据此可求出该几何体的表面积.【解答】解:由三视图可知:该几何体是一个横放的直四棱柱,高为10;其底面是一个等腰梯形,上下边分别为2,8,高为4.∴S表面积=2××(2+8)×4+2×5×10+2×10+8×10=240.故选:D.【点评】本题考查由三视图还原直观图,由三视图求面积、体积,由三视图正确恢复原几何体是解决问题的关键.9.(5分)已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg (lg2))=()A.﹣5 B.﹣1 C.3 D.4【分析】由题设条件可得出lg(log210)与lg(lg2)互为相反数,再引入g(x)=ax3+bsinx,使得f(x)=g(x)+4,利用奇函数的性质即可得到关于f(lg(lg2))的方程,解方程即可得出它的值【解答】解:∵lg(log210)+lg(lg2)=lg1=0,∴lg(log210)与lg(lg2)互为相反数则设lg(log210)=m,那么lg(lg2)=﹣m令f(x)=g(x)+4,即g(x)=ax3+bsinx,此函数是一个奇函数,故g(﹣m)=﹣g (m),∴f(m)=g(m)+4=5,g(m)=1∴f(﹣m)=g(﹣m)+4=﹣g(m)+4=3.故选:C.【点评】本题考查函数奇偶性的运用及求函数的值,解题的关键是观察验证出lg (log210)与lg(lg2)互为相反数,审题时找准处理条件的方向对准确快速做题很重要10.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是()A.B.C.D.【分析】不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,由满足条件的直线只有一对,得,由此能求出双曲线的离心率的范围.【解答】解:不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,如图,又∵满足条件的直线只有一对,当直线与x轴夹角为30°时,双曲线的渐近线与x轴夹角大于30°,双曲线与直线才能有交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于30°,则无交点,则不可能存在|A1B1|=|A2B2|,当直线与x轴夹角为60°时,双曲线渐近线与x轴夹角大于60°,双曲线与直线有一对交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于60°,也满足题中有一对直线,但是如果大于60°,则有两对直线.不符合题意,∴tan30°,即,∴,∵b2=c2﹣a2,∴,∴,∴,∴双曲线的离心率的范围是.故选:A.【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.二.填空题:本大题共5小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)已知复数z=1+2i(i是虚数单位),则|z|=.【分析】直接利用复数的模的求法公式,求解即可.【解答】解:复数z=1+2i(i是虚数单位),则|z|==.故答案为:.【点评】本题考查复数的模的求法,考查计算能力.12.(5分)若2、a、b、c、9成等差数列,则c﹣a=.【分析】由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.【解答】解:由等差数列的性质可得2b=2+9,解得b=,又可得2a=2+b=2+=,解之可得a=,同理可得2c=9+=,解得c=,故c﹣a=﹣==故答案为:【点评】本题考查等差数列的性质和通项公式,属基础题.13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.【分析】甲、乙两人相邻,可以把两个元素看做一个元素同其他元素进行排列,然后代入古典概率的求解公式即可求解【解答】解:记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站,把甲和乙当做一个整体,甲和乙的排列有种,然后把甲乙整体和丙进行排列,有种,因此共有=4种站法∴=故答案为:【点评】本题考查排列组合及简单的计数问题及古典概率的求解,本题解题的关键是把相邻的问题作为一个元素同其他的元素进行排列,本题是一个基础题.14.(5分)OA为边,OB为对角线的矩形中,,,则实数k= 4.【分析】由题意可得OA⊥AB,故有=0,即==0,解方程求得k的值.【解答】解:由于OA为边,OB为对角线的矩形中,OA⊥AB,∴=0,即==(﹣3,1)•(﹣2,k)﹣10=6+k﹣10=0,解得k=4,故答案为 4.【点评】本题主要考查两个向量的数量积的运算,两个向量垂直的性质,两个向量的加减法及其几何意义,属于基础题.15.(5分)设0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为[0,]∪[,π].【分析】由题意可得,△=64sin2α﹣32cos2α≤0即2sin2α﹣(1﹣2sin2α)≤0,解不等式结合0≤α≤π可求α的取值范围.【解答】解:由题意可得,△=64sin2α﹣32cos2α≤0,得2sin2α﹣(1﹣2sin2α)≤0∴sin2α≤,﹣≤sinα≤,∵0≤α≤π∴α∈[0,]∪[,π].故答案为:[0,]∪[,π].【点评】本题主要考查了一元二次不等式的解法、二次函数的恒成立问题,属于中档题.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(13分)设数列{an}满足:a1=1,an+1=3an,n∈N+.(Ⅰ)求{an}的通项公式及前n项和Sn;(Ⅱ)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20.【分析】(Ⅰ)由题意可得数列{an}是以1为首项,以3为公比的等比数列,则其通项公式与前n项和可求;(Ⅱ)由b1=a2=3,b3=a1+a2+a3=1+3+9=13,可得等差数列{bn}的公差,再由等差数列的前n项和求得T20.【解答】解:(Ⅰ)由an+1=3an,得,又a1=1,∴数列{an}是以1为首项,以3为公比的等比数列,则,;(Ⅱ)∵b1=a2=3,b3=a1+a2+a3=1+3+9=13,∴b3﹣b1=10=2d,则d=5.故.【点评】本题考查数列递推式,考查等比关系的确定,训练了等差数列和等比数列前n项和的求法,是中档题.17.(13分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,,,其中,为样本平均值,线性回归方程也可写为.【分析】(Ⅰ)由题意可知n,,,进而可得,,代入可得b值,进而可得a值,可得方程;(Ⅱ)由回归方程x的系数b的正负可判;(Ⅲ)把x=7代入回归方程求其函数值即可.【解答】解:(Ⅰ)由题意可知n=10,===8,===2,故lxx==720﹣10×82=80,lxy==184﹣10×8×2=24,故可得b=═=0.3,a==2﹣0.3×8=﹣0.4,故所求的回归方程为:y=0.3x﹣0.4;(Ⅱ)由(Ⅰ)可知b=0.3>0,即变量y随x的增加而增加,故x与y之间是正相关;(Ⅲ)把x=7代入回归方程可预测该家庭的月储蓄为y=0.3×7﹣0.4=1.7(千元).【点评】本题考查线性回归方程的求解及应用,属基础题.18.(13分)在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+bc.(Ⅰ)求A;(Ⅱ)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.【分析】(Ⅰ)由余弦定理表示出cosA,将依照等式变形后代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由(Ⅰ)求出sinA的值,由三角形的面积公式及正弦定理列出关系式,表示出S,代入已知等式中提取3变形后,利用两角和与差的余弦函数公式化为一个角的余弦函数,由余弦函数的图象与性质即可求出S+3cosBcosC的最大值,以及此时B的值.【解答】解:(Ⅰ)由余弦定理得:cosA===﹣,∵A为三角形的内角,∴A=;(Ⅱ)由(Ⅰ)得sinA=,由正弦定理得:b=,csinA=asinC及a=得:S=bcsinA=••asinC=3sinBsinC,则S+3cosBcosC=3(sinBsinC+cosBcosC)=3cos(B﹣C),则当B﹣C=0,即B=C==时,S+3cosBcosC取最大值3.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及余弦函数的图象与性质,熟练掌握定理及公式是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.【分析】(Ⅰ)由等腰三角形的性质可得BD⊥AC,再由PA⊥底面ABCD,可得PA⊥BD.再利用直线和平面垂直的判定定理证明BD⊥平面PAC.(Ⅱ)由侧棱PC上的点F满足PF=7FC,可得三棱锥F﹣BCD的高是三棱锥P﹣BCD的高的.求出△BCD的面积S△BCD,再根据三棱锥P﹣BDF的体积V=VP﹣BCD﹣VF﹣BCD=﹣,运算求得结果.【解答】解:(Ⅰ)∵BC=CD=2,∴△BCD为等腰三角形,再由,∴BD⊥AC.再由PA⊥底面ABCD,可得PA⊥BD.而PA∩AC=A,故BD⊥平面PAC.(Ⅱ)∵侧棱PC上的点F满足PF=7FC,∴三棱锥F﹣BCD的高是三棱锥P﹣BCD的高的.△BCD的面积S△BCD=BC•CD•sin∠BCD==.∴三棱锥P﹣BDF的体积V=VP﹣BCD﹣VF﹣BCD=﹣=×==.【点评】本题主要考查直线和平面垂直的判定定理的应用,用间接解法求棱锥的体积,属于中档题.20.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.【分析】(I)由已知中侧面积和底面积的单位建造成本,结合圆柱体的侧面积及底面积公式,根据该蓄水池的总建造成本为12000π元,构造方程整理后,可将V表示成r的函数,进而根据实际中半径与高为正数,得到函数的定义域;(Ⅱ)根据(I)中函数的定义值及解析式,利用导数法,可确定函数的单调性,根据单调性,可得函数的最大值点.【解答】解:(Ⅰ)∵蓄水池的侧面积的建造成本为200•πrh元,底面积成本为160πr2元,∴蓄水池的总建造成本为200•πrh+160πr2元即200•πrh+160πr2=12000π∴h=(300﹣4r2)∴V(r)=πr2h=πr2•(300﹣4r2)=(300r﹣4r3)又由r>0,h>0可得0<r<5故函数V(r)的定义域为(0,5)(Ⅱ)由(Ⅰ)中V(r)=(300r﹣4r3),(0<r<5)可得V′(r)=(300﹣12r2),(0<r<5)∵令V′(r)=(300﹣12r2)=0,则r=5∴当r∈(0,5)时,V′(r)>0,函数V(r)为增函数当r∈(5,5)时,V′(r)<0,函数V(r)为减函数且当r=5,h=8时该蓄水池的体积最大【点评】本题考查的知识点是函数模型的应用,其中(Ⅰ)的关键是根据已知,求出函数的解析式及定义域,(Ⅱ)的关键是利用导数分析出函数的单调性及最值点.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.【分析】(Ⅰ)设椭圆方程为,将左焦点横坐标代入椭圆方程可得y=,则,又②,a2=b2+c2③,联立①②③可求得a,b;(Ⅱ)设Q(t,0)(t>0),圆的半径为r,直线PP′方程为:x=m(m>t),则圆Q的方程为:(x﹣t)2+y2=r2,联立圆与椭圆方程消掉y得x的二次方程,则△=0①,易求P 点坐标,代入圆的方程得等式②,由①②消掉r得m=2t,则,变为关于t的函数,利用基本不等式可求其最大值及此时t 值,由对称性可得圆心Q在y轴左侧的情况;【解答】解:(Ⅰ)设椭圆方程为,左焦点F1(﹣c,0),将横坐标﹣c代入椭圆方程,得y=,所以①,②,a2=b2+c2③,联立①②③解得a=4,,所以椭圆方程为:;(Ⅱ)设Q(t,0)(t>0),圆的半径为r,直线PP′方程为:x=m(m>t),则圆Q的方程为:(x﹣t)2+y2=r2,由得x2﹣4tx+2t2+16﹣2r2=0,由△=0,即16t2﹣4(2t2+16﹣2r2)=0,得t2+r2=8,①把x=m代入,得,所以点P坐标为(m,),代入(x﹣t)2+y2=r2,得,②由①②消掉r2得4t2﹣4mt+m2=0,即m=2t,=×(m﹣t)=×t=≤×=2,当且仅当4﹣t2=t2即t=时取等号,此时t+r=+<4,椭圆上除P、P′外的点在圆Q外,所以△PP'Q的面积S的最大值为,圆Q的标准方程为:.当圆心Q、直线PP′在y轴左侧时,由对称性可得圆Q的方程为,△PP'Q 的面积S的最大值仍为为.【点评】本题考查圆、椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,难度较大.高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<03.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,85.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.2406.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤99.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣110.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|A A′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<0【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选:D.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.。

2024年上海市高考高三数学模拟试卷试题及答案详解

2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

高考数学模拟复习试卷试题模拟卷18212

高考数学模拟复习试卷试题模拟卷18212

高考模拟复习试卷试题模拟卷【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f(x)= 1-2x +1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎫1+1x + 1-x2的定义域为________.解析:(1)由题意可知⎩⎪⎨⎪⎧ 1-2x≥0x +3>0⇒⎩⎪⎨⎪⎧ 2x≤1x>-3⇒⎩⎪⎨⎪⎧x≤0,x>-3,∴定义域为(-3,0].(2)由⎩⎪⎨⎪⎧1+1x >0,1-x2≥0⇒⎩⎪⎨⎪⎧x<-1或x>0,-1≤x≤1⇒0<x≤1. ∴该函数的定义域为(0,1]. 答案:(1)A(2)(0,1] 【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f(x)的定义域,求f(g(x))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f(x)的定义域为[a ,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b 求出. 【举一反三】已知f(x)的定义域为⎣⎡⎦⎤-12,12,求函数y =f ⎝⎛⎭⎫x2-x -12的定义域.题型二考查函数的解析式例2、(1)已知f(1-cos x)=sin2x ,求f(x)的解析式;(2)已知f(x)是二次函数且f(0)=2,f(x +1)-f(x)=x -1,求f(x)的解析式;(3)已知f(x)+2f ⎝⎛⎭⎫1x =x(x≠0),求f(x)的解析式. 解析 (1)f(1-cos x)=sin2x =1-cos2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f(t)=1-(1-t)2=2t -t2,t ∈[0,2], 即f(x)=2x -x2,x ∈[0,2].(2)设f(x)=ax2+bx +c(a≠0),由f(0)=2,得c =2, f(x +1)-f(x)=a(x +1)2+b(x +1)-ax2-bx =x -1, 即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32.∴f(x)=12x2-32x +2.(3)∵f(x)+2f ⎝⎛⎭⎫1x =x ,∴f ⎝⎛⎭⎫1x +2f(x)=1x .解方程组⎩⎨⎧f x +2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f x =1x,得f(x)=23x -x3(x≠0). 【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.(4)解方程组法:已知关于f(x)与f ⎝⎛⎭⎫1x 或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f(x).【举一反三】已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为( ) A .f(x)=x2-12x +18B .f(x)=13x2-4x +6 C .f(x)=6x +9D .f(x)=2x +3解析:由f(x)+2f(3-x)=x2可得f(3-x)+2f(x)=(3-x)2,由以上两式解得f(x)=13x2-4x +6. 答案:B题型三考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f(x),y =g(x),定义函数h(x)=⎩⎪⎨⎪⎧f x ,f x ≤g x ,g x ,f x >g x .对于函数y =h(x),下列结论正确的个数是( )①h(4)=10;②函数h(x)的图象关于直线x=6对称;③函数h(x)的值域为[0,13 ];④函数h(x)的递增区间为(0,5).A.1 B.2C.3 D.4答案C【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求的变量值或自变量的取值范围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值范围.【举一反三】已知f(x)=⎩⎪⎨⎪⎧2x ,x>0,f x +1,x≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43等于________.解析:f ⎝⎛⎭⎫43=2×43=83,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43, f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=83+43=4. 答案:4 【高考风向标】1.【高考湖北,文6】函数256()4||lg 3x x f x x x -+--的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]-【答案】C.【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解之得22,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C.3.【高考重庆,文3】函数22(x)log (x 2x 3)f 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞【答案】D【解析】由0)1)(3(0322>-+⇒>-+x x x x 解得3-<x 或1>x ,故选D.3.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时 【答案】C【解析】由题意,2219248bk be e +⎧=⎪⎨=⎪⎩得1119212bk e e⎧=⎪⎨=⎪⎩,于是当x =33时,y =e33k +b =(e11k)3·eb =31()2×192=24(小时)1.(·安徽卷)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x≤1,sin πx ,1<x≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______.【答案】516 【解析】由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516.2.(·北京卷)下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x3 C .y =ln x D .y =|x|【答案】B 【解析】由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D.3.(·江西卷)将连续正整数1,2,…,n(n ∈N*)从小到大排列构成一个数123…n ,F(n)为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S ={n|h(n)=1,n≤100,n ∈N*},求当n ∈S 时p(n)的最大值.【解析】(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=11192.(2)F(n)=⎩⎪⎨⎪⎧n ,1≤n≤9,2n -9,10≤n≤99,3n -108,100≤n≤999,4n -1107,1000≤n≤.(3)当n =b(1≤b≤9,b ∈N*),g(n)=0;当n =10k +b(1≤k≤9,0≤b≤9,k ∈N*,b ∈N)时,g(n)=k ; 当n =100时,g(n)=11,即g(n)=⎩⎪⎨⎪⎧0,1≤n≤9,k ,n =10k +b ,11,n =100.1≤k≤9,0≤b≤9,k ∈N*,b ∈N , 同理有f(n)=⎩⎪⎨⎪⎧0,1≤n≤8,k ,n =10k +b -1,1≤k≤8,0≤b≤9,k ∈N*,b ∈N ,n -80,89≤n≤98,20,n =99,100.由h(n)=f(n)-g(n)=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p(9)=0.当n =90时,p(90)=g (90)F (90)=9171=119.当n =10k +9(1≤k≤8,k ∈N*)时,p(n)=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k 单调递增,故当n =10k +9(1≤k≤8,k ∈N*)时,p(n)的最大值为p(89)=8169.又8169<119,所以当n ∈S 时,p(n)的最大值为119. 4.(·山东卷)函数f(x)=1log2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞) 【答案】C【解析】若函数f(x)有意义,则log2x -1>0,∴log2x >1,∴x >2.5.(·安徽卷)定义在R 上的函数f(x)满足f(x +1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.【答案】-x (x +1)2【解析】当-1≤x≤0时,0≤x +1≤1,由f(x +1)=2f(x)可得f(x)=12f(x +1)=-12x(x +1). 6.(·安徽卷)函数y =ln1+1x +1-x2的定义域为________. 【答案】(0,1]【解析】实数x 满足1+1x >0且1-x2≥0.不等式1+1x >0,即x +1x >0,解得x>0或x<-1;不等式1-x2≥0的解为-1≤x≤1.故所求函数的定义域是(0,1].7.(·福建卷)已知函数f(x)=⎩⎪⎨⎪⎧2x3,x<0,-tanx ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. 【答案】-2【解析】f π4=-tan π4=-1,f(-1)=-2. 8.(·江西卷)设函数f(x)=⎩⎨⎧1a x ,0≤x≤a ,11-a (1-x ),a<x≤1.a 为常数且a ∈(0,1).(1)当a =12时,求f ⎝⎛⎭⎫f ⎝⎛⎭⎫13; (2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC 的面积为S(a),求S(a)在区间⎣⎡⎦⎤13,12上的最大值和最小值. 【解析】(1)当a =12时,f ⎝⎛⎭⎫13=23,f ⎝⎛⎭⎫f ⎝⎛⎭⎫13=f ⎝⎛⎭⎫23=2⎝⎛⎭⎫1-23=23. (2)f(f(x))=⎩⎪⎨⎪⎧1a2x ,0≤x≤a2,1a (1-a )(a -x ),a2<x≤a ,1(1-a )2(x -a ),a<x<a2-a +1,1a (1-a )(1-x ),a2-a +1≤x≤1.当0≤x≤a2时,由1a2x =x 解得x =0,因为f(0)=0,故x =0不是f(x)的二阶周期点;当a2<x≤a 时,由1a (1-a )(a -x)=x 解得x =a-a2+a +1∈(a2,a),因f ⎝⎛⎭⎫a -a2+a +1=1a ·a -a2+a +1=1-a2+a +1≠a -a2+a +1,故x =a-a2+a +1为f(x)的二阶周期点;当a<x<a2-a +1时,由1(1-a )2(x -a)=x解得x =12-a ∈(a ,a2-a +1),因f ⎝⎛⎭⎫12-a =11-a ·⎝⎛⎭⎫1-12-a =12-a ,故x =12-a 不是f(x)的二阶周期点;当a2-a +1≤x≤1时, 由1a (1-a )(1-x)=x解得x =1-a2+a +1∈(a2-a +1,1),因f ⎝⎛⎭⎫1-a2+a +1=1(1-a )·⎝⎛⎭⎫1-1-a2+a +1 =a -a2+a +1≠1-a2+a +1.故x =1-a2+a +1为f(x)的二阶周期点.因此,函数f(x)有且仅有两个二阶周期点, x1=a -a2+a +1,x2=1-a2+a +1.故对于任意a ∈⎣⎡⎦⎤13,12,g(a)=a3-2a2-2a +2>0,S′(a)=12·a (a3-2a2-2a +2)(-a2+a +1)2>0)则S(a)在区间⎣⎡⎦⎤13,12上单调递增, 故S(a)在区间⎣⎡⎦⎤13,12上的最小值为S ⎝⎛⎭⎫13=133,最大值为S ⎝⎛⎭⎫12=120.9.(·辽宁卷)已知函数f(x)=x2-2(a +2)x +a2,g(x)=-x2+2(a -2)x -a2+8.设 H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p ,q}表示p ,q 中的较大值,min{p ,q}表示p ,q 中的较小值),记H1(x)的最小值为A ,H2(x)的最大值为B ,则A -B =( )A .a2-2a -16B .a2+2a -16C .-16D .16 【答案】C【解析】由题意知当f(x)=g(x)时,即x2-2(a +2)x +a2=-x2+2(a -2)x -a2+8,整理得x2-2ax +a2-4=0,所以x =a +2或x =a -2,H1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x2-2(a +2)x +a2(x≤a -2),-x2+2(a -2)x -a2+8,(a -2<x<a +2),x2-2(a +2)x +a2(x≥a +2),H2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x2+2(a -2)x -a2+8(x≤a -2)x2-2(a +2)x +a2,(a -2<x<a +2)-x2+2(a -2)x -a2+8(x≥a +2).由图形可知(图略),A =H1(x)min =-4a -4,B =H2(x)max =12-4a ,则A -B =-16,故选C. 10.(·辽宁卷)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg 2)+flg 12=( ) A .-1 B .0 C .1 D .2 【答案】D【解析】由已知条件可知,f(x)+f(-x)=ln(1+9x2-3x)+1+ln(1+9(-x )2+3x)+1=2,而lg 2+lg 12=lg 2-lg 2=0,故而f(lg 2)+f ⎝⎛⎭⎫lg 12=2.11.(·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130 t 该产品.以X(单位:t ,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图1-9(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.11.(·山东卷)函数f(x)=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1] 【答案】A【解析】要使函数有意义,须有⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解之得-3<x≤0.12.(·四川卷)已知圆C 的方程为x2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)设Q(m ,n)是线段MN 上的点,且2|OQ|2=1|OM|2+1|ON|2.请将n 表示为m 的函数. 【解析】(1)将y =kx 代入x2+(y -4)2=4,得 (1+k2)x2-8kx +12=0.(*)由Δ=(-8k)2-4(1+k2)×12>0,得k2>3. 所以,k 的取值范围是(-∞,-3)∪(3+∞).(2)因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x1,kx1),(x2,kx2),则|OM|2=(1+k2)x21,|ON|2=(1+k2)x22. 又|OQ|2=m2+n2=(1+k2)m2, 由2|OQ|2=1|OM|2+1|ON|2,得2(1+k2)m2=1(1+k2)x21+1(1+k2)x22,即2m2=1x21+1x22=(x1+x2)2-2x1x2x21x22. 由(*)式可知,x1+x2=8k 1+k2,x1x2=121+k2,所以m2=365k2-3. 因为点Q 在直线y =kx 上,所以k =n m ,代入m2=365k2-3中并化简,得5n2-3m2=36.由m2=365k2-3及k2>3,可知0<m2<3,即m ∈(-3,0)∪(0,3).根据题意,点Q 在圆C 内,则n>0, 所以n =36+3m25=15m2+1805. 于是,n 与m 的函数关系为n =15m2+1805(m ∈(-3,0)∪(0,3)). 13.(·浙江卷)已知函数f(x)= x -1.若f(a)=3,则实数a = ________. 【答案】10【解析】f(a)=a -1=3.则a -1=9,a =10.14.(·重庆卷)函数y =1log2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 【答案】C【解析】由题可知⎩⎪⎨⎪⎧x -2>0,x -2≠1,所以x >2且x≠3,故选C.【高考押题】1.下列函数中,与函数y =13x定义域相同的函数为( ).A .y =1sin x B .y =ln x x C .y =xexD .y =sin xx解析 函数y =13x的定义域为{x|x≠0,x ∈R}与函数y =sin xx 的定义域相同,故选D. 答案 D2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x2+1,值域为{1,3}的同族函数有( ).A .1个B .2个C .3个D .4个解析 由x2+1=1,得x =0.由x2+1=3,得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个. 答案 C3.若函数y =f(x)的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数y =f(x)的图象可能是( ).解析 根据函数的定义,观察得出选项B. 答案 B4.已知函数f(x)=⎩⎪⎨⎪⎧|lg x|,0<x≤10,-12x +6,x>10.若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( ). A .(1,10) B .(5,6) C .(10,12)D .(20,24)解析 a ,b ,c 互不相等,不妨设a<b<c ,∵f(a)=f(b)=f(c),由图可知0<a<1,1<b<10,10<c<12. ∵f(a)=f(b), ∴|lg a|=|lg b|,∴lg a =-lg b ,即lg a =lg 1b ⇒a =1b , ∴ab =1,10<abc =c<12.故应选C.答案 C5.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b≤1,b ,a -b >1.设函数f(x)=(x2-2)⊗(x -x2),x ∈R.若函数y =f(x)-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-∞,-2]∪⎝⎛⎭⎫-1,32B .(-∞,-2]∪⎝⎛⎭⎫-1,-34C.⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞D.⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞答案 B6.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数的图象为( )解析 注意本题中选择项的横坐标为小王从出发到返回原地所用的时间,纵坐标是经过的路程,故选D. 答案 D7.已知函数f(x),g(x)分别由下表给出,x 1 2 3 f(x)131x 1 2 3 g(x)321则f[g(1)]的值为________,满足f[g(x)]>g[f(x)]的x 的值是________.解析 ∵g(1)=3,∴f[g(1)]=f(3)=1,由表格可以发现g(2)=2,f(2)=3,∴f(g(2))=3,g(f(2))=1. 答案 1 28.已知函数f(x)=⎩⎪⎨⎪⎧x2+1,x≥0,1,x<0,则满足不等式f(1-x2)>f(2x)的x 的取值范围是________.解析 由题意有⎩⎪⎨⎪⎧ 1-x2>0,2x<0或⎩⎪⎨⎪⎧1-x2>2x ,2x≥0解得-1<x<0或0≤x<2-1,∴所求x 的取值范围为(-1,2-1).答案 (-1,2-1)9.已知函数f(x)的图象如图所示,则函数g(x)=2log的定义域是______.解析 要使函数有意义,须f(x)>0,由f(x)的图象可知, 当x ∈(2,8]时,f(x)>0. 答案 (2,8]10.设函数f(x)=⎩⎪⎨⎪⎧1,1≤x≤2,x -1,2<x≤3,g(x)=f(x)-ax ,x ∈[1,3],其中a ∈R ,记函数g(x)的最大值与最小值的差为h(a). (1)求函数h(a)的解析式;(2)画出函数y =h(x)的图象并指出h(x)的最小值.解 (1)由题意知g(x)=⎩⎪⎨⎪⎧1-ax ,1≤x≤2,1-a x -1,2<x≤3,当a<0时,函数g(x)是[1,3]上的增函数,此时g(x)max =g(3)=2-3a ,g(x)min =g(1)=1-a ,所以h(a)=1-2a ;当a>1时,函数g(x)是[1,3]上的减函数,此时g(x)min =g(3)=2-3a ,g(x)max =g(1)=1-a ,所以h(a)=2a -1;当0≤a≤1时,若x ∈[1,2],则g(x)=1-ax ,有g(2)≤g(x)≤g(1);若x ∈(2,3],则g(x)=(1-a)x -1,有g(2)<g(x)≤g(3),因此g(x)min =g(2)=1-2a ,而g(3)-g(1)=(2-3a)-(1-a)=1-2a ,故当0≤a≤12时,g(x)max =g(3)=2-3a ,有h(a)=1-a ; 当12<a≤1时,g(x)max =g(1)=1-a ,有h(a)=a.综上所述,h(a)=⎩⎪⎨⎪⎧1-2a ,a<0,1-a ,0≤a≤12,a ,12<a≤1,2a -1,a>1.(2)画出y =h(x)的图象,如图所示,数形结合可得h(x)min =h ⎝⎛⎭⎫12=12.11.求下列函数的定义域: (1)f(x)=lg 4-xx -3;(2)y =25-x2-lg cos x ; (3)y =lg(x -1)+lg x +1x -1+19-x.解 (1)⎩⎪⎨⎪⎧4-x >0x -3≠0,⇒x <4且x≠3,故该函数的定义域为(-∞,3)∪(3,4).(2)⎩⎪⎨⎪⎧25-x2≥0,cos x >0,即⎩⎪⎨⎪⎧-5≤x≤5,2kπ-π2<x <2kπ+π2,k ∈Z ,故所求定义域为⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5.(3)⎩⎪⎨⎪⎧x -1>0,x +1x -1>0,9-x >0,即⎩⎪⎨⎪⎧x >1,x >1,x <9或x <-1,解得1<x <9. 故该函数的定义域为(1,9).12. 设x≥0时,f(x)=2;x <0时,f(x)=1,又规定:g(x)=()()3f x 1f x 22---(x >0),试写出y=g(x)的解析式,并画出其图象.其图象如图所示.13.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1. (1)求f(x)的解析式;(2)在区间[-1,1]上,函数y =f(x)的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围. 解 (1)由f(0)=1,可设f(x)=ax2+bx +1(a≠0),故f(x +1)-f(x)=a(x +1)2+b(x +1)+1-(ax2+bx +1)=2ax +a +b ,由题意,得⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,故f(x)=x2-x +1.(2)由题意,得x2-x +1>2x +m ,即x2-3x +1>m ,对x ∈[-1,1]恒成立.令g(x)=x2-3x +1,则问题可转化为g(x)min>m ,又因为g(x)在[-1,1]上递减,所以g(x)min =g(1)=-1,故m<-1.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟试卷(2018.11.18)

高考数学模拟试卷(2018.11.18)

高职高考数学模拟试卷选择题1. 设集合M={ x |X 2>16},N={ x |log 3x >1},则M ∩N=( ).A. {x |x >3}B. {x |x >4}C. {x |x <−4}D. {x |x >4或x <4}2.下列函数既是奇函数又是增函数的是()A.y =x −1B. y =x 3C. y =log 2xD.y=2x3.直线(√3−√2)x+y=3和x+(√2−√3)y=2的位置关系是( )A.相交不垂直B. 垂直C. 平行D.重合4.等差数列{a n }中, a 1+a 4+a 7=39, a 3+a 6+a 9=27,则数列{a n }的前9项和S n =( )A.66B. 99C. 144D.2975.若抛物线y 2=2px(p>0)过点M(4, 4), 则点M 到准线的距离d=( ).A.5B. 4C. 3D.26.设全集U={ x |4≤X ≤10,X ≥∈N },A={4,6,8,10},则C U A=( ).A.{5}B.{5, 7}C. {5, 7, 9}D.{7, 9}7. “a>0且b>0”是“ab>0”的( )条件。

A. 充分不必要B.充分且必要C.必要不充分D. 以上答案都不对8.如果f(X)=a x 2+bx+c(a ≠0)是偶函数, 那么g(X)=a x 3+b x 2−cx 是( ).A.偶函数B.奇函数C.非奇非偶函数D. 既是奇函数又是偶函数9.设函数f(X)= log a x(a>0且a ≠1),f(4)=2,则f(8)=( ).A.2B.3C.3D.1310.sin 800-√3cos 800−2 sin 200的值为( )。

A.0B.1C.−sin200D.4sin20011.等比数列的前4项和是203, 公比q=−13,则a 1=( ).A.-9B.3C.9D.1312.已知(23) y =(32) x 2+1,则y 的最大值是( )。

高考数学模拟复习试卷试题模拟卷18212

高考数学模拟复习试卷试题模拟卷18212

高考模拟复习试卷试题模拟卷【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f(x)= 1-2x +1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎫1+1x + 1-x2的定义域为________.解析:(1)由题意可知⎩⎪⎨⎪⎧ 1-2x≥0x +3>0⇒⎩⎪⎨⎪⎧ 2x≤1x>-3⇒⎩⎪⎨⎪⎧x≤0,x>-3,∴定义域为(-3,0].(2)由⎩⎪⎨⎪⎧1+1x >0,1-x2≥0⇒⎩⎪⎨⎪⎧x<-1或x>0,-1≤x≤1⇒0<x≤1. ∴该函数的定义域为(0,1]. 答案:(1)A(2)(0,1] 【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f(x)的定义域,求f(g(x))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f(x)的定义域为[a ,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b 求出. 【举一反三】已知f(x)的定义域为⎣⎡⎦⎤-12,12,求函数y =f ⎝⎛⎭⎫x2-x -12的定义域.题型二考查函数的解析式例2、(1)已知f(1-cos x)=sin2x ,求f(x)的解析式;(2)已知f(x)是二次函数且f(0)=2,f(x +1)-f(x)=x -1,求f(x)的解析式;(3)已知f(x)+2f ⎝⎛⎭⎫1x =x(x≠0),求f(x)的解析式. 解析 (1)f(1-cos x)=sin2x =1-cos2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f(t)=1-(1-t)2=2t -t2,t ∈[0,2], 即f(x)=2x -x2,x ∈[0,2].(2)设f(x)=ax2+bx +c(a≠0),由f(0)=2,得c =2, f(x +1)-f(x)=a(x +1)2+b(x +1)-ax2-bx =x -1, 即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32.∴f(x)=12x2-32x +2.(3)∵f(x)+2f ⎝⎛⎭⎫1x =x ,∴f ⎝⎛⎭⎫1x +2f(x)=1x .解方程组⎩⎨⎧f x +2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f x =1x,得f(x)=23x -x3(x≠0). 【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.(4)解方程组法:已知关于f(x)与f ⎝⎛⎭⎫1x 或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f(x).【举一反三】已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为( ) A .f(x)=x2-12x +18B .f(x)=13x2-4x +6 C .f(x)=6x +9D .f(x)=2x +3解析:由f(x)+2f(3-x)=x2可得f(3-x)+2f(x)=(3-x)2,由以上两式解得f(x)=13x2-4x +6. 答案:B题型三考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f(x),y =g(x),定义函数h(x)=⎩⎪⎨⎪⎧f x ,f x ≤g x ,g x ,f x >g x .对于函数y =h(x),下列结论正确的个数是( )①h(4)=10;②函数h(x)的图象关于直线x=6对称;③函数h(x)的值域为[0,13 ];④函数h(x)的递增区间为(0,5).A.1 B.2C.3 D.4答案C【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求的变量值或自变量的取值范围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值范围.【举一反三】已知f(x)=⎩⎪⎨⎪⎧2x ,x>0,f x +1,x≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43等于________.解析:f ⎝⎛⎭⎫43=2×43=83,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43, f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=83+43=4. 答案:4 【高考风向标】1.【高考湖北,文6】函数256()4||lg 3x x f x x x -+--的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]-【答案】C.【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解之得22,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C.3.【高考重庆,文3】函数22(x)log (x 2x 3)f 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞【答案】D【解析】由0)1)(3(0322>-+⇒>-+x x x x 解得3-<x 或1>x ,故选D.3.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时 【答案】C【解析】由题意,2219248bk be e +⎧=⎪⎨=⎪⎩得1119212bk e e⎧=⎪⎨=⎪⎩,于是当x =33时,y =e33k +b =(e11k)3·eb =31()2×192=24(小时)1.(·安徽卷)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x≤1,sin πx ,1<x≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______.【答案】516 【解析】由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516.2.(·北京卷)下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x3 C .y =ln x D .y =|x|【答案】B 【解析】由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D.3.(·江西卷)将连续正整数1,2,…,n(n ∈N*)从小到大排列构成一个数123…n ,F(n)为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S ={n|h(n)=1,n≤100,n ∈N*},求当n ∈S 时p(n)的最大值.【解析】(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=11192.(2)F(n)=⎩⎪⎨⎪⎧n ,1≤n≤9,2n -9,10≤n≤99,3n -108,100≤n≤999,4n -1107,1000≤n≤.(3)当n =b(1≤b≤9,b ∈N*),g(n)=0;当n =10k +b(1≤k≤9,0≤b≤9,k ∈N*,b ∈N)时,g(n)=k ; 当n =100时,g(n)=11,即g(n)=⎩⎪⎨⎪⎧0,1≤n≤9,k ,n =10k +b ,11,n =100.1≤k≤9,0≤b≤9,k ∈N*,b ∈N , 同理有f(n)=⎩⎪⎨⎪⎧0,1≤n≤8,k ,n =10k +b -1,1≤k≤8,0≤b≤9,k ∈N*,b ∈N ,n -80,89≤n≤98,20,n =99,100.由h(n)=f(n)-g(n)=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p(9)=0.当n =90时,p(90)=g (90)F (90)=9171=119.当n =10k +9(1≤k≤8,k ∈N*)时,p(n)=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k 单调递增,故当n =10k +9(1≤k≤8,k ∈N*)时,p(n)的最大值为p(89)=8169.又8169<119,所以当n ∈S 时,p(n)的最大值为119. 4.(·山东卷)函数f(x)=1log2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞) 【答案】C【解析】若函数f(x)有意义,则log2x -1>0,∴log2x >1,∴x >2.5.(·安徽卷)定义在R 上的函数f(x)满足f(x +1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.【答案】-x (x +1)2【解析】当-1≤x≤0时,0≤x +1≤1,由f(x +1)=2f(x)可得f(x)=12f(x +1)=-12x(x +1). 6.(·安徽卷)函数y =ln1+1x +1-x2的定义域为________. 【答案】(0,1]【解析】实数x 满足1+1x >0且1-x2≥0.不等式1+1x >0,即x +1x >0,解得x>0或x<-1;不等式1-x2≥0的解为-1≤x≤1.故所求函数的定义域是(0,1].7.(·福建卷)已知函数f(x)=⎩⎪⎨⎪⎧2x3,x<0,-tanx ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. 【答案】-2【解析】f π4=-tan π4=-1,f(-1)=-2. 8.(·江西卷)设函数f(x)=⎩⎨⎧1a x ,0≤x≤a ,11-a (1-x ),a<x≤1.a 为常数且a ∈(0,1).(1)当a =12时,求f ⎝⎛⎭⎫f ⎝⎛⎭⎫13; (2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC 的面积为S(a),求S(a)在区间⎣⎡⎦⎤13,12上的最大值和最小值. 【解析】(1)当a =12时,f ⎝⎛⎭⎫13=23,f ⎝⎛⎭⎫f ⎝⎛⎭⎫13=f ⎝⎛⎭⎫23=2⎝⎛⎭⎫1-23=23. (2)f(f(x))=⎩⎪⎨⎪⎧1a2x ,0≤x≤a2,1a (1-a )(a -x ),a2<x≤a ,1(1-a )2(x -a ),a<x<a2-a +1,1a (1-a )(1-x ),a2-a +1≤x≤1.当0≤x≤a2时,由1a2x =x 解得x =0,因为f(0)=0,故x =0不是f(x)的二阶周期点;当a2<x≤a 时,由1a (1-a )(a -x)=x 解得x =a-a2+a +1∈(a2,a),因f ⎝⎛⎭⎫a -a2+a +1=1a ·a -a2+a +1=1-a2+a +1≠a -a2+a +1,故x =a-a2+a +1为f(x)的二阶周期点;当a<x<a2-a +1时,由1(1-a )2(x -a)=x解得x =12-a ∈(a ,a2-a +1),因f ⎝⎛⎭⎫12-a =11-a ·⎝⎛⎭⎫1-12-a =12-a ,故x =12-a 不是f(x)的二阶周期点;当a2-a +1≤x≤1时, 由1a (1-a )(1-x)=x解得x =1-a2+a +1∈(a2-a +1,1),因f ⎝⎛⎭⎫1-a2+a +1=1(1-a )·⎝⎛⎭⎫1-1-a2+a +1 =a -a2+a +1≠1-a2+a +1.故x =1-a2+a +1为f(x)的二阶周期点.因此,函数f(x)有且仅有两个二阶周期点, x1=a -a2+a +1,x2=1-a2+a +1.故对于任意a ∈⎣⎡⎦⎤13,12,g(a)=a3-2a2-2a +2>0,S′(a)=12·a (a3-2a2-2a +2)(-a2+a +1)2>0)则S(a)在区间⎣⎡⎦⎤13,12上单调递增, 故S(a)在区间⎣⎡⎦⎤13,12上的最小值为S ⎝⎛⎭⎫13=133,最大值为S ⎝⎛⎭⎫12=120.9.(·辽宁卷)已知函数f(x)=x2-2(a +2)x +a2,g(x)=-x2+2(a -2)x -a2+8.设 H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p ,q}表示p ,q 中的较大值,min{p ,q}表示p ,q 中的较小值),记H1(x)的最小值为A ,H2(x)的最大值为B ,则A -B =( )A .a2-2a -16B .a2+2a -16C .-16D .16 【答案】C【解析】由题意知当f(x)=g(x)时,即x2-2(a +2)x +a2=-x2+2(a -2)x -a2+8,整理得x2-2ax +a2-4=0,所以x =a +2或x =a -2,H1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x2-2(a +2)x +a2(x≤a -2),-x2+2(a -2)x -a2+8,(a -2<x<a +2),x2-2(a +2)x +a2(x≥a +2),H2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x2+2(a -2)x -a2+8(x≤a -2)x2-2(a +2)x +a2,(a -2<x<a +2)-x2+2(a -2)x -a2+8(x≥a +2).由图形可知(图略),A =H1(x)min =-4a -4,B =H2(x)max =12-4a ,则A -B =-16,故选C. 10.(·辽宁卷)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg 2)+flg 12=( ) A .-1 B .0 C .1 D .2 【答案】D【解析】由已知条件可知,f(x)+f(-x)=ln(1+9x2-3x)+1+ln(1+9(-x )2+3x)+1=2,而lg 2+lg 12=lg 2-lg 2=0,故而f(lg 2)+f ⎝⎛⎭⎫lg 12=2.11.(·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130 t 该产品.以X(单位:t ,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图1-9(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.11.(·山东卷)函数f(x)=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1] 【答案】A【解析】要使函数有意义,须有⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解之得-3<x≤0.12.(·四川卷)已知圆C 的方程为x2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)设Q(m ,n)是线段MN 上的点,且2|OQ|2=1|OM|2+1|ON|2.请将n 表示为m 的函数. 【解析】(1)将y =kx 代入x2+(y -4)2=4,得 (1+k2)x2-8kx +12=0.(*)由Δ=(-8k)2-4(1+k2)×12>0,得k2>3. 所以,k 的取值范围是(-∞,-3)∪(3+∞).(2)因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x1,kx1),(x2,kx2),则|OM|2=(1+k2)x21,|ON|2=(1+k2)x22. 又|OQ|2=m2+n2=(1+k2)m2, 由2|OQ|2=1|OM|2+1|ON|2,得2(1+k2)m2=1(1+k2)x21+1(1+k2)x22,即2m2=1x21+1x22=(x1+x2)2-2x1x2x21x22. 由(*)式可知,x1+x2=8k 1+k2,x1x2=121+k2,所以m2=365k2-3. 因为点Q 在直线y =kx 上,所以k =n m ,代入m2=365k2-3中并化简,得5n2-3m2=36.由m2=365k2-3及k2>3,可知0<m2<3,即m ∈(-3,0)∪(0,3).根据题意,点Q 在圆C 内,则n>0, 所以n =36+3m25=15m2+1805. 于是,n 与m 的函数关系为n =15m2+1805(m ∈(-3,0)∪(0,3)). 13.(·浙江卷)已知函数f(x)= x -1.若f(a)=3,则实数a = ________. 【答案】10【解析】f(a)=a -1=3.则a -1=9,a =10.14.(·重庆卷)函数y =1log2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 【答案】C【解析】由题可知⎩⎪⎨⎪⎧x -2>0,x -2≠1,所以x >2且x≠3,故选C.【高考押题】1.下列函数中,与函数y =13x定义域相同的函数为( ).A .y =1sin x B .y =ln x x C .y =xexD .y =sin xx解析 函数y =13x的定义域为{x|x≠0,x ∈R}与函数y =sin xx 的定义域相同,故选D. 答案 D2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x2+1,值域为{1,3}的同族函数有( ).A .1个B .2个C .3个D .4个解析 由x2+1=1,得x =0.由x2+1=3,得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个. 答案 C3.若函数y =f(x)的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数y =f(x)的图象可能是( ).解析 根据函数的定义,观察得出选项B. 答案 B4.已知函数f(x)=⎩⎪⎨⎪⎧|lg x|,0<x≤10,-12x +6,x>10.若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( ). A .(1,10) B .(5,6) C .(10,12)D .(20,24)解析 a ,b ,c 互不相等,不妨设a<b<c ,∵f(a)=f(b)=f(c),由图可知0<a<1,1<b<10,10<c<12. ∵f(a)=f(b), ∴|lg a|=|lg b|,∴lg a =-lg b ,即lg a =lg 1b ⇒a =1b , ∴ab =1,10<abc =c<12.故应选C.答案 C5.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b≤1,b ,a -b >1.设函数f(x)=(x2-2)⊗(x -x2),x ∈R.若函数y =f(x)-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-∞,-2]∪⎝⎛⎭⎫-1,32B .(-∞,-2]∪⎝⎛⎭⎫-1,-34C.⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞D.⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞答案 B6.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数的图象为( )解析 注意本题中选择项的横坐标为小王从出发到返回原地所用的时间,纵坐标是经过的路程,故选D. 答案 D7.已知函数f(x),g(x)分别由下表给出,x 1 2 3 f(x)131x 1 2 3 g(x)321则f[g(1)]的值为________,满足f[g(x)]>g[f(x)]的x 的值是________.解析 ∵g(1)=3,∴f[g(1)]=f(3)=1,由表格可以发现g(2)=2,f(2)=3,∴f(g(2))=3,g(f(2))=1. 答案 1 28.已知函数f(x)=⎩⎪⎨⎪⎧x2+1,x≥0,1,x<0,则满足不等式f(1-x2)>f(2x)的x 的取值范围是________.解析 由题意有⎩⎪⎨⎪⎧ 1-x2>0,2x<0或⎩⎪⎨⎪⎧1-x2>2x ,2x≥0解得-1<x<0或0≤x<2-1,∴所求x 的取值范围为(-1,2-1).答案 (-1,2-1)9.已知函数f(x)的图象如图所示,则函数g(x)=2log的定义域是______.解析 要使函数有意义,须f(x)>0,由f(x)的图象可知, 当x ∈(2,8]时,f(x)>0. 答案 (2,8]10.设函数f(x)=⎩⎪⎨⎪⎧1,1≤x≤2,x -1,2<x≤3,g(x)=f(x)-ax ,x ∈[1,3],其中a ∈R ,记函数g(x)的最大值与最小值的差为h(a). (1)求函数h(a)的解析式;(2)画出函数y =h(x)的图象并指出h(x)的最小值.解 (1)由题意知g(x)=⎩⎪⎨⎪⎧1-ax ,1≤x≤2,1-a x -1,2<x≤3,当a<0时,函数g(x)是[1,3]上的增函数,此时g(x)max =g(3)=2-3a ,g(x)min =g(1)=1-a ,所以h(a)=1-2a ;当a>1时,函数g(x)是[1,3]上的减函数,此时g(x)min =g(3)=2-3a ,g(x)max =g(1)=1-a ,所以h(a)=2a -1;当0≤a≤1时,若x ∈[1,2],则g(x)=1-ax ,有g(2)≤g(x)≤g(1);若x ∈(2,3],则g(x)=(1-a)x -1,有g(2)<g(x)≤g(3),因此g(x)min =g(2)=1-2a ,而g(3)-g(1)=(2-3a)-(1-a)=1-2a ,故当0≤a≤12时,g(x)max =g(3)=2-3a ,有h(a)=1-a ; 当12<a≤1时,g(x)max =g(1)=1-a ,有h(a)=a.综上所述,h(a)=⎩⎪⎨⎪⎧1-2a ,a<0,1-a ,0≤a≤12,a ,12<a≤1,2a -1,a>1.(2)画出y =h(x)的图象,如图所示,数形结合可得h(x)min =h ⎝⎛⎭⎫12=12.11.求下列函数的定义域: (1)f(x)=lg 4-xx -3;(2)y =25-x2-lg cos x ; (3)y =lg(x -1)+lg x +1x -1+19-x.解 (1)⎩⎪⎨⎪⎧4-x >0x -3≠0,⇒x <4且x≠3,故该函数的定义域为(-∞,3)∪(3,4).(2)⎩⎪⎨⎪⎧25-x2≥0,cos x >0,即⎩⎪⎨⎪⎧-5≤x≤5,2kπ-π2<x <2kπ+π2,k ∈Z ,故所求定义域为⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5.(3)⎩⎪⎨⎪⎧x -1>0,x +1x -1>0,9-x >0,即⎩⎪⎨⎪⎧x >1,x >1,x <9或x <-1,解得1<x <9. 故该函数的定义域为(1,9).12. 设x≥0时,f(x)=2;x <0时,f(x)=1,又规定:g(x)=()()3f x 1f x 22---(x >0),试写出y=g(x)的解析式,并画出其图象.其图象如图所示.13.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1. (1)求f(x)的解析式;(2)在区间[-1,1]上,函数y =f(x)的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围. 解 (1)由f(0)=1,可设f(x)=ax2+bx +1(a≠0),故f(x +1)-f(x)=a(x +1)2+b(x +1)+1-(ax2+bx +1)=2ax +a +b ,由题意,得⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,故f(x)=x2-x +1.(2)由题意,得x2-x +1>2x +m ,即x2-3x +1>m ,对x ∈[-1,1]恒成立.令g(x)=x2-3x +1,则问题可转化为g(x)min>m ,又因为g(x)在[-1,1]上递减,所以g(x)min =g(1)=-1,故m<-1.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷 【高频考点解读】 1.了解逻辑联结词“或”、“且”、“非”的含义. 2.理解全称量词与存在量词的意义. 3.能正确地对含有一个量词的命题进行否定. 【热点题型】 题型一 含有逻辑联结词的命题的真假判断 例1、(1)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为() A.(p)∨(q)B.p∨(q) C.(p)∧(q) D.p∨q

(2)如果命题“非p或非q”是假命题,给出下列四个结论: ①命题“p且q”是真命题; ②命题“p且q”是假命题; ③命题“p或q”是真命题; ④命题“p或q”是假命题. 其中正确的结论是() A.①③ B.②④C.②③ D.①④ 【提分秘籍】 (1)“p∨q”、“p∧q”、“p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:①明确其构成形式;②判断其中命题p、q的真假;③确定“p∨q”、“p∧q”、“p”形式命题的真假. (2)p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p则是“与p的真假相反”. 【举一反三】

已知命题p:∃x0∈R,使sin x0=52;命题q:∀x∈R,都有x2+x+1>0.给出下列结论: ①命题“p∧q”是真命题;②命题“p∨q”是真命题;③命题“p∨q”是假命题;④命题“p∧q”是假命题.其中正确的是( ) A.②③B.②④ C.③④ D.①②③ 题型二全称命题、特称命题的真假判断 例2 下列命题中,真命题是() A.∃m0∈R,使函数f(x)=x2+m0x(x∈R)是偶函数 B.∃m0∈R,使函数f(x)=x2+m0x(x∈R)是奇函数 C.∀m∈R,函数f(x)=x2+mx(x∈R)都是偶函数 D.∀m∈R,函数f(x)=x2+mx(x∈R)都是奇函数 【提分秘籍】 (1)①要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素x,证明p(x)成立.②要判断一个全称命题是假命题,只要能举出集合M中的一个特殊值x=x0,使p(x0)不成立即可. (2)要判断一个特称命题是真命题,只要在限定的集合M中,找到一个x=x0,使p(x0)成立即可,否则这一特称命题就是假命题. 【举一反三】 下列命题中是假命题的是( )

A.∀x∈0,π2,x>sin x B.∃x0∈R,sin x0+cos x0=2 C.∀x∈R,3x>0 D.∃x0∈R,lg x0=0 题型三含有一个量词的命题否定 例3、命题“对任意x∈R,都有x2≥0”的否定为( ) A.对任意x∈R,都有x2<0 B.不存在x∈R,使得x2<0 C.存在x0∈R,使得x20≥0 D.存在x0∈R,使得x20<0 【提分秘籍】 全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可. 【举一反三】 设x∈Z,集合A是奇数集,集合B是偶数集,若命题p:∀x∈A,2x∈B,则() A.p:∀x∈A,2x∉B B.p:∀x∉A,2x∉B C.綈p:∃x∉A,2x∈B D.綈p:∃x∈A,2x∉B 【高考风向标】

1.【高考山东,文5】设mR,命题“若0m,则方程20xxm有实根”的逆否命题是( ) (A)若方程20xxm有实根,则0m (B) 若方程20xxm有实根,则0m (C) 若方程20xxm没有实根,则0m (D) 若方程20xxm没有实根,则0m 2.【高考湖北,文3】命题“0(0,)x,00ln1xx”的否定是( ) A.0(0,)x,00ln1xx B.0(0,)x,00ln1xx C.(0,)x,ln1xx D.(0,)x,ln1xx

1.(·安徽卷) 命题“∀x∈R,|x|+x2≥0”的否定是( ) A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0 C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0 2.(·福建卷) 命题“∀x∈[0,+∞),x3+x≥0”的否定是( ) A.∀x∈(-∞,0),x3+x<0 B.∀x∈(-∞,0),x3+x≥0 C.∃x0∈[0,+∞),x30+x0<0 D.∃x0∈[0,+∞),x30+x0≥0 3.(·湖北卷) 命题“∀x∈R,x2≠x”的否定是( ) A.∀x∈/R,x2≠x B.∀x∈R,x2=x C.∃x0∈/R,x20≠x0 D.∃x0∈R,x20=x0 4.(·湖南卷) 设命题p:∀x∈R,x2+1>0,则綈p为( ) A.∃x0∈R,x20+1>0 B.∃x0∈R,x20+1≤0 C.∃x0∈R,x20+1<0 D.∀x∈R,x2+1≤0 5.(·天津卷) 已知命题p:∀x>0,总有(x+1)ex>1,则綈p为( ) A.∃x0≤0,使得(x0+1)ex0≤1 B. ∃x0>0,使得(x0+1)ex0≤1 C. ∀x>0,总有(x+1)ex≤1 D. ∀x≤0,总有(x+1)ex≤1 6.(·新课标全国卷Ⅰ] 已知命题p:x∈,2x<3x;命题q:x∈,x3=1-x2,则下列命题中为真命题的是( ) A.p∧q B.p∧q C.p∧q D.p∧q

7.(·重庆卷) 命题“对任意x∈R,都有x2≥0”的否定为( ) A.存在x0∈R,使得x20<0 B.对任意x∈R,都有x2<0 C.存在x0∈R,使得x20≥0 D.不存在x∈R,使得x2<0 【高考押题】 1.设命题p:函数y=sin2x的最小正周期为π2;命题q:函数y=cosx的图象关于直线x=π2对称.则下列判断正确的是( ) A.p为真B.q为假

C.p∧q为假D.p∨q为真 2.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是( ) A.p∨qB.p∧q C.p∧qD.p∨q 3.下列命题中的假命题是( )

A.∃x∈R,sinx=52B.∃x∈R,log2x=1 C.∀x∈R,(12)x>0D.∀x∈R,x2≥0 4.已知命题p:所有指数函数都是单调函数,则綈p为( ) A.所有的指数函数都不是单调函数 B.所有的单调函数都不是指数函数 C.存在一个指数函数,它不是单调函数 D.存在一个单调函数,它不是指数函数 5.已知集合M={x|0A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 6.下列结论正确的个数是( ) ①已知复数z=i(1-i),z在复平面内对应的点位于第四象限; ②若x,y是实数,则“x2≠y2”的充要条件是“x≠y或x≠-y”; ③命题p:“∃x0∈R,x20-x0-1>0”的否定綈p:“∀x∈R,x2-x-1≤0”; A.3B.2C.1D.0 7.已知命题p:∃x∈R,x-2>lgx,命题q:∀x∈R,x2>0,则( ) A.p∨q是假命题B.p∧q是真命题 C.p∧(q)是真命题D.p∨(綈q)是假命题 8.下列结论正确的是( ) A.若p:∃x∈R,x2+x+1<0,则p:∀x∈R,x2+x+1<0 B.若p∨q为真命题,则p∧q也为真命题 C.“函数f(x)为奇函数”是“f(0)=0”的充分不必要条件 D.命题“若x2-3x+2=0,则x=1”的否命题为真命题 9.已知命题p:x2+2x-3>0;命题q:13-x>1,若“q且p”为真,则x的取值范围是____________________. 10.下列结论: ①若命题p:∃x∈R,tanx=1;命题q:∀x∈R,x2-x+1>0.则命题“p∧(q)”是假命题; ②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是ab=-3; ③命题“若x2-3x+2=0,则x=1”的逆否命题:“若x≠1,则x2-3x+2≠0”.其中正确结论的序号为________. 11.给定两个命题,命题p:对任意实数x都有ax2>-ax-1恒成立,命题q:关于x的方程x2-x+a=0有实数根.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是________.

12.已知c>0,且c≠1,设p:函数y=cx在R上单调递减;q:函数f(x)=x2-2cx+1在12,+∞上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围. 13.已知c>0,设命题p:函数y=cx为减函数.命题q:当x∈12,2时,函数f(x)=x+1x>1c恒成立.如果“p或q”为真命题,“p且q”为假命题,求c的取值范围. 高考模拟复习试卷试题模拟卷 【高频考点解读】 1.会用二次函数的图象理解、分析、研究二次函数的性质. 2.了解幂函数的概念. 3.结合幂函数y=x,y=x2,y=x3,y=x12,y=1x的图象,了解它们的变化情况. 【热点题型】 题型一二次函数的图象与性质 例1、(1)设函数f(x)=x2+x+a(a>0),已知f(m)<0,则() A.f(m+1)≥0B.f(m+1)≤0 C.f(m+1)>0 D.f(m+1)<0 (2)已知函数h(x)=4x2-kx-8在[5,20]上是单调函数,则k的取值范围是() A.(-∞,40] B.[160,+∞) C.(-∞,40]∪[160,+∞) D.∅

【提分秘籍】 二次函数的图象要结合开口方向、对称轴位置及与x、y轴交点等来研究,综合二次函数的特征解决问题. 【举一反三】 已知二次函数的图象如右图所示,那么此函数的解析式可能是()

相关文档
最新文档