东南大学信息学院 模电实验六
最新东南大学模电实验六 多级放大器的频率补偿和反馈

实验六多级放大器的频率补偿和反馈实验目的:1. 掌握多级放大器的设计,通过仿真了解集成运算放大器内部核心电路结构;2. 掌握多级放大器基本电参数的定义,掌握基本的仿真方法;3. 熟悉多级放大器频率补偿的基本方法;4. 掌握反馈对放大器的影响。
实验内容:1. 多级放大器的基本结构及直流工作点设计基本的多级放大器如图 1 所示,主要由偏置电路,输入差分放大器和输出级构成,是构成集成运算放大器核心电路的电路结构之一。
其中偏置电路由电阻R1 和三极管Q4 构成,差分放大器由三极管Q3、NPN 差分对管U2 以及PNP 差分对管U1 构成,输出级由三极管Q2 和PNP 差分对管U3 构成。
实验任务:图 1. 基本的多级放大器○1 若输入信号的直流电压为2V,通过仿真得到图1 中节点1,节点2 和节点3 的直流工作点电压;V1(V)V2(V)V3(V)14.42956 14.42958 8.38849○2 若输出级的NPN 管Q2 采两只管子并联,则放大器的输出直流电压为多少?结合仿真结果给出输出级直流工作点电流的设置方法。
V1(V)V2(V)V3(V)14.43772 14.43775 51.16179m解:将①和②对比可以发现,V3的数值产生明显的变化。
Q2之所以采用单只管子,是因为这样可以增大输出直流电压,使得工作点更稳定,提高直流工作点。
2. 多级放大器的基本电参数仿真实验任务:○1差模增益及放大器带宽将输入信号V2 和V3 的直流电压设置为2V,AC 输入幅度都设置为0.5V,相位相差180°,采用AC 分析得到电路的低频差模增益A v dI,并提交输出电压V(3)的幅频特性和相频特性仿真结果图;在幅频特性曲线中标注出电路的-3dB 带宽,即上限频率f H;在相频特性曲线中标注出0dB 处的相位。
解:低频差模增益AvdI=99.4077dB电压V(3)的幅频特性和相频特性仿真结果图:由仿真图:上限频率=40.7572Hz0dB处的相位=-173.4347○2共模增益将输入信号V2 和V3 的直流电压设置为2V,AC 输入幅度都设置为0.5V,相位相同,采用AC 分析得到电路的低频共模增益A v c,结合○1中的仿真结果得到电路的共模抑制比K CMR,并提交幅频特性仿真结果图。
东南大学电路实验实验报告

电路实验实验报告第二次实验实验名称:弱电实验院系:信息科学与工程学院专业:信息工程:学号:实验时间:年月日实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理一、仿真实验1.电容伏安特性实验电路:图1-1 电容伏安特性实验电路波形图:图1-2 电容电压电流波形图思考题:请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。
解:()()mV wt wt U C cos 164cos 164-=+=π,()mV wt wt U R sin 10002cos 1000=⎪⎭⎫ ⎝⎛-=π,us T 500=;()mA wt RU I I R R C sin 213.0===∴,ππ40002==T w ; 而()mA wt dtdu CCsin 206.0= dtdu CI CC ≈⇒且误差较小,即可验证电容的伏安特性表达式。
2.电感伏安特性实验电路:图1-3 电感伏安特性实验电路波形图:图1-4 电感电压电流波形图思考题:1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。
对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。
2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。
解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=⎪⎭⎫ ⎝⎛-=π,us T 500=; ()mA wt RU I I R R L sin 213.0===∴,ππ40002==T w ; 而()mV wt dtdi LLcos 7.2= dtdi LU LL ≈⇒且误差较小,即可验证电感的伏安特性表达式。
二、硬件实验1.恒压源特性验证表1-1 不同电阻负载时电压源输出电压2.电容的伏安特性测量图1-5 电容电压电流波形图3.电感的伏安特性测量图1-6 电感电压电流波形图4.基尔霍夫定律验证表1-2 基尔霍夫验证电路思考题:1.根据实验数据,选定节点,验证KCL 的正确性。
模电实验报告东南大学

模电实验报告东南大学
《模电实验报告:东南大学》
模拟电子技术是电子工程中的重要分支,它涉及到模拟信号的处理和传输,是电子工程师必须掌握的重要知识之一。
为了帮助学生更好地理解和掌握模拟电子技术,东南大学开设了模拟电子技术实验课程,通过实验操作来加深学生对模拟电子技术的理解。
在这篇报告中,我们将介绍东南大学模拟电子技术实验的内容和实验结果。
东南大学模拟电子技术实验课程包括基本电路实验、放大电路实验、滤波电路实验等内容。
在基本电路实验中,学生将学习和掌握基本的电子元件的使用方法,包括电阻、电容、电感等元件的特性和应用。
在放大电路实验中,学生将学习和掌握放大电路的设计和调试方法,了解放大电路的工作原理和特性。
在滤波电路实验中,学生将学习和掌握滤波电路的设计和调试方法,了解滤波电路的工作原理和特性。
在实验过程中,学生将亲自动手搭建电路,调试电路,观察电路的工作状态,并记录实验结果。
通过实验操作,学生将更加深入地理解模拟电子技术的理论知识,提高实际操作能力和问题解决能力。
通过模拟电子技术实验,学生将获得以下几方面的收获:一是对模拟电子技术的理论知识有了更深入的理解;二是提高了实际操作能力和问题解决能力;三是培养了团队合作意识和沟通能力。
这些收获将对学生未来的学习和工作产生积极的影响。
总之,东南大学模拟电子技术实验课程为学生提供了一个良好的学习平台,通过实验操作来加深学生对模拟电子技术的理解,提高实际操作能力和问题解决
能力。
相信通过这门课程的学习,学生将更加深入地理解和掌握模拟电子技术,为未来的学习和工作打下坚实的基础。
东南大学信息工程数字电路与系统第6次实验报告

数字规律电路试验第六次试验报告试验题目试验日期广告流水灯2023 年12 月19 日一、试验题目广告流水灯。
用时序器件、组合器件和门电路设计一个广告流水灯,该流水灯由8 个LED 组成,工作时始终为1 暗7 亮,且这一个暗灯循环右移。
1)写出设计过程,画出设计的规律电路图,按图搭接电路;2)验证明验电路的功能;3)将1 秒连续脉冲信号加到系统时钟端,观看并记录时钟脉冲CP、触发器的输出端Q2、Q1、Q0 的波形。
二、试验原理用时序规律电路产生模8 的计数,再用译码器输出凹凸电平,最终LED 灯与译码器的8 个输出引脚相连,实现流水灯。
三、设计过程给出74161 的状态转移真值表0 0 0 0 0 0 0 10 0 0 1 0 0 1 00 0 1 0 0 0 1 10 0 1 1 0 1 0 00 1 0 0 0 1 0 10 1 0 1 0 1 1 00 1 1 0 0 1 1 10 1 1 1 1 0 0 01 0 0 0 1 0 0 11 0 0 1 1 0 1 01 0 1 0 1 0 1 11 0 1 1 1 1 0 01 1 0 0 1 1 0 11 1 0 1 1 1 1 01 1 1 0 1 1 1 11 1 1 1 0 0 0 0观看状态转移真值表可知,的一个周期是的两个周期,也就是说在猎取模8 计数时,可以直接承受,故分别与73138 译码器的CBA 相连,Multisim 仿真如下面包板实现电路如下:左边为74161 芯片,右边为74138 芯片电路板接线如下:红线为高电平,黑线为低电平,绿线为时钟Pocketlab 接线如下四、测试方法及测试结果红线高电平接p1,绿线时钟接p0,黑线接地,翻开pocketlab 开关,设置p0 为时钟,p1 输出高电平,run.观看到流水灯现象。
再依据如下的接线方式,将Q2 Q1 Q0 分别接入p4 p5 p6,设置p4 p5 p6 为输入,观看规律的波形图。
东南大学信息学院-系统实验(通信组)-第一次实验

信源编译码实验抽样定理告诉我们:如果对某一带宽有限的模拟信号进行抽样,且抽样速率达到一定的数值时,那么根据这些抽样值就可以准确地还原信号。
也就是说传输模拟信号的采样值就可以实现模拟信号的准确传输。
电路图可以看出,抽样脉冲先对原始信号进行自然或者平顶抽样,将得到的抽样信号进行传输到接收端,接收端进行滤波即可恢复到原始波形,但是要注意,满足抽样脉冲的频率大于等于原始信号的两倍才可以准确恢复。
5.2自然抽样验证各参数的设置如下:信号类型频率幅度占空比原始信号2000Hz 20 /抽样信号8000Hz / 4/82K正弦波3K 2K 1.5倍抽样脉冲2K正弦波4K 2K 2倍抽样脉冲2K正弦波8K 2K 4倍抽样脉冲2K正弦波16K 2K 8倍抽样脉冲出,当抽样脉冲频率小于4k取样信号的频谱发生混叠,无法准确的恢复出原始信号,但是当频率大于4k时将不会发生混叠,随着频率增大,恢复的越来越好。
1K三角波16K 2K 复杂信号恢复1K三角波16K 6K 复杂信号恢复频率才可以较准确的恢复出原始信号,当然还会有混叠,所以无法真正的恢复出原始信号。
从中可以看出,虽然恢复出了原始信号,但是仍有一定的失真。
从频谱图也可以看出,出现一定的混叠。
5.3频谱混叠现象验证设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空比:4/8(50%);恢复滤波器截止频率:2K信号类型频率幅度占空比原始信号1000Hz 20 /抽样信号8000Hz / 4/8使用示波器观测原始信号3P2,恢复后信号6P4。
当3P2为6k时,记录恢复信号波形及频率;当3P2为7k时,记录恢复信号波形及频率;记录3P2为不同情况下,信号的波形,6k 2k原始信号恢复信号7k 2K2k低通滤波器之后,高频分量被去掉,所以基本恢复为2k正弦波。
但是通频带之内仍然有低频的杂波分量,所以信号的毛刺比较明显。
5.4抽样脉冲占空比恢复信号影响设置原始信号为:“正弦”,1000hz ,幅度为20;设置抽样脉冲:频率:8000hz ,占空比:4/8(50%);恢复滤波器截止频率:2K 信号类型 频率 幅度 占空比 原始信号 1000Hz 20 / 抽样信号 8000Hz / 4/8 维持原始信号不变,不断改变占空比记录波形如下:占空比 第一个零点1/864k2/832k4/816k从图中可以看出,第一个过零点的值为抽样频率乘以占空比的倒数,也就是说当占空比增大时,第一个过零点的值逐渐减小,另外占空比越大,恢复的信号幅度越大,这是因为占空比越大使得发送的信号功率越大。
模拟电子技术实验报告

一、实验目的1. 熟悉模拟电子技术实验的基本操作流程;2. 掌握模拟电子技术实验的基本测量方法;3. 理解模拟电子电路的基本原理,提高电路分析能力;4. 培养实验操作技能,提高动手实践能力。
二、实验内容1. 常用电子仪器的使用:示波器、万用表、信号发生器等;2. 晶体管共射极单管放大器实验;3. 射极跟随器实验;4. 差动放大器实验。
三、实验原理1. 常用电子仪器使用:示波器、万用表、信号发生器等是模拟电子技术实验中常用的测量工具,掌握这些仪器的使用方法对于进行实验至关重要。
2. 晶体管共射极单管放大器:晶体管共射极单管放大器是一种基本的模拟放大电路,其原理是利用晶体管的电流放大作用,将输入信号放大。
3. 射极跟随器:射极跟随器是一种具有高输入阻抗、低输出阻抗、电压放大倍数接近1的放大电路,常用于信号传输和阻抗匹配。
4. 差动放大器:差动放大器是一种能有效地抑制共模干扰的放大电路,广泛应用于测量、通信等领域。
四、实验步骤1. 常用电子仪器使用:熟悉示波器、万用表、信号发生器的操作方法,并进行基本测量。
2. 晶体管共射极单管放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
3. 射极跟随器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
4. 差动放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
五、实验数据及分析1. 常用电子仪器使用:根据实验要求,使用示波器、万用表、信号发生器等仪器进行测量,并记录数据。
2. 晶体管共射极单管放大器实验:(1)输入信号频率为1kHz,幅值为1V;(2)输出信号频率为1kHz,幅值为5V;(3)放大倍数为5。
东南大学模电实验报告-比较器

东南大学电工电子实验中心实验报告课程名称:模拟电路实验第 6 次实验实验名称:比较器电路院(系):专业:姓名:学号:实验室: 实验组别:同组人员:实验时间:评定成绩:审阅教师:实验六 比较器电路一、实验目的1、 熟悉常用的单门限比较器、迟滞比较器、窗口比较器的基本工作原理、电路特性和主要使用场合;2、 掌握利用运算放大器构成单门限比较器、迟滞比较器和窗口比较器电路各元件参数的计算方法,研究参考电压和正反馈对电压比较器的传输特性的影响;3、 了解集成电压比较器LM311的使用方法,及其与由运放构成的比较器的差别;4、 进一步熟悉传输特性曲线的测量方法和技巧。
二、实验原理 三、预习思考1、 用运算放大器LM741设计一个单门限比较器,将正弦波变换成方波,运放采用双电源供电,电源电压为±12V ,要求方波前后沿的上升、下降时间不大于半个周期的1/10,请根据LM741数据手册提供的参数,计算输入正弦波的最高频率可为多少。
答:查询LM74的数据手册,可得转换速率为0.5V/us,电源电压为10V ±左右,计算可得输出方波的最大上升时间为40us,根据设计要求, 方波前后沿的上升下降时间不大于半个周期的1/10,计算可得信号的最大周期为800us,即输入正弦波得到最高频率为1.25KHZ. 2、 画出迟滞比较器的输入输出波形示意图,并在图上解释怎样才能在示波器上正确读出上限阈值电平和下限阈值电平。
答:Ch1接输入信号,ch2接输出信号,两通道接地,分别调整将两个通道的零基准线,使其重合。
用示波器的游标功能,通道选择ch1,功能选择电压,测出交点位置处电压即对应上限和下限阈值。
参数 条件最小值典型值 最大值 输入失调电压(mv) 25,50A S T C R K ︒=≤2.0 7.5 输入失调电流(nA) 25A T C ︒= 6.0 50 输入偏置电流(nA) 25A T C ︒= 100 250 电压增益(V/mV) 25A T C ︒= 40 200 响应时间(ns)25A T C ︒=200饱和电压(V) 10,50IN OUT V mV I mA ≤-=0.75 1.5 选通开关电流(mA)25A T C ︒=1.53.0输出漏电流(nA)10,35,25,35IN OUT A STROBE GRND V mV V V T C I mA V V V︒-≥-=====-0.2 50输入电压范围(V) -14.513.8 -14.715.04、 完成必做实验和选做实验的电路设计和理论计算。
东南大学模拟电子电路实验报告——波形的产生、分解与合成

东南大学电工电子实验中心实验报告模拟电子电路第四次实验(系):一专 业:验室:电工电子中1心103实验组别:课程名称: 实验名称:波形的产生、分解与合成名:学 号:同组人员: 实验时间: 2019年5月15日评定成绩:审阅教师:根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,计算元件参数: 方波发生器实验目的波形的产生、分解与合成1. 掌握方波信号产生的基本原理和基本分析方法, 电路参数的计算方法,各参数对电路性能的影响;2. 掌握由运算放大器组成的RC 有源滤波器的工作原理,熟练掌握RC 有源滤波器的基本参数的测量方法和工程设计方法; 3. 掌握移相电路设计原理与方法4. 掌握比例加法合成器的基本类型、选型原则和设计方法。
5. 掌握多级电路的级联安装调试技巧;6.熟悉FilterPro 、MultiSim 软件高级分析功能的使用方法。
实验内容设计并安装一个电路使之能够产生方波, 并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。
(1) 设计一个方波发生器,要求其频率为 500Hz,幅度为5V;(2) 设计合适的滤波器,从方波中提取出基波和3次谐波;(3) 设计移相电路,使高次谐波与基波之间的初始相位差为零。
(4) 设计一个加法器电路, 将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。
三、 电路设计⑴ 理,I 分析工作原这里取 R= Rs=10k? , R=9k?, C 1=0.1 成,VCC=6V, VEE=-6V ,此时 f=500Hz仿真结果仿真分析由上图可以看出,输出波形为频率为 求。
II 滤波器设计思路我们知道,方波信号可以分解为:这里我们分别采用两个波和取 R=20k , R 1 = 10k 故A Uf1胃=3, 1 一… ………、,— ............... ..此时Q -------------- 可以尽量大,这样通带宽度越窄,选择性也尽量好3 A Uf2RC ln 2RC ln(12?)2RC ln(12劄500Hz,幅度为5V 的方波,符合实验设计要1) 500Hz 滤波器一提取基波 电路设计仿真结果由上图可以发现该滤波器提取的正弦波波形很清晰,频率符合要求O1 2 RC--------------------------- 531Hz2 * 3k * 0.1 F2)1500Hz 滤波器一提取三次谐波 电路设计1 12 RC 2 * 1.1k__* 0.1 F仿真结果1447 Hz仿真分析由上图发现,输出正弦波频率约为1500Hz,波形不如基波好看,出现部分失真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六多级放大器的频率补偿和反馈
实验目的:
1、掌握多级放大器的设计,通过仿真了解集成运算放大器内部核心电路结构;
2、掌握多级放大器基本电参数的定义,掌握基本的仿真方法;
3、熟悉多级放大器频率补偿的基本方法;
4、掌握反馈对放大器的影响。
实验内容:
1、多级放大器的基本结构及直流工作点设计
基本的多级放大器如图6-1所示,主要由偏置电路,输入差分放大器和输出级构成,是构成集成运算放大器核心电路的电路结构之一。
其中偏置电路由电阻R1和三极管Q4构成,差分放大器由三极管Q3、NPN差分对管U2以及PNP差分对管U1构成,输出级由三极管Q2和PNP差分对管U3构成。
图6-1. 基本的多级放大器
实验任务:
①若输入信号的直流电压为2V,通过仿真得到图6-1中节点1,节点2,和节点3的直流工
V1(V)V2(V)V3(V)
14.42956 14.42958 8.38849
②若输出级的PNP管只采用差分对管U3中的一只管子,则放大器的输出直流电压为多少?
结合仿真结果给出U3中采用两只管子的原因。
V1(V)V2(V)V3(V)
14.41222 14.42958 7.07073
原因:将①和②对比后可以发现,V3的数值产生明显的变化。
U3之所以采用两只管子,是因为这样可以增大输出电压,是工作点更稳定,提高直流工作点。
2、多级放大器的基本电参数仿真
实验任务:
①差模增益及放大器带宽
将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180。
,采用AC分析得到电路的低频差模增益A vdI,并提交输出电压V(3)的幅频特性和相频特性仿真结果图;在幅频特性曲线中标注出电路的-3dB带宽,即上限频率f H;在相频特性曲线中标注出0dB处的相位。
答:低频差模增益A vdI=99.4103dB;
电压V(3)的幅频特性和相频特性仿真结果图:
由仿真图:
上限频率f H=1.3248kHz;
0dB处的相位=159.0916。
②共模增益
将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相同,采用AC分析得到电路的低频共模增益A VC,结合①中的仿真结果得到电路的共模抑制比K CMR,并提交幅频特性仿真结果图。
答:低频共模增益A VC=-12.6382dB;共模抑制比K CMR=200.61648。
幅频特性仿真结果图:
③差模输入阻抗
将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180。
,进行AC分析,采用表达式R id=V(5)/I(V2)+V(6)/I(V3)得到差模输入阻抗R id,请提交R id随频率变化的曲线图,并在图上标记出100Hz处的阻抗值。
答:100Hz时的阻抗值=53.6175kΩ。
R id随频率变化的曲线图:
④输出阻抗
按照图6-2所示,在放大器输出端加隔直流电容C1和电压源V4,将V2和V3的直流电压设置为2V,AC幅度设置为0,将V4的AC幅度设置为1,进行AC分析,采用与输入阻抗类似的计算方法,得到电路的输出阻抗R0随频率的变化曲线,并标注出100Hz处的阻抗值。
图6-2. 多级放大器输出阻抗仿真电路
答:100Hz时的输出阻抗值=32.6843kΩ。
R0随频率的变化曲线:
思考:若放大器输出电压信号激励后级放大器,根据仿真得到的结果,后级放大器的输入阻抗至少为多少才能忽略负载的影响?若后级放大器输入阻抗较低,采取什么措施可以提高放大器的驱动能力?
答:后级放大器的输入阻抗至少为326.8kΩ时,才能忽略负载的影响。
在放大器输出端负载并联一个小电阻,以减小输出阻抗。
3、多级放大器的频率补偿
作为放大器使用时,图6-1所示电路一般都要外加负反馈。
若放大器内部能够实现全补偿,外部电路可以灵活的施加负反馈,避免振荡的反生,即要求放大器单位增益处的相位不低于-135。
为此,需要对电路进行频率补偿。
实验任务:
①简单电容补偿
按照图6-1所示电路,将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180。
,根据电路分析并结合AC仿真结果找出电路主极点位置,并采用简单电容补偿方法进行频率补偿,通过仿真得到最小补偿电容值,使得单位增益处相位不低于-135。
,提交补偿后V(3)的幅频特性曲线和相频特性曲线,并标注出上限频率f H和增益为0dB时的相位。
答:最小补偿电容C1=3.35uF。
补偿后V(3)的幅频特性曲线和相频特性曲线:
②密勒补偿
按照图6-3所示电路,对电路进行密勒补偿,其中Q1和Q5构成补偿支路的电压跟随器。
将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180。
,进行AC仿真分析,通过仿真得到最小补偿电容值,使得输出电压V(3)在单位增益处相位不
低于-135。
,提交补偿后V(3)的幅频特性曲线和相频特性曲线,并标注出上限频率f H和增益为0dB时的相位。
若输出电压为V(9),补偿后相位要求相同,通过AC仿真分析得到所需要的最小补偿电容。
图6-3. 多级放大器的密勒补偿
答:(1)输出电压为V(3):
最小补偿电容值C1=113pF。
补偿后V(3)的幅频特性曲线和相频特性曲线:
(2)输出电压为V(9):
最小补偿电容值C1=205pF。
补偿后V(9)的幅频特性曲线和相频特性曲线:
4、反馈放大器
图6-1所示多级放大器具有较高的增益,线性放大时输入动态范围很小。
实际使用中,必须施加负反馈才能作为线性放大器使用。
在图6-3的基础上,引入电压串联负反馈,同时改为正负电源供电,如图6-4所示(密勒补偿电容C1的值请采用实验任务3中得到的结果)。
图6-4. 电压串联负反馈放大器
实验任务:
①将输入信号V2的直流电压设置为0V,AC输入幅度都设置为1V,进行AC仿真分析,得到输出电压V(3)的幅频特性曲线和相频特性曲线,并在图中标注上限频率f H。
答:上限频率f H=2.1801MHz;
输出电压V(3)的幅频特性曲线和相频特性曲线:
②按照实验任务2中的分析方法,通过AC仿真得到电路的输出阻抗随频率的变化曲线,并标注100Hz处的值,并与没有施加负反馈的输出阻抗进行对照,结合理论分析解释阻抗的变化。
答:100Hz时的输出阻抗值为9.6012Ω;
输出阻抗随频率的变化曲线:
没有施加负反馈的输出阻抗值为:32.6843kΩ;
分析:负反馈会使放大器指标趋于理想化,对于电压串联负反馈,输出阻抗会减小。
③反馈电阻R2和R3的值分别改为10Ω和100Ω,R4的值改为10Ω/100Ω,重复①的仿真,得到V(3)的幅频特性曲线和相频特性曲线;同时按照图6-4中V2的设置条件进行瞬态仿真,得到输出电压V(3)的波形,观察波形是否失真,并给出合理的解释。
答:(1)V(3)的幅频特性曲线和相频特性曲线:
(2)输出电压V(3)的波形:
波形失真,可能是因为输入电压过大或放大倍数太大。
思考:若图6-4所示反馈放大器电路改为单个15V电源供电,会存在什么问题?如何修改才能正常工作?
答:可能会导致U2的基极和发射极间电压不够而使得U2不能工作于放大区。
解决办法:在R2之前串联一个大电阻。