光纤通信第2章_波分复用技术201203

光纤通信系统与应用(胡庆)复习总结

红色:重点、绿色:了解 第1章 1、光纤通信的基本概念:以光波为载频,用光纤作为传输介质的通信方式。光纤通信工作波长在于近红外区:0.85~2.00μm的波长区,对应频率: 167~375THz。 对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、 1.31μm 1.55μm及 1.625μm 2、光纤通信系统的基本组成:P5 图1-3 目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。该系统主要由光发送设备(光发射机)、光纤传输线路、光接收设备(光接收机)、光中继器以及各种耦合器件组成。 各部件功能: 电发射机:对来自信源的信号进行模/数转换和多路复用处理; 光发送设备:实现电/光转换; 光接收机:实现光/电转换; 光中继器:将经过光纤长距离衰减和畸变后的微弱光信号放大、整形、再生成具有一定强度的光信号,继续送向前方,以保证良好的通信质量。 3、光纤通信的特点:(可参照P1、2) 优点:(1),传输容量大。(2)传输损耗小,中继距离长。 (3)保密性能好:光波仅在光纤芯区传输,基本无泄露。 (4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。(5)体积小、重量轻。(6)原材料来源丰富、价格低廉。 缺点:1)弯曲半径不宜过小;2)不能远距离传输;3)传输过程易发生色散。 4、适用光纤:P11 G.652 和G.654:常规单模光纤,色散最小值在1310nm处,衰减最小值在1550nm 处。常见的结构有阶跃型和下凹型单模光纤。 G.653:色散位移光纤,色散最小值在1550nm处,衰减最小值在1550nm处。难 以克服FWM混频等非线性效应带来的影响。 G.655:非零色散光纤,色散在1310nm处较小,不为0;衰减最小值在1550nm 处。可以尽量克服FWM混频等非线性效应带来的影响。 补充:1、1966年7月,英籍华人(高锟)博士从理论上分析证明了用光纤作为传输介质以实现光通信的可能性。 2、数字光纤通信系统有准同步数字体系(PDH)和同步数字体系(SDH)两种传输体制。

光波分复用(WDM)技术复习过程

光波分复用(WDM)技术 一、波分复用技术的概念 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在 发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。 二、波分复用技术的优点 WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点: (1) 传输容量大,可节约宝贵的光纤资源。对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。 (2) 对各类业务信号“透明”,可以传输不同类型的信号,如数字信号、模拟信号等,并能对其进行合成和分解。 (3) 网络扩容时不需要敷设更多的光纤,也不需要使用高速的网络部件,只需要换端机和增加一个附加光波长就可以引入任意新业务或扩充容量,因此WDM技术是理想的扩容手段。 (4) 组建动态可重构的光网络,在网络节点使用光分插复用器(OADM)或者使用光交叉连接设备(OXC),可以组成具有高度灵活性、高可靠性、高生存性的全光网络。 三、波分复用技术目前存在的问题 以WDM技术为基础的具有分插复用功能和交叉连接功能的光传输网具有易于重构、良好的扩展性等巨大优势,已成为未来高速传输网的发展方向,但在真正实现之前,还必须解决下列问题。 1.网络管理 目前,WDM系统的网络管理,特别是具有复杂的上/下通路需求的WDM网络管理仍处于不成熟期。如果WDM系统不能进行有效的网络管理,将很难在网络

光波分复用系统的基本原理

光波分复用系统的基本原理 本文简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

波分复用技术(WDM)

波分复用技术(WDM)介绍 --------密集波分复用(DWDM)和稀疏波分复用(CWDM) 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 WDM本质上是光域上的频分复用FDM技术。每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为“白色光口”或“白光口”。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 1 DWDM技术简介 WDM和DWDM是在不同发展时期对WDM系统的称呼。在20世纪80年代初,人们想到并首先采用的是在光纤的两个低损耗窗口1310nm窗口和1550nm窗口各传送1路光波长信号,也就是1310nm、1550nm两波分的WDM系统。随着1550nm窗口EDFA的商用化,WDM系统的相邻波长间隔变得很窄(一般小于1.6nm),且工作在一个窗口内,共享EDFA光放大器。为了区别于传统的WDM系统,人们称这种波长间隔更紧密的WDM系统为密集波分复用系统。所谓密集,是指相邻波长间隔而言,过去WDM系统是几十纳米的波长间隔,现在的波长间隔只有0.4~2nm。密集波分复用技术其实是波分复用的一种具体表现形式。如果不特指1310nm、1550nm的两波分WDM系统外,人们谈论的WDM系统

光纤通信波分复用系统的研究与设计

武汉工程大学邮电与信息工程学院 毕业设计(论文) 光纤通信波分复用系统的研究与设计 Research And Design Of Optical Fiber Communication Wavelength Division Multiplexing System 学生姓名谭辉 学号1030210221 专业班级通信技术1002(光纤通信方向) 指导教师陈义华 2013年5月

作者声明 本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注的地方外,没有任何剽窃、抄袭、造假等违反学术道德、学术规范的行为,也没有侵犯任何其他人或组织的科研成果及专利。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。如本毕业设计(论文)引起的法律结果完全由本人承担。 毕业设计(论文)成果归武汉工程大学邮电与信息工程学院所有。 特此声明。 作者专业: 作者学号: 作者签名: ____年___月___日

摘要 20世纪90年代以来光纤通信得到了迅速的发展,光纤通信中的新技术也在不断涌现,其中波分复用技术就是光纤通信中重要的技术之一。波分复用(WDM)是在同一根光纤中同时传输两个或众多不同波长光信号的技术。 本文首先介绍了光纤通信的发展、特点、基本组成和波分复用技术(WDM)的基础知识、应用状况及目前存在的问题和发展状况,其中重点介绍了稀疏波分复用(CWDM)技术和密集波分复用(DWDM)技术的特点及其应用。其次深入分析了波分复用技术的基本原理与基本结构,同时深入分析了WDM系统的基本形式和主要特点及存在的问题,最后对现在的WDM的发展方向和前景做了进一步的探讨。 关键词:光纤通信;波分复用;技术研究

光纤通信系统第三版-沈建华-机械工业出版社

光纤通信系统第三版-沈建华-机械工业出版社

《光纤通信》作业(2016.1.30) 1.1 光纤通信有哪些特点? 1、光纤通信的优点: (1)传输容量大。(2)传输损耗小,中继距离长。(3)信号泄漏小,保密性好。(4)节省有色金属。(5)抗电磁干扰性能好。(6)重量轻,可挠性好,敷设方便。 2、光纤通信的缺点: (1)抗拉强度低。(2)连接困难。(3)怕水。 1.2 简述光纤通信系统的主要组成部分。 光纤通信系统的主要组成部分为:(1)光纤光缆、(2)光源(光发送机)、(3)光检测器(光接收机)、(4)无源器件、(5)光放大器(光中继器)。 1.4为什么使用石英光纤的光纤通信系统中,工作波长只能选择850nm、1310nm、1550nm三种? 由于目前使用的光纤均为石英光纤,而石英光纤的损耗——波长特性中有三个低损耗的波长区,即波长为850nm、1310nm、1550nm三个低损耗区。为此,光纤通信系统的工作

波长只能是选择在这三个波长窗口。 2.1 光纤传输信号产生能量衰减的原因是什么?光纤的损耗系数对通信有什么影响? 1、光纤产生能量衰减的原因包括:(1)吸收、(2)散射和(3)辐射。 2、光纤的损耗系数会导致信号功率损失,造成信号接收困难。 2.2 在一个光纤通信系统中,光源波长为1550nm,光波经过5km长的光纤线路传输后,其光功率下降了25%,则该光纤的损耗系数为多少?

2.3 光脉冲在光纤中传输时,为什么会产生瑞利散射?瑞利散射损耗的大小与什么有关? 瑞利散射是由于光纤内部的密度不远匀引起的,从而使折射率沿纵向产生不均匀,其不均匀点的尺寸比光波波长还要小。光在光纤中传输时,遇到这些比波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生了散射。 2、瑞利散射损耗的大小与成正比。 2.4 光纤中产生色散的原因是什么?色散对通信有什么影响? 1、光纤的色散是由于光纤中所传输的光信号不同的频率成分和不同模式成分的群速度不同而引起的传输信号畸变的一种物理现象。 2、色散会导致传输光脉冲的展宽,继而引起码间干扰,增加误码。对于高速率长距离光纤通信系统而言,色散是限制系统性能的主要因素之一。 2.5 光纤中色散有几种?单模传输光纤中主要是什么色散?多模传输光纤中主要存在什么色散?

波分复用/解复用 知多少

波分复用/解复用器 知多少? 随着数据业务的飞速发展,现代生活对传输网的带宽需求越来越高,而光纤资源已经固定且再次铺设费用昂贵,这就需要设备制造商提供有保障、低成本的解决方案。鉴于城域网具有一定的传输距离、较多的业务种类等许多不同于骨干网的特点,波分复用(WDM,Wavelength Division Multiplexing)技术就十分适用于光纤扩容。 什么是光波分复用技术? 在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复用指光频率的粗分,光信道相隔较远,甚至处于光纤不同窗口。 什么是波分复用/解复用器? 我们知道波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 波分复用/解复用器的工作原理是什么? 在FDM系统中,波分复用器用于发射端将多个波长的信号复合在一起并注入传输光纤中,而波分解复用器则用于在接收端将多路复用的光信号按波长分开分别送到不同的接收器上,波分复用/解复用器可以分成两大类,即有源(主动)和无源(被动)型,我们这里只介绍被动型的器件,它按照工作原理可以分成三类,最简单的一种波分复用器是基于角度散射元件,例如棱镜和衍射光栅,另外两种波分复用器为光滤波器和波分复用定向耦合器。从原理上讲,一个波分解复用器反射过来用即为波分复用器,但应该注意的是在FDM系统中对它们的要求不一样,波分解复用器严格要求波长的选择性,而复用器不一定要求波长选择性,因为它的作用只是将多路信号复合在一起。

光纤通信系统第三版~沈建华~机械工业出版社

《光纤通信》作业(2016.1.30) 1.1 光纤通信有哪些特点? 1、光纤通信的优点: (1)传输容量大。(2)传输损耗小,中继距离长。(3)信号泄漏小,性好。(4)节省有色金属。(5)抗电磁干扰性能好。(6)重量轻,可挠性好,敷设方便。 2、光纤通信的缺点: (1)抗拉强度低。(2)连接困难。(3)怕水。 1.2 简述光纤通信系统的主要组成部分。 光纤通信系统的主要组成部分为:(1)光纤光缆、(2)光源(光发送机)、(3)光检测器(光接收机)、(4)无源器件、(5)光放大器(光中继器)。 1.4为什么使用石英光纤的光纤通信系统中,工作波长只能选择850nm、1310nm、1550nm三种? 由于目前使用的光纤均为石英光纤,而石英光纤的损耗——波长特性中有三个低损耗的波长区,即波长为850nm、1310nm、1550nm三个低损耗区。为此,光纤通信系统的工作波长只能是选择在这三个波长窗口。

2.1 光纤传输信号产生能量衰减的原因是什么?光纤的损耗系数对通信有什么影响? 1、光纤产生能量衰减的原因包括:(1)吸收、(2)散射和(3)辐射。 2、光纤的损耗系数会导致信号功率损失,造成信号接收困难。 2.2 在一个光纤通信系统中,光源波长为1550nm,光波经过5km长的光纤线路传输后,其光功率下降了25%,则该光纤的损耗系数为多少? 2.3 光脉冲在光纤中传输时,为什么会产生瑞利散射?瑞利散射损耗的大小与什么有关? 瑞利散射是由于光纤部的密度不远匀引起的,从而使折射率沿纵向产生不均匀,其不均匀点的尺寸比光波波长还要小。光在光纤中传输时,遇到这些比波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生了散射。 2、瑞利散射损耗的大小与成正比。

WDM 技术和要求

第1章WDM概述 1.1 WDM技术的产生背景 1.1.1 光网络复用技术的发展 随着信息时代宽带高速业务的不断发展,不但要求光传输系统向更大容量、更长 距离发展,而且,要求其交互便捷。因此,在光传输系统中引入了复用技术。所 谓复用技术是指利用光纤宽频带、大容量的特点,用一根光纤或光缆同时传输多 路信号。在多路信号传输系统中,信号的复用方式对系统的性能和造价起着重要 作用。 光纤传输网的复用技术经历了空分复用(SDM)、时分复用(TDM)到波分复用 (WDM)三个阶段的发展。 SDM技术设计简单、实用,但必须按信号复用的路数配置所需要的光纤传输芯数, 投资效益较差;TDM技术的应用很广泛,缺点是线路利用率较低;WDM技术在 1根光纤上承载多个波长(信道),使之成为当前光纤通信网络扩容的主要手段。 光纤通信系统经历了几个发展阶段,从70年代末的PDH系统,90年代中期的 SDH系统(经历了准同步数字体系(PDH)、同步数字体系(SDH),和波分复用 (WDM)三个阶段),以及近来风起云涌的DWDM系统,乃至将来的智能光网 络技术,光纤通信系统自身正在快速地更新换代。 波分复用技术从光纤通信出现伊始就出现了,80年代末、90年代初,AT&T贝尔 实验室的厉鼎毅(T.Y.Lee)博士大力倡导波分复用(DWDM)技术,两波长WDM (1310/1550nm)系统80年代就在美国AT&T网中使用,速率为2×1.7Gb/s。 但是到90年代中期,WDM系统发展速度并不快. 从技术和经济的角度,DWDM技术是目前最经济可行的扩容技术手段。 WDM WDM又叫波分复用技术,是新一代的超高速的光缆技术,所谓波分复用技术, 就是在单一光纤内同步传输多个不同波长的光波,让数据传输速度和容量获得倍 增,它充分利用单模光纤的低损耗区的巨大带宽资源,采用合波器,在发送端将 不同规定波长的光载波进行合并,然后传入单模光纤。在接收部分将再由分波器 将不同波长的光载分开的复用方式,由于不同波长的载波是相互独立的,所以双

模拟光纤通信系统.pdf

第六章模拟光纤通信系统 (4学时) 一、教学目的及要求: 使学生熟悉模拟光纤通信系统的组成和结构特点,重点要求他们掌握模拟光纤通信的系统调制方式、模拟基带直接光强调制光纤传输系统和副载波复用光纤传输系统结构。 二、教学重点及难点: 本章重点:调制方式、模拟基带直接光强调制光纤传输系统、副载波复用光纤传输系统。 本章难点:调制方式 三、教学手段: 板书与多媒体课件演示相结合 四、教学方法: 课堂讲解、提问 五、作业: 课外作业: 6-1 6-2 6-4 6-5 六、参考资料: 《光纤通信》刘增基第六章。 《光纤通信》杨祥林第八章第九章 七、教学内容与教学设计:

【讲授新课】(96分钟) 第六章模拟光纤通信系统 6.1调制方式 6.1.1模拟基带直接光强调制 模拟基带直接光强调制(DIM)是用承载信息的模拟基带信号,直接对发射机光源(LED或LD)进行光强调制,使光源输出光功率随时间变化的波形和输入模拟基带信号的波形成比例。 6.1.2模拟间接光强调制 模拟间接光强调制方式是先用承载信息的模拟基带信号进行电的预调制,然后用这个预调制的电信号对光源进行光强调制(IM)。 预调制又有多种方式,主要有以下三种。 1. 频率调制(FM) 频率调制方式是先用承载信息的模拟基带信号对正弦载波进行调频,产生等幅的频率受调的正弦信号,其频率随输入的模拟基带信号的瞬时值而变化。然后用这个正弦调频信号对光源进行光强调制,形成FMIM光纤传输系统。 2. 脉冲频率调制(PFM) 脉冲频率调制方式是先用承载信息的模拟基带信号对脉冲载波进行调频,产生等幅、等宽的频率受调的脉冲信号,其脉冲频率随输入的模拟基带信号的瞬时值而变化。然后用这个脉冲调频信号对光源进行光强调制,形成PFMIM光纤传输系统。 3. 方波频率调制(SWFM) 方波频率调制方式是先用承载信息的模拟基带信号对方波进行调频,产生等幅、不等宽的方波脉冲调频信号,其方波脉冲频率随输入的模拟基带信

波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类 波分复用系统简要介绍 光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。 如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。 光波分复用的关键器件 (1)分布反馈多量子阱激光器(DFB MQW—LD) (2)光滤波器 (3)光放大器

图1 波分复用系统原理 波分复用系统的发展与现状 WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。 WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。 在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。 通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

波分复用技术论文

波分复用技术 摘要波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 关键词波分复用技术(WDM),光纤,光传输网,交叉连接 引言 WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。 1 波分复用技术 指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复 用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。 光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: 1.1 充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 1.2 具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 1.3 对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 1.4 由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 1.5 有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 1.6 系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的

光纤通信系统的组成与特点_光纤通信六大发展动向

光纤通信系统的组成与特点_光纤通信六大发展动向 一、光纤通信系统简介光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。 二、光纤通信系统特点①在单位时间内能传输的信息量大。90年代初光纤通信的实用水平的信息率为2.488Gbit/s,即一对单模光纤可同时开通35000个电话,而且它还在飞速发展; ②经济。光纤通信的建设费用随着使用数量的增大而降低; ③体积小、重量轻,施工和维护等都比较方便; ④使用金属少,抗电磁干扰、抗辐射性强,保密性好等。 三、光纤通信系统基本构成(1)光发信机 光发信机是实现电/光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。电端机就是常规的电子通信设备。 (2)光收信机 光收信机是实现光/电转换的光端机。它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。 (3)光纤或光缆 光纤或光缆构成光的传输通路。其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。 (4)中继器 中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光

数字光纤通信系统及其设计

` 数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、 SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。 关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM) Digital optical communications system and its design ] Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to

波分复用系统的基本原理

一、波分复用系统的基本原理 所谓波分复用(WDM),就是采用波分复用器(合波器)在发送端将规定波长的信号光载波合并起来,并送入一根光纤中传输;在接收侧,在由另一个波分复用器(分波器)将这些不同信号的光载波分开。由于不同波长的光载波信号可以看作相互独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。不同类型的光波分复用器,可以复用的波长数也不同,目前商用化的一般是8个波长、16个波长和32个波长的系统。波分复用系统的原理如图1-1所示。 图1-1 波分复用系统原理 在80年代初光纤通信兴起时,首先被采用的是1310nm/1550nm的两个波长复用系统(即在光纤的两个低损耗窗口1310nm和1550nm各传送一路光波长信号),也叫粗波分复用系统。这种系统比较简单,一般采用熔融的波分复用器,插入损耗小,在每个中继站,两个波长都进行解复用和光/电/光再生中继。随着1550nm窗口EDFA的商用化,光传输工程可以利用EDFA对传送的光信号进行放大,实现超长距离无电再生中继传输,在1550nm窗口传送多个波长信号,这些信号相邻波长间隔较窄,且工作在一个共享的EDFA工作带宽内,这种波长间隔紧密的WDM系统称为密集型波分复用系统(DWDM)。其频谱分布如图1-2所示。ITU-T G.692建议,DWDM系统的绝对参考频率为193.1THz(对应波长1552.52nm),不同波长的频率间隔为100GHz的整数倍(对应波长间隔约为0.8.nm的整数倍)。由于密集波分复用系统的波长间隔较小,必须采用高分辨率的波分复用器件,熔融的波分复用器一达不到要求。不加特别说明,波分复用系统通常指DWDM系统。 λ1λ2λ3λ 4 λ5λ6λ7λ8 波长 图1-2 DWDM系统的频谱分布 (一)DWDM的工作方式 双纤单向传输:一根光纤只完成一个方向信号的传输,反向光信号的传输由另一根光纤来完成,统一波长在两个方向上可以重复利用(如图1-3所示)。这种DWDM系统可以

波分复用技术

波分复用技术研究 1.产生背景 1.1全球形势 随着全球互联网(Internet)的迅猛发展,以因特网技术为主导的数据通信在通信业务总量中的比列迅速上升,因特网业务已成为多媒体通信业中发展最为迅速、竞争最为激烈的领域。同时,无论是从数据传输的用户数量还是从单个用户需要的带宽来讲,都比过去大很多。特别是后者,它的增长将直接需要系统的带宽以数量级形式增长。因此如何提高通信系统的性能,增加系统带宽,以满足不断增长的业务需求成为大家关心的焦点。 面对市场需求的增长,现有通信网络的传输能力的不足的问题,需要从多种可供选择的方案中找出低成本的解决方法。缓和光纤数量的不足的一种途径是敷设更多的光纤,这对那些光纤安装耗资少的网络来说,不失为一种解决方案。但这不仅受到许多物理条件的限制,也不能有效利用光纤带宽。另一种方案是采用时分复用(TDM)方法提高比特率,但单根光纤的传输容量仍然是有限的,何况传输比特率的提高受到电子电路物理极限限制。第三种方案是波分复用(WDM)技术, WDM系统利用已经敷设好的光纤,使单根光纤的传输容量在高速率TDM 的基础上成N倍地增加。WDM能充分利用光纤的带宽,解决通信网络传输能力不足的问题,具有广阔的发展前景。 WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20世纪90年代之前,该技术却一直没有重大突破,其主要原因在于TDM的迅速发展,从155Mbit/s到622Mbit/s,再到2.5Gbit/s系统,TDM速率一直以过几年就翻4倍的速度提高。人们在一种技术进行迅速的时候很少去关注另外的技术。1995年左右,WDM系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM系统才在全球范围内有了广泛的应用。 1.2 发展过程 1.2.1 发展阶段 光纤通信飞速发展,光通信网络成为现代通信网的基础平台。光纤通信系统经历

光纤通信系统及其构成的设备

谈光纤通信系统及其构成的设备

【编者按】纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。 近几年”信息高速公路“这个名词时常越入我们的视野,而”光谷“也继”硅谷“之后逐渐被人们所熟知。”光谷“是光电子信息产业基地的代称,类似美国”硅谷“而起名,是光电信息高尖科技的孵化地。中国”光纤之父”赵梓森院士就中国”光谷”的发展所发表的看法的时候说过:随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责把信息数字化,输入网络中去;光纤则是担负着信息传输的重任。当代社会和经济发展中,信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展,成为继微电子技术之后信息领域中的重要技术。 那么赵院士所讲到的光纤通信到底是怎样一个系统,它到底有何魔力呢,下面将带大家进入这神奇的光纤通信世界,感受一下”信息高速公路“的先进技术。 基本的光纤通信系统 最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31和1.55。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。 数字光纤通信系统 光纤传输系统是数字通信的理想通道。与模拟通信相比较,数字通信有很多的优点,灵敏度高、传输质量好。因此,大容量长距离的光纤通信系统大多采用数字传输方式。 在光纤通信系统中,光纤中传输的是二进制光脉冲"0"码和"1"码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM (pulsecodemodulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。 抽样是指从原始的时间和幅度连续的模拟信号中离散地抽取一部分样值,变换成时间和幅度都是离散的数字信号的过程。 抽样所得的信号幅度是无限多的,让这些幅度无限多的连续样值信号通过一个量化器,四舍五入,使这些幅度变为有限的M种(M为整数),这就是量化。由于在量化的过程中幅度取了整数,所以量化后的信号与抽样信号之间有一个差值(称为量化误差),使接收端的信号与原信号间有一定的误差,这种误差表现为接收噪声,称为量化噪声。码位数M越多,分级就越细,误差越小,量化噪声也越小。 编码是指按照一定的规则将抽样所得的M种信号用一组二进制或者其它进制的数来表示,每种信号都可以由N个2二进制数来表示,M和N满足M=2N。例如如果量化后的幅值有8种,则编码时每个幅值都需要用3个二进制的序列来表示。需要注意的是,此处的编码仅指信源编码,这和后面提到的信道编码是有所区别的。 现以话音为例来说明这个抽样、量化和编码过程。我们知道话音的频率范围是300~3,400Hz,在抽样的时候,要遵循所谓的奈奎斯特抽样率,实际中按8,000Hz的速率进行抽样。为了保证通话的质量,在长途干线话路中采用的是8位码(28=256个码组)。这样量化值有256种,每一种量化值都需要用8位二进制码编码,

光波分复用通信技术的特点

光波分复用通信技术的特点 光波分复用技术之所以得到世界各国的普遍重视和迅速发展,是与其出色的技术特点密不可分的. 1.光波分复用器结构简单、体积小、可靠性高 在波分复用技术中,技术的关键在于光波分复用器,它应具有将几种不同波长的光信号按一定顺序组合起来传输的功能,又具有将组合起来传输的光信号分开,并分别送入相应终端设备的功能.目前实用的光波分复用器,都为一个无源纤维光学器件,由于不含电源,因而器件具有结构简单、体积小、可靠、易于和光纤耦合等特点.另外由于波分复用器具有双向可逆性,即一个器件可以起到将不同波长的光信号进行组合和分开的作用,因此便于在一根光纤上实现双向传输的功能. 2.不同容量的光纤系统以及不同性质的信号均可兼容传输 由于光波分复用器是对不同波长的光载波信号以一定的次序进行排列以达到提高光纤频带利用率的目的,而与各系统的传输速率以及电调制方式无关,即各不同波长的光信号中所携带的信息以及数据,在光波分复用系统中将呈现透明传输.这样无论新加入的另一个系统的调制方式和传输速

率如何,均不受原系统的制约,使不同容量的光纤系统以及多种信息(声音、视频、图像、数据、文字、图形等)均可兼客传输. 3.提高光纤的频带利用率 在目前实用的光纤通信系统中,多数情况是仅传输一个光波长的光信号,其只占据了光纤频谱带宽中极窄的一部分,远远没能充分利用光纤的传输带宽.因而复用技术的使用大大地提高了频带利用率. 一般来说,两光波之间的波长间隔为l0~100nm时称为波分复用(稀疏波分复用);波长间隔为l~10 nm时称为紧密波分复用;当波长间隔小于l nm( lO GHz)情况时,则称之为光频分复用(FDM).如果采用后面将要介绍的相干光通信技术,则频率间隔能够进一步缩小到0.1 nm,那么一根光纤内可以安排2 000个光载波,若每一光载波信号的传输速率达到2.4 Gbit/s,则一根光纤就能同时传送10万路广播电视信号. 4.可更灵活地进行光纤通信组网 由于使用光波分复用技术,可以在不改变光缆设施的条件下,调整光通信系统的网络结构,因而在光纤通信组网设计中极具灵活性和自由度,便于对系统功能和应用范围的扩展. 5.存在插入损耗和串光问题

光纤通信系统第三版-沈建华-机械工业出版社

《光纤通信》作业(2016.1.30 ) 1.1 光纤通信有哪些特点? 1、光纤通信的优点: (1)传输容量大。(2)传输损耗小,中继距离长。(3)信号泄漏小,保密性好。(4)节省有色金属。(5)抗电磁干扰性能好。(6)重量轻,可挠性好,敷设方便。 2、光纤通信的缺点: (1)抗拉强度低。(2)连接困难。(3)怕水。 1.2 简述光纤通信系统的主要组成部分。 光纤通信系统的主要组成部分为:(1)光纤光缆、(2)光源(光发送机)、(3)光检测器(光接收机)、(4)无源器件、(5)光放大器(光中继器)。 1.4 为什么使用石英光纤的光纤通信系统中,工作波长只能 选择850nm、1310nm、1550nm 三种? 由于目前使用的光纤均为石英光纤,而石英光纤的损耗——波长特性中有三个低损耗的波长区,即波长为850nm、1310nm、1550nm 三个低损耗区。为此,光纤通信系统的工 作波长只能是选择在这三个波长窗口。

1.3 光纤传输信号产生能量衰减的原因是什么?光纤的 损耗系数对通信有什么影响? 1、光纤产生能量衰减的原因包括:(1)吸收、(2)散射和(3)辐射。 2、光纤的损耗系数会导致信号功率损失,造成信号接 收困难。 1.4 在一个光纤通信系统中,光源波长为1550nm ,光波经过5km 长的光纤线路传输后,其光功率下降了25%,则该光纤的损耗系数为多少? 1.5 光脉冲在光纤中传输时,为什么会产生瑞利散射?瑞 利散射损耗的大小与什么有关? 瑞利散射是由于光纤内部的密度不远匀引起的,从而使 折射率沿纵向产生不均匀,其不均匀点的尺寸比光波波长还 要小。光在光纤中传输时,遇到这些比波长小,带有随机起 伏的不均匀物质时,改变了传输方向,产生了散射。 2、瑞利散射损耗的大小与成正比。

相关文档
最新文档