可微性的几何意义及应用
多元函数的可微性

x0
x
2022年9月1日10时41分
上一页 下一页 主 页 返回 退出
9
类似地可定义关于 y 的偏导数
f y
( x0 , y0 )
f y ( x0 , y0 )
lim
y y0
f ( x0 , y) f ( x0 , y0 ) y y0
lim f ( x0 , y0 y) f ( x0 , y0 )
上一页 下一页 主 页 返回 退出
22
例6. 已知理想气体的状态方程
(R 为常数) ,
求证: p V T 1 V T p
证: p RT , V
p V
RT V2
说明: 此例表明,
V RT , p
V R T p
偏导数记号是一个 整体记号, 不能看作
分子与分母的商 !
p V V T
T p
z
lim f (x0 x, y0 ) f (x0, y0 )
x (x0, y0 )
x0
x
作平面 y =y0 , 得曲线 L ,
z f (x, y)
y
y0
在点 P0 ( x0 , y0 , f (x0 , y0 ))处
作曲线L的切线 Tx
由一元函数导数的几何意义:
z = tan
x ( x0 , y0 )
A( x x0 ) B( y y0 )
dz
从而
f ( x, y) f ( x0 , y0 ) A( x x0 ) B( y y0 )
2022年9月1日10时41分
上一页 下一页 主 页 返回 退出
5
在使用上,⑴式常写成下列形式:
其中
z Ax By x y
lim lim 0
1 可微性

故函数 z f ( x, y )在点( x, y )处连续.
例 1 考察函数 f x , y xy 在点 x 0, y 0 处的可 微性. 解 在点 x0 , y0 处函数 f 的全增量为
f x 0, y 0 x0 x y0 y x0 y0
x
z
说明:
求分界点、不连续点处的偏导数要用定义求;
xy , x 2 y 2 0, x2 y2 例6 设 f ( x , y ) 0, 2 2 x y 0
求 f x ( x, y ),
解 (1)
ห้องสมุดไป่ตู้
f y ( x, y ).
先求 f x ( x, y ). 当 x 2 y 2 0时 , 即 x 0 且 y 0 时 xy y ( x 2 y 2 ) 2 x xy f x ( x, y ) 2 2 2 2 2 ( x y ) x y
记作
f x ( x 0 , y0 )
或
f x x 0 , y0
u 注意 偏导数 是一个整体记号,不能拆分; x
定义中, f 在点 x 0, y 0 存在关于 x 的偏导 数 , f 至少在
x , y y y , x x
0
0
上
必须有定义.对于 y 同理
估计误差
全增量的概念
如果函数 z f ( x, y ) 在点 ( x, y ) 的某邻域内有 定义,设 P ( x x , y y ) 为这邻域内的任意一点, 则称这两点的函数值之差
f ( x x, y y) f ( x, y)
为函数在点 P 对应于自变量增量 x, y 的全增量, 记为 z ,即 z f ( x x , y y ) f ( x , y ).
可微性的几何意义及应用

又因 z0 a x02 b y02 , 所以它可化简为
2a x0 x 2b y0 y z z0 0.
由公式 (14), 在点 M 处的法线方程为 x x0 y y0 z z0 . 2a x0 2b y0 1
§1 可微性与偏导数
一、可微性与全微分 二、偏导数 三、可微性条件 四、可微性的几何意义及应用
返回
四、可微性的几何意义及应用
若一元函数 y f ( x) 可微, 我们把平面曲线 S
在其上某一点 P( x0 , y0 ) 的切线 PT 定义为
S
过点 P 的割线 PQ,
当Q 沿 S 趋近 P 时的极限位置
近似计算和误差估计:
例7 求 1. 08 3. 96 的近似值. 解 设 f (x, y) x y,
并令 x0 1, y0 4, x 0.08, y 0.04. 由公式 (3),有
1. 08 3. 96 f ( x0 x, y0 y) f (1,4) fx (1,4)x f y(1,4)y 1 4 0.08 14 ln1(0.04) 1. 32.
z
S •Q •Q2
则是切平面 PM1MM2 上
Q1•
M1•
•P
•M •M 2 • N2
相应的那一段增量 NM.
N1 •
•N
O•
(•x0, y0)
y
x
(x0 x•, y0 y)
z
S •Q •Q2
Q1•
M1•
•P
•M •M 2 • N2
N1 •
•N
O•
(•x0, y0)
y
x
(x0 x•, y0 y)
高等数学第17章第1节可微性

第十七章 多元函数微分学§1可微性一 可微性与全微分与一元函数一样,在多元函数微分学中,主要讨论多元函数的可微性及其应用.本章首先建立二元函数可微性概念,至于一般n 元函数的可微性不难据此相应地给出(对此,在第二十三章有更详细的论述).定义1 设函数),(y x f z =在点()000,y x P 的某领域)(0P U 内有定义,对于)(0P U 中的点),,(),(00y y x x y x P ∆+∆+=若函数f 在点0P 处的全增量z ∆可表示为: ),(),(00y x f y y x x f z -∆+∆+=∆),(ρo y B x A +∆+∆= )1(其中A,B 是仅与点0P 有关的常数,)(,22ρρo y x ∆+∆=是较ρ高阶的无穷小量,则称函数f 在点0P 可微,并称)1(式中关于y x ∆∆,的线性函数y B x A ∆+∆为函数f 在点0P 的全微分,记作y B x A y x df dz P ∆+∆==),(|000)2(由)1()2(可见dz 是z ∆的线性主部,特别当y x ∆∆,充分小时,全微分dz 可作为全增量z ∆的近似值,即).()(),(),(0000y y B x x A y x f y x f -+-+≈ )3(在使用上,有时.也把()1式写成如下形式,y x y B x A z ∆+∆+∆+∆=∆βα )4( 这里()()()().0lim lim 0,0,0,0,==→∆∆→∆∆βαy x y x例1 考察函数xy y x f =),(在点),(00y x 处的可微性. 解 在点),(00y x 处函数f 的全增量为()000000,),(,y x y y x x y x f -∆+∆+=∆ =.00y x y x x y ∆∆+∆+∆ 由于(),00→→≤∆∆=∆∆ρρρρρρyx yx因此()p o y x =∆∆.从而函数f 在00,y x 可微,且.00y x x y df ∆+∆= □二 偏导数由一元函数微分学知道:若()x f 在点0x 可微,则函数增量(),)()(00x o x A x f x x f ∆+∆=-∆+其中()0'x f =A .同样,由上一段已知,若二元函数f 在点),(00y x 可微,则f 在点),(00y x 处的全增量可由(1)式表示.现在讨论其中A 、B 的值与函数f 的关系.为此,在(4)式中令()00≠∆=∆x y ,这时得到z ∆关于x 的偏增量z x ∆,且有x x A z x ∆+∆=∆α或.α+=∆∆A xzx 现让0→∆x ,由上式便得A 的一个极限表示式.),(),(lim lim000000xy x f y x x f x z A x x x ∆-∆+=∆∆=→∆→∆ ()5容易看出,(5)式右边的极限正是关于x 的一元函数()0,y x f 在0x x =处的导数.类似地,令()00≠∆=∆y x ,由(4)式又可得到.),(),(limlim000000yy x f y y x f y zB y y y ∆-∆+=∆∆=→∆→∆ ()6它是关于y 的一元函数()y x f ,0在0y y =处的导数.二元函数当固定其中一个自变量时,它对另一个自变量的导数称为偏导数,定义如下: 定义2 设函数.),(),,(D y x y x f z ∈=若D y x ∈),(00,且()0,y x f 在0x 的某一邻域内有定义,则当极限.),(),(lim ),(lim00000000xy x f y x x f x y x f x x x ∆-∆+=∆∆→∆→∆ ()7存在时,称这个极限为函数f 在点),(00y x 关于x 的偏导数,记作()00,y x f x 或 ().00,y x xf ∂∂注意1 这里符号y x ∂∂∂∂,专用于偏导数算符,与一元函数的导数符号dxd相仿,但又有差别.注意2 在上述定义中,f 在点),(00y x 关于x (或y )的偏导数,f 至少在(){}(){}),|,(,|,000δδ<-=<-=y y x x y x xx y y y x 或上必须有定义. 若函数()y x f z ,=在区域D 上每一点()y x ,都存在对x (或对y )的偏导数,则得到函数),(y x f z =在区域D 上对x (或对)y 的偏导函数(也简称偏导数),记作),(y x f x 或xy x f ∂∂),( ()⎪⎪⎭⎫ ⎝⎛∂∂y y x f y x f y ),(,或, 也可简单地写作x f ,x z 或x f ∂∂⎪⎪⎭⎫ ⎝⎛∂∂.,y f z f y y 或 在上一章中已指出,二元函数),(y x f z =的几何图象通常是三维空间中的曲面.设()0000,,z y x P 为这曲面上一点,其中),(000y x f z =,过0P 作平面0y y =,它与曲面的交线⎩⎨⎧==),(,:0y x f z y y C是平面0y y =上的一条曲线。
多元函数可微的充分条件

多元函数可微的充分条件多元函数可微是微积分中的一个重要概念。
我们知道,在一元函数的情况下,函数可微的充分条件是其在这一点处的导数存在。
而对于多元函数,则需要更加严谨的定义和判定方法。
下面,我们来分步骤探讨多元函数可微的充分条件。
1.多元函数定义在介绍多元函数的可微性之前,我们先来定义一下多元函数。
多元函数是n个自变量x1,x2,...,xn所组成的函数f(x1,x2,...,xn),其取值为实数。
例如,三元函数f(x,y,z)=x^2+y^2+z^2就是一个多元函数,其中,x,y,z是自变量,f(x,y,z)是其函数值。
2.偏导数的定义在讨论多元函数的可微性之前,我们先来介绍一下偏导数的概念,因为它是判断多元函数可微的基础。
对于函数f(x1,x2,...,xn),在点(x1,x2,...,xn)处,对第i个自变量xi求偏导数的定义为:∂f/∂xi = lim Δxi→0 [f(x1,x2,...,xi+Δxi,...,xn) -f(x1,x2,...,xi,...,xn)]/Δxi其中,Δxi表示xi的增量,即Δxi=xi-xi0,xi0为xi的一个近似值,Δxi→0表示极限。
偏导数代表了函数在某一点处沿着此方向的变化率。
3.全微分的定义在讨论多元函数可微性时,还需要引入全微分的概念。
对于函数f(x1,x2,...,xn),在点(x1,x2,...,xn)处的全微分df 定义为:df = ∂f/∂x1 dx1 + ∂f/∂x2 dx2 + ... + ∂f/∂xn dxn其中,dx1,dx2,...,dxn是自变量的增量。
全微分可以理解为函数在某一点处的微小变化量。
4.多元函数可微的充分条件有了偏导数和全微分的概念,我们就可以来讨论多元函数可微的充分条件了。
多元函数f(x1,x2,...,xn)在点(x1,x2,...,xn)处可微的充分条件是:存在n个偏导数∂f/∂xi(i=1,2,...,n),使得全微分df=∂f/∂x1 dx1 + ∂f/∂x2 dx2 + ... + ∂f/∂xn dxn在该点处存在,并且满足:Δf = f(x1+Δx1,x2+Δx2,...,xn+Δxn) - f(x1,x2,...,xn) = df + o(√Δx1^2+Δx2^2+...+Δxn^2)其中,o(√Δx1^2+Δx2^2+...+Δxn^2)表示高阶无穷小,即当Δx1,Δx2,...,Δxn趋近于0时,o(√Δx1^2+Δx2^2+...+Δxn^2)趋近于0。
数学分析2课件:第十七章 多元函数微分学

x2 y2 ( xy)
| y|
( x2 y2 )3
x2
x
y2
sgn
1 y
( y 0)
z
不存在.
y x0
y0
例 5 已知理想气体的状态方程 pV RT ( R为常
数),求证: p V
V T
T p
1.
证
p
RT V
p V
RT V2
;
V
RT p
V T
R p
;
T
pV R
T p
V R
;
p V
V T
y y0
xx0 或
y y0
f x ( x0 , y0 ).
f
lim f ( x0 x, y0 ) f ( x0 , y0 ) .
x xx0 x0
x
y y0
同理可定义函数 z f ( x, y)在点( x0 , y0 )处对 y的偏导
数为
lim
y0
f
( x0 , y0 y) y
f
( x0 , y0 )
f
(x, y,z) ,
f
y
(
x,
y,z
)
lim
y0
f
( x, yy,z) y
f
(x, y,z)
,
f
z
(
x,
y,z)
lim
z0
f
( x, y,zz) z
f
(x, y,z) .
由偏导数的定义可知,偏导数本质上是一元函数的
微分法问题。 求 f 时,只要把 x 之外的其他自变量暂时看成
x 常量,对 x 求导数即可。
( x, y) 可微分, Ax By 称为函数 z f ( x, y) 在点( x, y)的全微分,记为dz ,即
可导和可微的几何意义

可导和可微的几何意义
在数学中,可导和可微是两个相互关联的概念,它们在几何中有着重要的意义。
可导表示一个函数在某个点上存在导数。
导数是函数在该点附近的切线斜率。
因此,可导函数在某一点上具有斜率,可以用来描述函数在该点的变化速率。
几何意义上,可导函数在某一点上的斜率可以看作是函数曲线在该点的切线的斜率,给出了函数曲线在该点附近的变化趋势。
如果函数在该点的导数为正,表示曲线在该点附近上升;如果导数为负,表示曲线在该点附近下降;如果导数为零,表示曲线在该点附近呈水平。
因此,可导函数的导数可以用来分析函数的增减性、极值点、拐点等几何特征。
可微则更加严格,它要求函数不仅可导,而且导数是连续的。
也就是说,如果一个函数在某点上是可微的,它既存在导数,而且导数在该点的左右极限都存在且相等。
可微函数不仅具有斜率,而且具有连续的斜率,因此可以更加精确地描述函数曲线的变化情况。
几何意义上,可微函数在某一点上的斜率可以看作是函数曲线在该点的切线的精确斜率,能够提供更准确的曲线变化信息。
可微函数的导数在该点的左右极限相等,意味着曲线在该点处没有突变或跳跃。
总之,可导和可微的几何意义都是用来描述函数曲线的变化情况。
可导函数的导数给出了曲线在某一点上的变化趋势,可微函数的导数给出了曲线在某一点上的精确变化趋势。
可导和可
微的概念在微积分中有着重要的应用,可以用来解决函数的极值、曲线的凹凸性、最速降线等问题。
(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学

第十七章多元函数微分学教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。
教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。
教学时数:18学时§1 可微性一.可微性与全微分:1.可微性:由一元函数引入. 亦可写为, 时.2.全微分:例1 考查函数在点处的可微性 . P107例1二.偏导数:1.偏导数的定义、记法:2.偏导数的几何意义: P109 图案17—1.3.求偏导数:例2 , 3 , 4 . P109—110例2 , 3 , 4 .例5. 求偏导数.例6. 求偏导数.例7. 求偏导数, 并求.例8. 求和.解=,=.例9证明函数在点连续, 并求和.证. 在点连续 .,不存在 .三.可微条件:1.必要条件:Th 1 设为函数定义域的内点.在点可微, 和存在, 且. ( 证) 由于, 微分记为.定理1给出了计算可微函数全微分的方法.两个偏导数存在是可微的必要条件, 但不充分.例10考查函数在原点的可微性 . [1]P110 例5 .2.充分条件:Th 2 若函数的偏导数在的某邻域内存在, 且和在点处连续 . 则函数在点可微 . ( 证) P111 Th 3 若在点处连续, 点存在,则函数在点可微 .证.即在点可微 .要求至少有一个偏导数连续并不是可微的必要条件 .例11验证函数在点可微, 但和在点处不连续 . (简证,留为作业)证因此, 即,在点可微, . 但时, 有,沿方向不存在, 沿方向极限不存在; 又时,,因此, 不存在, 在点处不连续. 由关于和对称,也在点处不连续 .四.中值定理:Th 4 设函数在点的某邻域内存在偏导数 . 若属于该邻域, 则存在和, , 使得. ( 证) 例12设在区域D内. 证明在D内.五.连续、偏导数存在及可微之间的关系:六.可微性的几何意义与应用:1.可微性的几何意义:切平面的定义. P113.Th 5 曲面在点存在不平行于轴的切平面的充要条件是函数在点可微 . ( 证略)2. 切平面的求法: 设函数在点可微,则曲面在点处的切平面方程为(其中),法线方向数为,法线方程为.例13试求抛物面在点处的切平面方程和法线方程 . P115例63. 作近似计算和误差估计: 与一元函数对照, 原理 .例14 求的近似值. P115例7例15 应用公式计算某三角形面积 . 现测得,. 若测量的误差为的误差为. 求用此公式计算该三角形面积时的绝对误差限与相对误差限. P116.§2 复合函数微分法简介二元复合函数: .以下列三种情况介绍复合线路图;, ;.一.链导法则: 以“外二内二”型复合函数为例.Th 设函数在点D可微, 函数在点可微, 则复合函数在点可微, 且,. ( 证) P118称这一公式为链导公式 . 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”或“并联加,串联乘”)来概括 .对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.链导公式中内函数的可微性可减弱为存在偏导数 . 但对外函数的可微性假设不能减弱.对外元, 内元, 有,.外元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数.例1. 求和. P120例1例2, . 求和.例3, 求和.例4设函数可微 ..求、和.例5用链导公式计算下列一元函数的导数:ⅰ> ; ⅱ> . P121例4例6设函数可微. 在极坐标变换下, 证明. P120例2 例7设函数可微, . 求证.二.复合函数的全微分: 全微分和全微分形式不变性 .例8. 利用全微分形式不变性求, 并由此导出和.P122 例5§3 方向导数和梯度一.方向导数:1.方向导数的定义:定义设三元函数在点的某邻域内有定义 .为从点出发的射线 . 为上且含于内的任一点, 以表示与两点间的距离 . 若极限存在, 则称此极限为函数在点沿方向的方向导数, 记为或、.对二元函数在点, 可仿此定义方向导数 .易见, 、和是三元函数在点分别沿轴正向、轴正向和轴正向的方向导数 .例1=. 求在点处沿方向的方向导数,其中ⅰ>为方向; ⅱ>为从点到点的方向.解ⅰ>为方向的射线为. 即. ,.因此,ⅱ>从点到点的方向的方向数为方向的射线为., ;.因此,2. 方向导数的计算:Th 若函数在点可微, 则在点处沿任一方向的方向导数都存在, 且++,其中、和为的方向余弦. ( 证) P125 对二元函数, +, 其中和是的方向角.註由++==, , , , , 可见, 为向量, , 在方向上的投影.例2 ( 上述例1 )解ⅰ>的方向余弦为=, =, =.=1 , =, =.因此, =++=.ⅱ>的方向余弦为=, =, =. 因此, =.可微是方向导数存在的充分条件, 但不必要 .例3 P126 .二. 梯度( 陡度):1. 梯度的定义: , , .|= .易见, 对可微函数, 方向导数是梯度在该方向上的投影.2. 梯度的几何意义: 对可微函数, 梯度方向是函数变化最快的方向 . 这是因为|.其中是与夹角. 可见时取最大值, 在的反方向取最小值 .3. 梯度的运算:ⅰ> .ⅱ>(+) = +.ⅲ> () = +.ⅳ> .ⅴ> () = .证ⅳ> , ..§4 Taylor公式和极值问题一、高阶偏导数:1.高阶偏导数的定义、记法:例9 求二阶偏导数和. P128例1 例10 . 求二阶偏导数. P128例2 2.关于混合偏导数: P129—131.3.求含有抽象函数的二元函数的高阶偏导数: 公式, P131-132例11 . 求和. P132例34. 验证或化简偏微分方程:例12 . 证明+ . ( Laplace方程) 例13 将方程变为极坐标形式.解., , , ., ;因此, .方程化简为.例14试确定和, 利用线性变换将方程化为.解, .=+++==+2+.=+++==++.=++.因此,+ (+ . 令, 或或……, 此时方程化简为.二.中值定理和泰肋公式:凸区域 .Th 1 设二元函数在凸区域D 上连续, 在D的所有内点处可微 . 则对D内任意两点 D , 存在, 使.证令.系若函数在区域D上存在偏导数, 且, 则是D上的常值函数.二. Taylor公式:Th 2 (Taylor公式) 若函数在点的某邻域内有直到阶连续偏导数, 则对内任一点,存在相应的, 使证P134例1 求函数在点的Taylor公式( 到二阶为止) . 并用它计算P135—136例4 .三. 极值问题:1. 极值的定义: 注意只在内点定义极值.例2 P136例52.极值的必要条件:与一元函数比较 .Th 3 设为函数的极值点 . 则当和存在时, 有=. ( 证)函数的驻点、不可导点,函数的可疑点 .3. 极值的充分条件:代数准备: 给出二元( 实)二次型. 其矩阵为.ⅰ> 是正定的,顺序主子式全,是半正定的,顺序主子式全;ⅱ> 是负定的,, 其中为阶顺序主子式.是半负定的, .ⅲ> < 0时, 是不定的.充分条件的讨论: 设函数在点某邻域有二阶连续偏导数 . 由Taylor公式, 有++ .令, , , 则当为驻点时, 有.其中.可见式的符号由二次型完全决定.称该二次型的矩阵为函数的Hesse矩阵. 于是由上述代数准备, 有ⅰ> , 为( 严格) 极小值点;ⅱ> , 为( 严格) 极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .综上, 有以下定理 .Th 4 设函数在点的某邻域内有连续的二阶偏导数, 是驻点 . 则ⅰ> 时, 为极小值点;ⅱ> 时, 为极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .例3—7 P138—140 例6—10 .四.函数的最值:例8 求函数在域D = 上的最值 .解令解得驻点为. .在边界上, , 驻点为, ;在边界上, , 没有驻点;在边界上, , 驻点为, .又.于是,..[]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理 17.4 曲面 z f ( x , y ) 在点 P ( x0 , y0 , f ( x0 , y0 ))
存在不平行于 z 轴的切平面 的充要条件是
P0 ( x0 , y0 ) 可微. 函数 f 在点
定理 17.4 说明: 函数 在点 P0 ( x0 , y0 ) 可微, 则曲面
z f ( x , y ) 在点 P ( x0 , y0 , z0 ) 处的切平面方程为
| S | 0. 13.
又因
1 1 1 S ab sin C 12.50 8.30 25. 94, 2 2 2
所以 S 的相对误差限为
S 0.13 0. 5 %. S 25.94
S S S 由于 | S | | d S | a b C a b C S S S | a | | b | | C | a b C
1 1 | b sin C | | a | | a sin C | | b | 2 2 1 | ab cos C | | C |, 2 因此将各数据代入上式, 即得 S 的绝对误差限为
d z f x ( x0 , y0 ) x f y ( x0 , y0 ) y ,
则是切平面 PM1 MM 2 上 相应的那一段增量 NM.
M1
z
Q1
S
Q
Q 2
M
P
N
2 N
2
M
N1
O
( x0 , y0 )
y
x
( x0 x, y0 y)
过切点 P 与切平面垂直的直线 称为曲面在点 P 的法线.
二元函数全微分的几何意义: 当自 当自变量由 ( x0 , y0 ) 变为 ( x0 x , y0 y ) 时, 函 数 z f ( x , y ) 的增量 z 是 z 轴方向上的一段 NQ; 而在点 ( x0 , y0 ) 的全微分 dz
z
M1
S
Q
Q 2
Q1
M
P
N
x0 , y0 )
y
x
( x0 x, y0 y)
于是, z 与 dz 之差是 MQ 那一段,它的长度将随着
0 而趋于 0, 而且是较 高阶的无穷小量.
2 2 例6 试求抛物面 z a x b y 在点 P ( x0 , y0 , z0 ) 处 2 2 z a x b y 的切平面方程与法线方程,其中 0 0 0 .
z
定义 3 设曲面 S 上一点P, Π 为通过点 P 的一个平面, S 上的动点 Q 到定点 P 和到平面Π 的距离 分别记为 d 和 h.
x
O
P
d
h
Q
S
y
图 17 - 3
若当 Q 在 S 上以任意方式趋近于 P 时, 恒有 h 0, d 则称Π 为曲面 S 在点 P 的切平面, 称 P 为切点.
f x ( x0 , y0 ) 2a x0 , f y ( x0 , y0 ) 2b y0 , 由公式 (13), 解:
在点 P 处的切平面方程为
z z 0 2ax 0 (x x 0 ) 2b y 0 (y y 0 ).
又因 z0 a x0 b y0 , 所以它可化简为
2 2
2 ax 0x 2b y 0y z z 0 0.
由公式 (14), 在点 M 处的法线方程为 x x0 y y0 z z0 . 2 a x0 2 b y0 1
近似计算和误差估计: 例7 求 1. 08 3. 96 的近似值.
y f ( x , y ) x , 解设
P
Q
T
PQ 与 PT 的夹角
也将随 Q →P 而趋于 0
用 h 表示点 Q 到直线 PT 的距离 , 用d 表示点 Q 到点 P 的距离, 由于
S
Q
d
P
h sin , d
h
因此当 Q 沿 S 趋于 P 时,
h 0 等同于 0. d
T
图 17 - 2
我们引进曲面 S 在点 P 的 切平面的定义.
z z0 f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 ).
由切平面方程知道,法向量为 n ( f x ( x0 , y0 ), f y ( x0 , y0 ), 1 ), 于是过切点 P 的法线方程为 x x0 y y0 z z0 . f x ( x0 , y0 ) f y( x0 , y0 ) 1
§1 可微性与偏导数
一、可微性与全微分 二、偏导数 三、可微性条件 四、可微性的几何意义及应用
返回
四、可微性的几何意义及应用
若一元函数 y f ( x ) 可微, 我们把平面曲线 S 在其上某一 点 P ( x0 , y0 ) 的切线 PT 定义为
S
过点 P 的割线 PQ, 当Q 沿 S 趋近 P 时的极限位置
并令 x0 1, y0 4, x 0.08, y 0.04.
由公式 (3),有
1. 08 3. 96 f ( x0 x , y0 y ) f (1,4) f x (1,4)x f y (1,4)y
1 4 0.08 14 ln1 ( 0.04) 1. 32.
1 例8 应用公式 S ab sin C 计算某三角形的面积, 2
现测得 a 12.50, b 8.30, C 30. 若测量 a , b 的误 差为 0.01, 测量 C 的误差为 0.1 , 试求用此公式
计算三角形面积时的绝对误差限和相对误差限.
解 依题意,测量 a, b, C 的绝对误差限分别为 | a | 0.01 , | b | 0.01 , | C | 0.1 . 1800