河南省三门峡市高考数学一轮复习:29 等比数列及其前n项和

合集下载

高考数学一轮复习知识点:等比数列及其前n项和

高考数学一轮复习知识点:等比数列及其前n项和

高考数学一轮复习知识点:等比数列及其前n项和在等比数列中,依次每k项之和仍成等比数列。

以下是高考数学一轮复习知识点,查字典数学网请考生牢记。

一个推导利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).两个防范(1)由an+1=qan,q≠0并不能赶忙断言{an}为等比数列,还要验证a1≠0.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一专门情形导致解题失误.三种方法等比数列的判定方法有:(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n ≥2且n∈N*),则{an}是等比数列.(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N*),则数列{a n}是等比数列.观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。

随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。

我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观看过程中指导。

我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。

有的小孩说“乌云跑得飞速。

”我加以确信说“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这确实是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得如何样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观看,让幼儿把握“倾盆大雨”那个词。

2023版高考数学一轮总复习:等比数列及其前n项和课件文

2023版高考数学一轮总复习:等比数列及其前n项和课件文
• 5.已知等比数列{an}的前n项和Sn=a+3×2n+1,则a= -6
.

• 考向扫描
• 考向1 • 等比数列的判定与证明
• 1. 典例 [2019全国卷Ⅱ]已知数列{an}和{bn}满足
a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
• (1)证明:{an+bn}是等比数列,{an-bn}是等差数列.
• 3.等比数列的通项公式及其变形
n-1
a
=
a
·
q
• 通项公式: n 1
,其中a1是首项,q是公比.
• 通项公式的变形:an=am·qn-m.
• 考点1 • 等比数列
• 4.等比数列与指数函数的关系

1 n
当q>0且q≠1时,an= ·q 可以看成函数y=cqx,其表示一个不为0的常数

与指数函数的乘积.因此等比数列{an}各项所对应的点都在函数y=cqx的
• (2)求{an}和{bn}的通项公式.
• 考向1 • 等比数列的判定与证明
• 考向1 • 等比数列的判定与证明
• 方法技巧
等比数列的判定与证明常用的方法
定义法
等比中项法
通项
若数列{an}的通项公式可写成an=c·qn-1(c,q均为非零常数),
公式法
则{an}是等比数列
前n项和
若数列{an}的前n项和Sn=k·qn-k(k为非零常数,q≠0且q≠1),
数列.
等比
注意 当q=-1且k为偶数时,Sk,S2k-Sk, S3k-S2k,…不是等比数列
.

2 3
(3)若a1·a2·…·an=Tn,则Tn, , ,…成等比数列.

等比数列及其前n项和高三新高考一轮复习

等比数列及其前n项和高三新高考一轮复习
添加标题
考查等比数列的前n项和
前n项和的实际应用和例题分析
前n项和的求解方法和技巧
前n项和的公式和推导过程
等比数列的定义和性质
考查等比数列的综合应用
等比数列的定义和性质
等比数列的通项公式和前n项和公式
等比数列在实际生活中的应用,如金融、物理等领域
等比数列在高考中的常见题型和解题方法,如选择题、填空题、解答题等
添加标题
等比数列的性质:等比数列的通项公式为an=a1*q^(n-1),其中a1为第一项,q为公比,n为项数。
添加标题
等比数列的前n项和公式:Sn=a1*(1-q^n)/(1-q),其中Sn为前n项和,a1为第一项,q为公比,n为项数。
添加标题
等比数列在高考中的考查形式:选择题、填空题、解答题等,考查学生对等比数列的定义、性质、前n项和公式的理解和应用。
添加标题
等比中项与等比数列的判定
等比中项:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
等比数列的判定:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
等比中项的性质:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
等比数列的判定方法:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
பைடு நூலகம்
遇到问题时,及时向老师或同学请教,不要独自钻研
制定合理的复习计划,确保复习进度和效果
复习过程中,注重基础知识的掌握,避免盲目刷题
调整心态,积极备考
保持良好的心态:面对考试压力,保持冷静,积极应对
制定合理的复习计划:根据自身情况,制定适合自己的复习计划
注重基础知识:复习过程中,注重基础知识的掌握,避免盲目追求难题

高三数学高考一轮复习资料: 等比数列及其前n项和

高三数学高考一轮复习资料: 等比数列及其前n项和

等比数列及其前n 项和[最新考纲]1.理解等比数列的概念,掌握等比数列的通项公式及前n 项和公式. 2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.3.了解等比数列与指数函数的关系.知 识 梳 理1.等比数列的有关概念 (1)等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:a n a n -1=q (n ≥2),q 为常数.(2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 若等比数列{a n }的第m 项为a m ,公比是q ,则其第n 项a n 可以表示为a n =a m q n -m.(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q. 3.等比数列及前n 项和的性质(1)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .(4)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n bn 仍是等比数列.辨 析 感 悟1.对等比数列概念的理解(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.(×)(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .(×) (3)若三个数成等比数列,那么这三个数可以设为aq ,a ,aq .(√) 2.通项公式与前n 项和的关系(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.(×)(5)(·新课标全国Ⅰ卷改编)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则S n =3-2a n .(√) 3.等比数列性质的活用(6)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.(×)(7)(·兰州模拟改编)在等比数列{a n }中,已知a 7·a 12=5,则a 8a 9a 10a 11=25.(√) (8)(·江西卷改编)等比数列x,3x +3,6x +6,…的第四项等于-2或0.(×) [感悟·提升]1.一个区别 等差数列的首项和公差可以为零,且等差中项唯一;而等比数列首项和公比均不为零,等比中项可以有两个值.如(1)中的“常数”,应为“同一非零常数”;(2)中,若b 2=ac ,则不能推出a ,b ,c 成等比数列,因为a ,b ,c 为0时,不成立.2.两个防范 一是在运用等比数列的前n 项和公式时,必须注意对q =1或q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误,如(4).二是运用等比数列的性质时,注意条件的限制,如(6)中当a n +1a n =q <0时,ln a n +1-ln a n =ln q 无意义.考点一 等比数列的判定与证明【例1】 (·济宁测试)设数列{a n }的前n 项和为S n ,若对于任意的正整数n 都有S n =2a n -3n ,设b n =a n +3.求证:数列{b n }是等比数列,并求a n .证明 由S n =2a n -3n 对于任意的正整数都成立, 得S n +1=2a n +1-3(n +1),两式相减,得S n +1-S n =2a n +1-3(n +1)-2a n +3n , 所以a n +1=2a n +1-2a n -3,即a n +1=2a n +3,所以a n +1+3=2(a n +3),即b n +1b n =a n +1+3a n +3=2对一切正整数都成立,所以数列{b n }是等比数列.由已知得:S 1=2a 1-3,即a 1=2a 1-3,所以a 1=3, 所以b 1=a 1+3=6,即b n =6·2n -1. 故a n =6·2n -1-3=3·2n -3.规律方法 证明数列{a n }是等比数列常用的方法:一是定义法,证明a na n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.【训练1】 (·陕西卷)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解 (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.(2)假设{a n +1}是等比数列,则对任意的k ∈N *,(a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾. ∴假设不成立,∴{a n +1}不是等比数列.考点二 等比数列基本量的求解【例2】 (·湖北卷)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125. (1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求m 的最小值;若不存在,说明理由.审题路线 (1)建立关于a 1与q 的方程组可求解.(2)分两种情况,由a n ⇒1a n ⇒再用等比数列求和求∑n =1m 1a n⇒得到结论.解 (1)设等比数列{a n }的公比为q ,则由已知可得⎩⎨⎧a 31q 3=125,|a 1q -a 1q 2|=10,解得⎩⎪⎨⎪⎧a 1=53,q =3或⎩⎨⎧a 1=-5,q =-1.故a n =53·3n -1或a n =-5·(-1)n -1. (2)若a n =53·3n -1,则1a n=35⎝ ⎛⎭⎪⎫13n -1,则⎩⎨⎧⎭⎬⎫1a n 是首项为35,公比为13的等比数列. 从而∑n =1m 1a n =35⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13m 1-13=910·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13m <910<1.若a n =-5·(-1)n -1,则1a n=-15(-1)n -1,故⎩⎨⎧⎭⎬⎫1a n 是首项为-15,公比为-1的等比数列, 从而∑n =1m1a n =⎩⎪⎨⎪⎧-15,m =2k -1(k ∈N *),0,m =2k (k ∈N *),故∑n =1m 1a n<1.综上,对任何正整数m ,总有∑n =1m 1a n<1.故不存在正整数m ,使得1a 1+1a 2+…+1a n≥1成立.规律方法 等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.【训练2】 (1)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.(2)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=________.解析 (1)显然公比q ≠1,由题意可知9(1-q 3)1-q =1-q 61-q ,解得q =2,则数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得数列⎩⎨⎧⎭⎬⎫1a n 的前5项和T 5=3116.(2)显然公比q ≠1,由题意得⎩⎨⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4⎝ ⎛⎭⎪⎫1-1251-12=314. 答案 (1)3116 (2)314考点三 等比数列性质的应用【例3】 (1)(·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ).A .7B .5C .-5D .-7(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. 解析 (1)由已知得⎩⎨⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎨⎧ a 4=4,a 7=-2或⎩⎨⎧a 4=-2,a 7=4. 当a 4=4,a 7=-2时,易得a 1=-8,a 10=1,从而a 1+a 10=-7; 当a 4=-2,a 7=4时,易得a 10=-8,a 1=1,从而a 1+a 10=-7. (2)由S 10S 5=3132,a 1=-1知公比q ≠1,则S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12. 答案 (1)D (2)-12规律方法 熟练掌握等比数列的一些性质可提高解题速度,历年高考对等比数列的性质考查较多,主要是考查“等积性”,题目“小而巧”且背景不断更新.解题时要善于类比并且要能正确区分等差、等比数列的性质,不要把两者的性质搞混.【训练3】 (1)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为 ( ). A .-3 B .±3 C .-3 3D .±3 3(2)(·昆明模拟)在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a23+2a2a6+a3a7=().A.4 B.6 C.8 D.8-4 2解析(1)由等比中项知y2=3,∴y=±3,又∵y与-1,-3符号相同,∴y=-3,y2=xz,所以xyz=y3=-3 3.(2)由等比数列性质,得a3a7=a25,a2a6=a3a5,所以a23+2a2a6+a3a7=a23+2a3a5+a25=(a3+a5)2=(2-1+2+1)2=(22)2=8.答案(1)C(2)C1.等比数列的判定方法有以下几种:(1)定义:a n+1a n=q(q是不为零的常数,n∈N*)⇔{an}是等比数列.(2)通项公式:a n=cq n-1(c、q均是不为零的常数,n∈N*)⇔{a n}是等比数列.(3)等比中项法:a2n+1=a n·a n+2(a n·a n+1·a n+2≠0,n∈N*)⇔{a n}是等比数列.2.方程观点以及基本量(首项a1和公比q)思想仍然是求解等比数列问题的基本方法:在a1,q,n,a n,S n五个量中,知三求二.3.在求解与等比数列有关的问题时,除了要灵活地运用定义和公式外,还要注意等比数列性质的应用,以减少运算量而提高解题速度.教你审题6——如何确定数列中的项【典例】(·山东卷)在等差数列{a n}(1)求数列{a n}的通项公式;(2)对任意m∈N*列{b m}的前m项和S m.[审题]一审条件❶:根据性质转化为先求a4,再结合a9求a1和d.二审条件❷:转化为求{b m}的通项公式,尽而再求S m.三审结构:由9m<a n<92m得9m-1+1≤n≤92m-1.解(1)由a3+a4+a5=84,可得3a4=84,即a4=28,而a9=73,则5d=a9-a4=45,即d =9.又a 1=a 4-3d =28-27=1,所以a n =1+(n -1)×9=9n -8,即a n =9n -8(n ∈N *).(2)对任意m ∈N *,9m <9n -8<92m ,则9m +8<9n <92m +8, 即9m -1+89<n <92m -1+89,而n ∈N *,所以9m -1+1≤n ≤92m -1. 由题意,可知b m =92m -1-9m -1.于是S m =b 1+b 2+…+b m =91+93+…+92m -1-(90+91+…+9m -1)=9-92m +11-92-1-9m 1-9=92m +1-980-9m -18=92m +1-10×9m +180,即S m =92m +1-10×9m +180.[反思感悟] 本题第(2)问设置了落入区间内的项构成新数列,这是对考生数学能力的挑战,由通项公式及已知区间建立不等式求项数,进而得到所求数列{b m }的通项公式是解答该问题的核心与关键. 【自主体验】(·许昌模拟)已知点(1,2)是函数f (x )=a x (a >0,且a ≠1)的图象上一点,数列{a n }的前n 项和S n =f (n )-1. (1)求数列{a n }的通项公式;(2)求数列{a n }前2 013项中的第3项,第6项,…,第3k 项删去,求数列{a n }前2 013项中剩余项的和.解 (1)把点(1,2)代入函数f (x )=a x ,得a =2. ∴S n =f (n )-1=2n -1,当n =1时,a 1=S 1=21-1=1,当n ≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1,经验证可知n =1时,也适合上式,∴a n =2n -1.(2)由(1)知数列{a n }为等比数列,公比为2,故其第3项,第6项,…,第2 013项也为等比数列,首项a 3=23-1=4,公比23=8,a 2 013=22 102=4×8671-1为其第671项,∴此数列的和为4(1-8671)1-8=4(22 013-1)7,又数列{a n }的前2 013项和为S 2 103=1×(1-22 013)1-2=22 013-1,∴所求剩余项的和为(22 013-1)-4(22 013-1)7=3(22 013-1)7.基础巩固题组(建议用时:40分钟)一、选择题1.(·六安二模)已知数列{a n }的前n 项和S n =3n -2,n ∈N *,则 ( ).A .{a n }是递增的等比数列B .{a n }是递增数列,但不是等比数列C .{a n }是递减的等比数列D .{a n }不是等比数列,也不单调 解析 ∵S n =3n -2,∴S n -1=3n -1-2,∴a n =S n -S n -1=3n -2-(3n -1-2)=2×3n -1(n ≥2), 当n =1时,a 1=S 1=1不适合上式,但a 1<a 2<a 3<…. 答案 B2.(·广州模拟)已知等比数列{a n }的公比q =2,前n 项和为S n .若S 3=72,则S 6等于( ). A.312 B.632 C .63D.1272解析 S 3=a 1(1-23)1-2=7a 1=72,所以a 1=12.所以S 6=a 1(1-26)1-2=63a 1=632.答案 B3.(·新课标全国Ⅱ卷)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A.13 B .-13 C.19D .-19解析 由题知q ≠1,则S 3=a 1(1-q 3)1-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19. 答案 C4.在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为 ( ). A .1 B .-12 C .1或-12 D .-1或12解析 根据已知条件⎩⎨⎧a 1q 2=7,a 1+a 1q +a 1q 2=21. 得1+q +q 2q 2=3.整理得2q 2-q -1=0,解得q =1或-12. 答案 C5.(·浙江十校联考)若方程x 2-5x +m =0与x 2-10x +n =0的四个根适当排列后,恰好组成一个首项为1的等比数列,则m ∶n 值为 ( ).A.14B.12 C .2D .4解析 设方程x 2-5x +m =0的两根为x 1,x 2,方程x 2-10x +n =0的两根为x 3,x 4.则⎩⎨⎧ x 1+x 2=5,x 1·x 2=m ,⎩⎨⎧x 3+x 4=10,x 3·x 4=n ,由题意知x 1=1,x 2=4,x 3=2,x 4=8,∴m =4,n =16,∴m ∶n =14. 答案 A 二、填空题6.(·江西九校联考)实数项等比数列{a n }的前n 项的和为S n ,若S 10S 5=3132,则公比q 等于________.解析 首先q ≠1,因为若q =1,则S 10S 5=2,当q ≠1时,S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q =1-q 101-q 5=(1-q 5)(1+q 5)1-q 5=3132,q 5=-132,q =-12.答案 -127.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 解析 ∵a 1+a 2=a 1(1+q )=30,a 3+a 4=a 1q 2(1+q )=60,∴q 2=2,∴a 7+a 8=a 1q 6(1+q )=[a 1(1+q )]·(q 2)3=30×8=240.答案 2408.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.解析 由已知条件,得2S n =S n +1+S n +2,即2S n =2S n +2a n +1+a n +2,即a n +2a n +1=-2. 答案 -2三、解答题9.在数列{a n }中,已知a 1=-1,且a n +1=2a n +3n -4(n ∈N *).(1)求证:数列{a n +1-a n +3}是等比数列;(2)求数列{a n }的通项公式及前n 项和S n .(1)证明 令b n =a n +1-a n +3,则b n +1=a n +2-a n +1+3=2a n +1+3(n +1)-4-2a n -3n +4+3=2(a n +1-a n +3)=2b n ,即b n +1=2b n .由已知得a 2=-3,于是b 1=a 2-a 1+3=1≠0.所以数列{a n +1-a n +3}是以1为首项,2为公比的等比数列.(2)解 由(1)可知b n =a n +1-a n +3=2n -1,即2a n +3n -4-a n +3=2n -1,∴a n =2n -1-3n +1(n ∈N *),于是S n =(1+2+22+…+2n -1)-3(1+2+3+…+n )+n =1-2n 1-2-3×n (n +1)2+n =2n -3n 2+n 2-1. 10.(·济南期末)已知等差数列{a n }的前n 项和为S n ,且满足a 2=4,a 3+a 4=17.(1)求{a n }的通项公式;(2)设b n =2a n +2,证明数列{b n }是等比数列并求其前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d .由题意知⎩⎨⎧ a 3+a 4=a 1+2d +a 1+3d =17,a 2=a 1+d =4,解得a 1=1,d =3,∴a n =3n -2(n ∈N *).(2)证明:由题意知,b n =2a n +2=23n (n ∈N *),b n -1=23(n -1)=23n -3(n ∈N *,n ≥2),∴b n b n -1=23n23n -3=23=8(n ∈N *,n ≥2),又b 1=8, ∴{b n }是以b 1=8,公比为8的等比数列,T n =8(1-8n )1-8=87(8n -1). 能力提升题组(建议用时:25分钟)一、选择题1.(·兰州模拟)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是 ( ).A .-15B .-5C .5D.15 解析 由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1且a n >0,即log 3a n +1a n=1,解得a n +1a n=3,所以数列{a n }是公比为3的等比数列.因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3,所以a 5+a 7+a 9=9×33=35.所以log 13(a 5+a 7+a 9)=log 1335=-log 335=-5.答案 B2.(·山东省实验中学诊断)在各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值是 ( ).A .16B .8C .2 2D .4解析 由题意知a 4·a 14=(22)2=a 29,即a 9=2 2.设公比为q (q >0),所以2a 7+a 11=2a 9q 2+a 9q 2=42q 2+22q 2≥ 242q 2×22q 2=8,当且仅当42q 2=22q 2,即q =42时取等号,其最小值为8.答案 B二、填空题3.(·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2或q =-3(舍去),a n =a 5qn -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12. 答案 12三、解答题4.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式; (2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14. 又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n . (2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧ 1+12n ,n 为奇数,1-12n ,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712. 综上,对于n ∈N *,总有-712≤S n -1S n≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.。

等比数列及其前n项和讲义-高三数学一轮复习

等比数列及其前n项和讲义-高三数学一轮复习

等比数列及其前n项和一.学习目标1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.体会等比数列与指数函数的关系.二.知识整合1.等比数列的有关概念等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q(q≠0)表示,符号表示为a n+1a n=q(n∈N∗)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时提醒:由a n+1=qa n,q≠0,并不能立即断定{a n}为等比数列,还要验证a1≠0.2.等比数列的有关公式通项公式a n=;推广:a n=a m⋅q n−m(m,n∈N∗)前n项和公式S n={ ,q=1,q≠1提醒:在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情况而导致解题失误.知识拓展:(1)当q≠0,q≠1时,S n=k−k⋅q n(k≠0)是{a n}成等比数列的充要条件,此时k=a11−q.(2)等比数列的单调性当{a 1>0,q >1 或{a 1<0,0<q <1时,等比数列{a n } 是递增数列. 当{a 1>0,0<q <1 或{a 1<0,q >1时,等比数列{a n } 是递减数列. 当q =1 时,等比数列{a n } 是常数列.当q =−1 时,等比数列{a n } 是摆动数列.三.典型例题考点一 等比数列基本量的运算例1(1) 已知等比数列{a n } 的前3项和为168,a 2−a 5=42 ,则a 6= ( )A. 14B. 12C. 6D. 3(2) 已知等比数列{a n } 的前n 项和为S n ,a 1=1 ,a 5=8a 2 ,若S n =31 ,则n = .方法感悟:等比数列基本量运算的解题策略(1)方程思想:等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1 ,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1 和q ,问题便可迎刃而解.(2)分类讨论思想:等比数列{a n } 的前n 项和公式涉及对公比q 的分类讨论,当q =1 时,{a n } 的前n 项和S n =na 1 ;当q ≠1 时,{a n } 的前n 项和S n =a 1(1−q n )1−q =a 1−a n q 1−q .考点二 等比数列的判定与证明例2已知数列{a n } 的首项a 1=12 ,且满足a n+1=a n3−2a n (n ∈N ∗) .(1) 证明:{1a n −1} 是等比数列,并求数列{a n } 的通项公式;(2) 记b n =n (1a n −1) ,求{b n } 的前n 项和S n .变式:已知各项都为正数的数列{a n } 满足a n+1+a n =3⋅2n ,a 1=1 .(1) 若b n =a n −2n ,求证:{b n } 是等比数列;(2) 求数列{a n } 的通项公式.方法感悟:判定等比数列的四种常用方法定义法 若a n+1a n =q (q 为非零常数,n ∈N ∗ )或a n a n−1=q (q为非零常数,且n ≥2 ,n ∈N ∗ ),则{a n } 是等比数列等比中项法 在数列{a n } 中,若a n ≠0 且a n+12=a n ⋅a n+2(n ∈N ∗) ,则{a n } 是等比数列通项公式法 若数列{a n } 的通项公式可以写成a n =c ⋅q n (c ,q均是不为0的常数,n ∈N ∗ )的形式,则{a n } 是等比数列前n 项和公式法 若数列{a n } 的前n 项和S n =k ⋅q n −k (k 为常数,且k ≠0 ,q ≠0 ,q ≠1 ),则{a n } 是等比数列五.达标练习1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =-3,ac =9B .b =3,ac =9C .b =-3,ac =-9D .b =3,ac =-92.已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6= ( )A .14B .12C .6D .33.记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -14.在数列{a n }中,满足a 1=2,a 2n =a n -1·a n +1(n ≥2,n ∈N *),S n 为{a n }的前n 项和.若a 6=64,则S 7的值为( )A .126B .256C .255D .2545. 已知正项等比数列{a n}的首项为1,且4a5,a3,2a4成等差数列,则{a n}的前6项和为( )A. 31B. 3132C. 6332D. 636. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10= 215−25,则k=( )A. 2B. 3C. 4D. 57. 已知等比数列{a n},其前n项和为S n.若a2=4,S3=14,则a3=.8. 已知等比数列{a n}的公比为−1,前n项和为S n,若{S n−1}也是等比数列,则a1=.9.设等比数列{a n}满足a1+a2=4,a3−a1=8. 记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3,则m=.10.已知数列{a n}的前n项和为S n,且满足2S n=−a n+n(n∈N∗). (1)证明:数列{a n−12}为等比数列;(2)求数列{a n−1}的前n项和T n.。

2020年高考数学一轮复习考点29等差数列及其前n项和必刷题理含解析

2020年高考数学一轮复习考点29等差数列及其前n项和必刷题理含解析

考点29 等差数列及其前n 项和1、记S n 为等差数列{a n }的前n 项和,若S 33-S 22=1,则其公差d =( )A.12 B .2 C .3 D .4【答案】B【解析】由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝⎛⎭⎪⎫a 1+d 2=1,∴d =2.2、已知等差数列{a n }的前n 项和为S n ,a 3=3,a 5=5,则S 7的值是( ) A .30 B .29 C .28 D .27【答案】C【解析】由题意,设等差数列的公差为d ,则d =a 5-a 35-3=1,故a 4=a 3+d =4,所以S 7=7a 1+a 72=7×2a 42=7×4=28.故选C.3、已知等差数列{a n }的前n 项和为S n ,若a 3=8,S 6=54,则数列{a n }的公差为( ) A .2 B .3 C .4 D .92 【答案】A【解析】设等差数列{a n }的首项为a 1,公差为d ,则a 3=a 1+2d =8,S 6=6a 1+15d =54,解得a 1=4,d =2.故选A.4、等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8等于( ) A .18 B .12 C .9 D .6【答案】D【解析】.由题意得S 11=11a 1+a 112=112a 1+10d2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.5、已知等差数列{a n },且3(a 3+a 5)+2(a 7+a 10+a 13)=48,则数列{a n }的前13项之和为 ( ) A .24 B .39 C .104 D .52【答案】D【解析】因为{a n }是等差数列,所以3(a 3+a 5)+2(a 7+a 10+a 13)=6a 4+6a 10=48.所以a 4+a 10=8.其前13项的和为13a 1+a 132=13a 4+a 102=13×82=52,故选D.6、在等差数列{a n }中,a 1=-2 017,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 020=( )A .2 020B .-2 020C .4 040D .-4 040【答案】C【解析】设等差数列{a n }的前n 项和为S n =An 2+Bn ,则S n n =An +B ,∴⎩⎨⎧⎭⎬⎫S n n 是等差数列.∵S 1212-S 1010=2,∴⎩⎨⎧⎭⎬⎫S n n 的公差为1,又S 11=a 11=-2 017,∴⎩⎨⎧⎭⎬⎫S n n 是以-2 017为首项,1为公差的等差数列,∴S 2 0202 020=-2 017+2019×1=2,∴S 2 020=4 040.故选C.7、设S n 是等差数列{a n }的前n 项和,公差d ≠0,若S 11=132,a 3+a k =24,则正整数k 的值为 ( ) A .9 B .10 C .11 D .12【答案】A【解析】依题意,得S 11=11a 1+a 112=11a 6=132,a 6=12,于是有a 3+a k =24=2a 6,因此3+k =2×6=12,k =9,故选A.8、已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =x 2-10x 的图象上,等差数列{b n }满足b n +b n+1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( )A .S n <2T nB .b 4=0C .T 7>b 7D .T 5=T 6【答案】D【解析】因为点(n ,S n )(n ∈N *)在函数y =x 2-10x 的图象上,所以S n =n 2-10n ,所以a n =2n -11,又b n +b n +1=a n (n ∈N *),数列{b n }为等差数列,设公差为d ,所以2b 1+d =-9,2b 1+3d =-7,解得b 1=-5,d =1,所以b n =n -6,所以b 6=0,所以T 5=T 6,故选D.9、已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( ) A .7 B .8 C .7或8 D .8或9【答案】C【解析】由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n7.该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8.故选C.10、《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( ) A .1升 B .6766升 C.4744升 D .3733升 【答案】B【解析】设该等差数列为{a n },公差为d , 由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766.∴a 5=1322+4×766=6766.故选B.11、已知等差数列{a n }的前n 项和为S n (n ∈N *),若S 3S 5=25,则a 6a 12=( )A .4B .2 C.14 D .12【答案】D【解析】设等差数列{a n }的公差为d ,则3a 1+3d 5a 1+10d =25,可得a 1=d ,故a 6a 12=a 1+5d a 1+11d =6d 12d =12.故选D.12、下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列; p 3:数列{a nn}是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4【答案】D【解析】{a n }是等差数列,则a n =a 1+(n -1)d =dn +a 1-d ,因为d >0,所以{a n }是递增数列,故p 1正确;对p 2,举反例,令a 1=-3,a 2=-2,d =1,则a 1>2a 2,故{na n }不是递增数列,p 2不正确;a n n =d +a 1-dn,当a 1-d >0时,{a n n}递减,p 3不正确;a n +3nd =4nd +a 1-d,4d >0,{a n +3nd }是递增数列,p 4正确.故p 1,p 4是正确的,选D.13、设S n 为等差数列{a n }的前n 项和,且(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则 ( ) A .S n 的最大值是S 8 B .S n 的最小值是S 8 C .S n 的最大值是S 7 D .S n 的最小值是S 7【答案】D【解析】由条件,得S n n <S n +1n +1,即n a 1+a n 2n <n +1a 1+a n +12n +1,所以a n <a n +1.所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零.所以S n 的最小值为S 7.故选D.14、数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( ) A .0 B .3 C .8 D .11【答案】B【解析】∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,∴a 8=3.故选B.15、在等差数列{a n }中,已知a 3=5,a 7=-7,则S 10的值为( ) A .50 B .20 C .-70 D .-25【答案】D【解析】设等差数列{a n }的公差为d .∵a 7-a 3=4d =-12,∴d =-3,∴a 10=a 7+3d =-16,a 1=a 3-2d =11,∴S 10=10a 1+a 102=-25.故选D.16、如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n+1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列 D .{d 2n }是等差数列【答案】A【解析】作A 1C 1,A 2C 2,A 3C 3,…,A n C n 垂直于直线B 1B n ,垂足分别为C 1,C 2,C 3,…,C n ,则A 1C 1∥A 2C 2∥…∥A n C n .∵|A n A n +1|=|A n +1A n +2|, ∴|C n C n +1|=|C n +1C n +2|.设|A 1C 1|=a ,|A 2C 2|=b ,|B 1B 2|=c ,则|A 3C 3|=2b -a ,…,|A n C n |=(n -1)b -(n -2)a (n ≥3), ∴S n =12c [(n -1)b -(n -2)a ]=12c [(b -a )n +(2a -b )], ∴S n +1-S n =12c [(b -a )(n +1)+(2a -b )-(b -a )n -(2a -b )]=12c (b -a ),∴数列{S n }是等差数列.17、已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为________. 【答案】19. 【解析】∵a 11a 10<-1,且S n 有最大值, ∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19a 1+a 192=19·a 10>0,S 20=20a 1+a 202=10(a 10+a 11)<0,故使得S n >0的n 的最大值为19.18、若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为________. 【答案】23.【解析】因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.19、在等差数列{a n }中,a 15=33,a 25=66,则a 35=________. 【答案】99【解析】∵a 25-a 15=10d =66-33=33,∴a 35=a 25+10d =66+33=99.20、《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.则月末日织几何?”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布.若第一天织5尺布,现在一个月(按30天计)共织390尺布,则该女最后一天织________尺布. 【答案】21【解析】由题意得,该女每天所织的布的尺数依次排列形成一个等差数列,设为{a n },其中a 1=5,前30项和为390,于是有305+a 302=390,解得a 30=21,即该女最后一天织21尺布.21、已知{a n }为等差数列,公差为1,且a 5是a 3与a 11的等比中项,则a 1=________. 【答案】-1【解析】因为a 5是a 3与a 11的等比中项,所以a 25=a 3·a 11,即(a 1+4d )2=(a 1+2d )·(a 1+10d ),解得a 1=-1.22、设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 【答案】1941【解析】因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,所以a 9b 5+b 7+a 3b 8+b 4=1941.23、设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 【答案】130【解析】由a n =2n -10(n ∈N *),知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0;当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.24、已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40. (1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n .【答案】(1) 2n +2 (2) -n 2+10n T n =⎩⎪⎨⎪⎧-n 2+10n ,n ≤5,n 2-10n +50,n ≥6.【解析】(1)设等差数列{a n }的公差为d , 由题意知,a 1+a 2=2a 1+d =10,S 5=5a 3=40,即a 3=8,所以a 1+2d =8,所以⎩⎪⎨⎪⎧a 1=4,d =2,所以a n =4+(n -1)·2=2n +2.(2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6,设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n . 当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.∴T n =⎩⎪⎨⎪⎧-n 2+10n ,n ≤5,n 2-10n +50,n ≥6.25、记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 【答案】(1) (-2)n. (2) S n +1,S n ,S n +2成等差数列 【解析】(1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q2=-6.解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n.(2)由(1)可得S n =a 11-q n 1-q =-23+(-1)n·2n +13.由于S n +2+S n +1=-43+(-1)n·2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+-1n·2n +13=2S n,故S n +1,S n ,S n +2成等差数列.26、在公差不为0的等差数列{a n }中,a 1,a 4,a 8成等比数列. (1)若数列{a n }的前10项和为45,求数列{a n }的通项公式; (2)若b n =1a n a n +1,且数列{b n }的前n 项和为T n ,若T n =19-1n +9,求数列{a n }的公差. 【答案】(1)n +83. (2) -1或1【解析】(1)设数列{a n }的公差为d (d ≠0),由a 1,a 4,a 8成等比数列可得a 24=a 1·a 8,即(a 1+3d )2=a 1·(a 1+7d ),解得a 1=9d . 由数列{a n }的前10项和为45得10a 1+45d =45,即90d +45d =45,所以d =13,a 1=3.故数列{a n }的通项公式为a n =3+(n -1)×13=n +83.(2)因为b n =1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,所以数列{b n }的前n 项和T n =1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1,即T n =1d ⎝ ⎛⎭⎪⎫1a 1-1a 1+nd =1d ⎝ ⎛⎭⎪⎫19d -19d +nd =1d 2⎝ ⎛⎭⎪⎫19-19+n =19-19+n, 因此1d2=1,解得d =-1或d =1.故数列{a n }的公差为-1或1.27、已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S n n,证明数列{b n }是等差数列,并求其前n 项和T n . 【答案】(1) a =2,k =10 (2)n n +32【解析】(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k k -12·d =2k +k k -12×2=k 2+k .由S k =110,得k 2+k -110=0, 解得k =10或k =-11(舍去), 故a =2,k =10. (2)由(1),得S n =n 2+2n2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n 2+n +12=n n +32.28、设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =a na n +t,问:是否存在正整数t ,使得b 1,b 2,b m (m ≥3,m ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 【答案】(1) 2n -1 n2(2) 存在正整数t ,使得b 1,b 2,b m 成等差数列【解析】(1)设{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+16d =34,3a 1+3d =9,解得a 1=1,d =2, 故a n =2n -1,S n =n 2. (2)由(1)知b n =2n -12n -1+t,要使b 1,b 2,b m 成等差数列,必须有2b 2=b 1+b m , 即2×33+t =11+t +2m -12m -1+t, 移项得2m -12m -1+t =63+t -11+t =6+6t -3-t3+t 1+t,整理得m =3+4t -1. 因为m ,t 为正整数, 所以t 只能取2,3,5.当t =2时,m =7;当t =3时,m =5; 当t =5时,m =4.所以存在正整数t ,使得b 1,b 2,b m 成等差数列.。

备考高考数学一轮复习:29 等比数列及其前n项和(解析版)

备考高考数学一轮复习:29 等比数列及其前n项和(解析版)

备考2020年高考数学一轮复习:29 等比数列及其前n项和一、单选题1.(2019•全国Ⅲ)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A. 16B. 8C. 4D. 22.等比数列前项和为,则下列一定成立的是()A. 若,则B. 若,则C. 若,则D. 若,则3.已知等比数列{an}中,a1+a2=3,a3+a4=12,则a5+a6=( ).A. 3B. 15C. 48D. 634.若三个实数成等比数列,其中,,则()A. 2B.C.D. 45.已知数列是由正数组成的等比数列,为其前项和.已知,则( )A. B. C. D.6.设{a n}为等比数列,给出四个数列:①{2a n},②{a n2},③{2an},④{log2la n}.其中一定为等比数列的是()A. ①②B. ①③C. ②③D. ②④7.已知为等比数列的前项和,且,则()A. 510B. 510C. 1022D. 10228.已知等比数列满足,,则()A. B. 2 C. 或 2 D. 29.已知正项等比数列的前项和为,若,则()A. B. C. D.10.设等比数列的前n项和为,若,,则A. 144B. 81C. 45D. 6311.设等比数列的公比,前项和为,则=()A. B. C. D.12.记数列的前项和为.已知,,则()A. B. C. D.二、填空题13.(2019•卷Ⅰ)记S n为等比数列{a n}的前n项和。

若a1=,,则S5=________14.已知等比数列中,,则公比________;________.15.已知数列{a n}的首项a1=2,数列{b n}为等比数列,且b n=.若b10b11=2,则a21=________.16.已知等比数列中,,,则________.17.无穷等比数列各项和的值为2,公比,则首项的取值范围是________三、解答题18.已知数列满足.(1)证明:是等比数列;(2)求.19.(2019•卷Ⅱ)已知是各项均为正数的等比数列,,。

届高考数学一轮复习讲义第六章等比数列及其前n项和

届高考数学一轮复习讲义第六章等比数列及其前n项和

变式训练 4
已知数列{an}满足a1=
1 2

3an+1-an 1+an+1
(1)利用已知条件,建立a1和q满足的两个方程,解之可得{an}, 从而可求出S8. (2)利用前n项和公式列出方程组求出a1和q,使问题得到解 决.需注意的是Sn应分q=1和q≠1两种情况来考虑.
解 (1)设数列{an}的公比为q,
由通项公式an=a1qn-1及已知条件得:
a6-a4=a1q3q2-1=24, ①
例3 在等比数列{an}中, (1)若已知a2=4,a5=-12,求an; (2)若已知a3a4a5=8,求a2a3a4a5a6的值.
注意巧用性质,减少计算.如:对于等比数列{an},若m+n=p +q (m、n、p、q∈N*),则am·an=ap·aq;若m+n=2p(m,n, p∈N*),则am·an=a2p. 解 (1)设公比为q,则aa52=q3,即q3=-18, ∴q=-12,∴an=a5·qn-5=-12n-4.
等比数列{an}的公比为 q(q≠0),其前 n 项和为 Sn, 当 q=1 时,Sn=na1; 当 q≠1 时,Sn=a111--qqn=a11--aqnq.
要点梳理
忆一忆知识要点
6.等比数列前n项和的性质
公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n- Sn,S3n-S2n仍成等比数列,其公比为 qn .
(2)由cn求an再求bn.
(1)证明 ∵an+Sn=n,

∴an+1+Sn+1=n+1.

②-①得an+1-an+an+1=1,
∴2an+1=an+1,∴2(an+1-1)=an-1, ∴aan+n-1-11=12,∴{an-1}是等比数列.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省三门峡市高考数学一轮复习:29 等比数列及其前n项和
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)已知数列{an}是等差数列,数列{bn}是等比数列(bn>0).()
A . 若b7≤a6 ,则b4+b10≥a3+a9
B . 若b7≤a6 ,则b4+b10≤a3+a9
C . 若b6≥a7 ,则b3+b9≥a4+a10
D . 若b6≤a7 ,则b3+b9≤a4+a10
2. (2分)一个直角三角形三边的长成等比数列,则()
A . 三边边长之比为3:4:5
B . 三边边长之比为
C . 较小锐角的正弦为
D . 较大锐角的正弦为,
3. (2分) (2016高一下·水富期中) 已知递增等比数列{an}的第3项,第5项,第7项的积为512,且这三项分别减去1,3,9后构成一个等差数列,则数列an的公比为()
A .
B .
C .
D .
4. (2分) (2017高一下·芮城期末) 各项均为正数的等比数列的前项和为,若,则()
A . 80
B . 16
C . 26
D .
5. (2分)数列{an}为等比数列,Sn为其前n项和,已知a3=6,S3=18,则公比q= ()
A . 1
B .
C . 1或
D . 1或
6. (2分) (2017高三上·甘肃开学考) 公差不为0的等差数列{an}中,3a2005﹣a20072+3a2009=0,数列{bn}是等比数列,且b2007=a2007 ,则b2006b2008=()
A . 4
B . 8
C . 16
D . 36
7. (2分)(2018·衡水模拟) 已知等差数列的前项和为,,,数列满足,,设,则数列的前11项和为()
A . 1062
B . 2124
C . 1101
D . 1100
8. (2分)在等比数列中,若,则()。

A . -4
B . -2
C . 4
D . 2
9. (2分)已知定义在R上的函数、满足,且,
,若有穷数列()的前n项和等于,则n等于()
A . 4
B . 5
C . 6
D . 7
10. (2分)已知等比数列满足,则()
A . 64
B . 81
C . 128
D . 243.
11. (2分) (2018高二上·济宁月考) 各项都是实数的等比数列,前项和记为,若
,则等于()
A . 150
B .
C . 150或
D . 400或
12. (2分) (2016高一下·安徽期中) 一个等比数列前n项的和为24,前3n项的和为42,则前2n项的和为()
A . 36
B . 34
C . 32
D . 30
二、填空题 (共5题;共6分)
13. (1分)(2018·梅河口模拟) 设正项等比数列的前项和为,若,则
的最小值为________.
14. (2分)在正项等比数列{an}中,lga3+lga6+lga9=3,则a1a11的值是________.
15. (1分) (2015高二上·潮州期末) 设Sn为等比数列{an}的前n项和,8a2﹣a5=0,则 =________.
16. (1分)已知{an}是等比数列,且a2+a6=3,a6+a10=12,则a8+a12=________
17. (1分) (2017高三上·常州开学考) 设等比数列{an}的前n项和为Sn ,若Sk=33,Sk+1=﹣63,Sk+2=129,其中k∈N* ,则k的值为________.
三、解答题 (共5题;共50分)
18. (10分) (2018高一下·黑龙江期末) 等比数列中,.
(1)求的通项公式;
(2)记为的前项和.若,求.
19. (10分) (2016高一下·苏州期中) 已知{an}为等差数列,且a3=﹣6,a6=0.
(1)求{an}的通项公式.
(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3,求{bn}的前n项和公式.
20. (10分) (2018高二上·泰安月考) 已知数列中,, . 且对,有 .
设,求证:数列为等比数列,并求的通项公式;
求数列的前项和 .
21. (10分) (2016高一下·广州期中) 已知等差数列{an}的公差不为零,a1=25,且a1 , a11 , a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n﹣2.
22. (10分)(2018·内江模拟) 设是数列的前项和.已知, .
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共5题;共6分)
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题 (共5题;共50分) 18-1、
18-2、
19-1、
19-2、
20-1、21-1、21-2、
22-1、。

相关文档
最新文档