精编高三理科数学直线与圆锥曲线位置关系题型与方法
高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

卜人入州八九几市潮王学校数学概念、方法、题型、易误点技巧总结——圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F,F的间隔的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的间隔的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值〞与<|F F|不可无视。
假设=|F F|,那么轨迹是以F,F为端点的两条射线,假设﹥|F F|,那么轨迹不存在。
假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。
比方:①定点,在满足以下条件的平面上动点P的轨迹中是椭圆的是A.B.C.D.〔答:C〕;②方程表示的曲线是_____〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母〞,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点间隔与此点到相应准线间隔间的关系,要擅长运用第二定义对它们进展互相转化。
如点及抛物线上一动点P〔x,y〕,那么y+|PQ|的最小值是_____〔答:2〕2.圆锥曲线的HY方程〔HY方程是指中心〔顶点〕在原点,坐标轴为对称轴时的HY位置的方程〕:〔1〕椭圆:焦点在轴上时〔〕〔参数方程,其中为参数〕,焦点在轴上时=1〔〕。
方程表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。
比方:①方程表示椭圆,那么的取值范围为____〔答:〕;②假设,且,那么的最大值是____,的最小值是___〔答:〕〔2〕双曲线:焦点在轴上:=1,焦点在轴上:=1〔〕。
方程表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。
比方:①双曲线的离心率等于,且与椭圆有公一共焦点,那么该双曲线的方程_______〔答:〕;②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,那么C的方程为_______〔答:〕〔3〕抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
直线与圆锥曲线的位置关系(总结归纳)

y=±
33x,
∴有- 33≤k≤ 33.
• 答案:C
• 【例1】 已知直线y=(a+1)x-1与曲线y2=ax恰有一 个公共点,求实数a的值.
解• 析分证:联结析立论:方程.先组用yy2==代(aax+数. 1)方x-法1,即联(1)立当 a方=0程时,组此解方程决组恰,有再一组从解几为何xy==上10.,验
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
1.直线y=kx-k+1与椭圆 x2 y2 1 的位置关系为( A )
(A) 相交 (B) 相切 9 (C)4相离
(D) 不确定
2.已知双曲线方程x2-y2=1,过P(0,1)点的直线l与双曲线
只有一个公共点,则l的条数为( A )
(A)4
(B)3
(C)2
(D)1
3.过点(0,1)与抛物线y2=2px(p>0)只有一个公共点的直线
a
为
4 0,-1,-5时,
直线 y=(a+1)x-1 与曲线 y2=ax 恰有一个公共点.
三、弦的中点问题
x2 y2 设 A(x1,y1),B(x2,y2)是椭圆a2+b2=1 上不同的两点,
且 x1≠x2,x1+x2≠0,M(x0,y0)为 AB 的中点,则xaxa212222++ybyb212222==11,.
高三直线与圆锥曲线的位置关系

x2-y2=1,
当 1-k2=0 即 k=±1 时,方程组有唯一解,满足题意;
当 1-k2≠0,Δ=4k2+8(1-k2)=0,
即 k=± 2时,方程组有唯一解,也满足题意. 例 2:设抛物线 y2=8x 的准线与 x 轴交于点 Q,若过点 Q 的直线 l 与抛物线有公共点,则直线 l
的斜率的取值范围是( )
率为 k,则直线 l 与双曲线 C 的左、右两支都相交的充要条件是( )
A.k2-e2>1 B.k2-e2<1 C.e2-k2>1
D.e2-k2<1
分析:由双曲线的图象和渐近线的几何意义,可知直线的斜率
k
bb 只需满足- <k< ,即
k2<b2
aa
a2
=c2-a2=e2-1. a2
题型 2:圆锥曲线中的弦长、弦中点问题
线 m 若存在,求出它的方程;若不存在,说明理由.
分析:(1)设弦的两端点为
P1(x1,y1),P2(x2,y2),则
2x21-y21=2, 2x22-y22=2,
两式相减得到 2(x1-x2)(x1
+x2)=(y1-y2)(y1+y2),又 x1+x2=4,y1+y2=2,
所以直线斜率 k=y1-y2=4.故求得直线方程为 4x-y-7=0. x1-x2
5
4 m2-1
x1x2=
,y1-y2=x1-x2,
5
∴PQ= (x12 x22 ) ( y12 y22 ) =
8
-m 5
2-16
m2-1
2
5
=2,
解得 m2=15,满足(*),∴m=±
30 .
8
4
例 3:直线 4kx-4y-k=0 与抛物线 y2=x 交于 A,B 两点,若|AB|=4,则弦 AB 的中点到
直线与圆锥曲线位置关系面积问题的解决方法

直线与圆锥曲线位置关系面积问题的解决方法直线与圆锥曲线位置关系面积问题是一个常见的数学问题,通常涉及到直线和圆锥曲线(如椭圆、抛物线、双曲线等)的交点,以及这些交点构成的图形的面积计算。
解决这类问题的一般步骤如下:1. 确定交点:首先需要找出直线和圆锥曲线的交点。
这通常通过解联立方程组实现,其中方程组中的每一个方程分别代表直线和圆锥曲线的方程。
2. 计算交点构成的图形面积:一旦找到了交点,就可以计算这些交点构成的图形的面积。
这通常涉及到使用几何知识,如三角形面积公式、矩形面积公式等。
3. 确定面积的最值:在某些情况下,可能需要找出由交点构成的图形面积的最小值或最大值。
这通常通过求导数并找到导数为零的点来实现,或者通过不等式性质来寻找。
下面是一个具体的例子,说明如何解决这类问题:例题:设椭圆$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$($a > b > 0$)的左焦点为$F$,上顶点为$A$,直线$AF$与椭圆相交于$B、C$两点。
已知$F(-1,0)$,$A(0,1)$,且$\Delta FBC$的面积为$\frac{3}{2}$。
(1)求椭圆的方程;(2)设点$M(x_{0},y_{0})$在椭圆上,且$\overset{\longrightarrow}{OM} \cdot \overset{\longrightarrow}{FB} = 0$(其中$O$为坐标原点),求四边形$OAFM$的面积的最大值。
解:(1)由题意知,左焦点$F(-1,0)$,上顶点$A(0,1)$。
因此,直线$AF$的方程为$x = -1$。
将$x = -1$代入椭圆方程$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$,得到$y = \pm \frac{b}{a}$。
所以,交点$B(-1, \frac{b}{a})$和$C(-1, -\frac{b}{a})$。
(完整版)解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知---—-—--这类问题一般可用待定系数法解决. 2.曲线的形状未知-———-求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1〉r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明.2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法",即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M (x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
精编高三理科数学直线与圆锥曲线位置关系题型与方法

精编高三理科数学直线与圆锥曲线位置关系题型与方法 题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1l y kx =+与椭圆22:14x y C m+=始终有交点,求m 的取值范围 题型二:弦的垂直平分线问题例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
例题3、已知椭圆1222=+y x 的左焦点为F ,O 为坐标原点。
(Ⅰ)求过点O 、F ,并且与2x =-相切的圆的方程;(Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围。
题型三:动弦过定点的问题例题4、(07山东)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3;最小值为1;(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
题型四:过已知曲线上定点的弦的问题例题5、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =PQ的斜率。
练习:(2009辽宁)已知,椭圆C 以过点A (1,),两个焦点为(-1,0)(1,0)。
(1) 求椭圆C 的方程;(2) E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值。
圆锥曲线定直线问题解题方法与技巧

圆锥曲线定直线问题解题方法与技巧标题:圆锥曲线定直线问题的解题方法与技巧一、引言在解析几何中,圆锥曲线是重要的研究对象,其中涉及到的定直线问题要求我们找出经过特定点或者满足特定条件的直线方程。
这类问题通常需要综合运用直线与圆锥曲线的位置关系、参数方程、极坐标方程以及代数运算等知识。
以下将详细介绍解决此类问题的一些基本方法和实用技巧。
二、基本解题方法1. 利用位置关系确定直线方程:当已知直线过某定点或与圆锥曲线相切、相交于两点等情况时,可以利用圆锥曲线的标准方程(例如椭圆、双曲线、抛物线)与直线的一般方程联立,通过求解方程组得到交点坐标,进而确定直线方程。
2. 参数法:圆锥曲线的参数方程能直观地反映点与曲线的关系,当直线与圆锥曲线有特殊关系(如切线、法线)时,可先将直线写成参数形式,然后与圆锥曲线的参数方程联立求解参数,从而得出直线的方程。
3. 极坐标法:在某些情况下,若圆锥曲线或直线在极坐标下表达更为简便,可直接在极坐标系中建立方程,求解后转换为直角坐标系下的直线方程。
三、解题技巧1. 明确题目条件:解决定直线问题时,首先要明确直线需要满足的条件,如是否过定点、是否为圆锥曲线的切线、斜率是否存在等,这些信息对于选择合适的解题方法至关重要。
2. 判断直线与圆锥曲线的位置关系:通过计算判别式,可以判断直线与圆锥曲线的位置关系,如相离、相切、相交等,进一步决定如何设定直线方程。
3. 巧妙应用韦达定理:在处理直线与圆锥曲线交点问题时,韦达定理是一个非常有力的工具。
它可以快速给出两交点横坐标的乘积和和关系,帮助简化计算过程。
4. 充分利用对称性:圆锥曲线具有良好的对称性,有时可以根据对称性简化问题,比如已知直线过原点或与坐标轴平行的情况。
总结,解决圆锥曲线定直线问题需灵活运用解析几何的基础理论,结合具体情况选择最适宜的解题策略,同时注重培养观察问题的能力和逻辑推理能力,以提升解题效率与准确性。
高考第一轮复习数学直线与圆锥曲线的位置关系

例3在抛物线y2=4x上恒有两点关于直线y=kx+3对称,求k的取值范围.
剖析:设B、C两点关于直线y=kx+3对称,易得直线BC:x=-ky+m,由B、C两点关于直线y=kx+3对称可得m与k的关系式,
答案:
5.求过点0,2的直线被椭圆x2+2y2=2所截弦的中点的轨迹方程.
解:设直线方程为y=kx+2,
把它代入x2+2y2=2,
整理得2k2+1x2+8kx+6=0.
要使直线和椭圆有两个不同交点,则Δ>0,即k<- 或k> .
设直线与椭圆两个交点为Ax1,y1、Bx2,y2,中点坐标为Cx,y,则
2.涉及直线与圆锥曲线相交弦的问题,主要有这样几个方面:相交弦的长,有弦长公式|AB|= |x2-x1|;弦所在直线的方程如中点弦、相交弦等、弦的中点的轨迹等,这可以利用“设点代点、设而不求”的方法设交点坐标,将交点坐标代入曲线方程,并不具体求出坐标,而是利用坐标应满足的关系直接导致问题的解决.
3.涉及到圆锥曲线焦点弦的问题,还可以利用圆锥曲线的焦半径公式即圆锥曲线的第二定义,应掌握求焦半径以及利用焦半径解题的方法.
条条条条
解析:数形结合法,同时注意点在曲线上的情况.
答案:B
2.已知双曲线C:x2- =1,过点P1,1作直线l,使l与C有且只有一个公共点,则满足上述条件的直线l共有
条条条条
解析:数形结合法,与渐近线平行、相切.
答案:D
3.双曲线x2-y2=1的左焦点为F,点P为左支下半支上任意一点异于顶点,则直线PF的斜率的变化范围是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型八:角度问题
例题 9、(08 重庆理)如图(21)图,M(-2,0)和 N(2,0)是平面上的两点,动点 P
满足: PM PN 6.
(Ⅰ)求点 P 的轨迹方程;
(Ⅱ)若 PM · PN =
2
,求点 P 的坐标.
1 cos MPN
练习 2、(07 四川理)设 F1 、 F2 分别是椭圆
x2 4
的斜率。
练习:(2009 辽宁)已知,椭圆 C 以过点 A(1, 3 ),两个焦点为 2
(-1,0)(1,0)。 (1) 求椭圆 C 的方程; (2) E,F 是椭圆 C 上的两个动点,如果直线 AE 的斜率与 AF 的斜率互为相反数,证明直
线 EF 的斜率为定值,并求出这个定值。
题型五:共线向量问题
是椭圆 E:
x2 a2
y2 b2
1 (a
b 0) 上的三点,其中点 A (2
3, 0)
是椭圆的右顶点,直线 BC 过椭圆的中心 O,且 ACBC 0 , BC 2 AC ,如图。
(I)求点 C 的坐标及椭圆 E 的方程;
(II)若椭圆 E 上存在两点 P、Q,使得直线 PC 与直线 QC 关于直线 x 3 对称,求直线 PQ
设椭圆 E:
x2 a2
y2 b2
1(a,b>0Leabharlann 过 M(2,2 ) ,N(
6 ,1)两点,O 为坐标原点,
(I)求椭圆 E 的方程;
(II)是否 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆 E 恒有两个交点 A,B,且 OA OB ?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
MA 1 AF, AF 2 BF ,求 1 2 的值。
题型六:面积问题
x2 例题 7、(07 陕西理)已知椭圆 C: a2
y2 b2
1 (a>b>0)的离心率为
6 , 短轴一个 3
端点到右焦点的距离为 3 。(Ⅰ)求椭圆 C 的方程;(Ⅱ)设直线 l 与椭圆 C 交于 A、B
3
两点,坐标原点 O 到直线 l 的距离为 ,求△AOB 面积的最大值。
1(a
b
0) 过 点
M(
2,1) , 且 着 焦 点 为
F1( 2, 0) (Ⅰ)求椭圆 C 的方程; (Ⅱ)当过点 P(4,1) 的动直线 l 与椭圆 C 相交与两不同点 A, B 时,在线段 AB 上取点 Q ,
满足 AP QB AQ PB ,证明:点 Q 总在某定直线上
练习 1、(08 四川理)设椭圆 x2 y2 1 a2 b2
(a b 0) 的左、右焦点分别为 F1 、 F2 ,离心率 e
2, 2
右准线为 l , M
、N 是l
上的两个动点,
F1M
F2 N
0
.
(Ⅰ)若| F1M || F2N | 2
y2
1的左、右焦点。
(Ⅰ)若 P 是该椭圆上的一个动点,求 PF1 · PF2 的最大值和最小值;
(Ⅱ)设过定点 M (0,2) 的直线 l 与椭圆交于不同的两点 A 、 B ,且∠ AOB 为锐角
(其中 O 为坐标原点),求直线 l 的斜率 k 的取值范围。 练习 3、(08 陕西理)已知抛物线 C : y 2x2 ,直线 y kx 2 交 C 于 A,B 两点, M 是
线段 AB 的中点,过 M 作 x 轴的垂线交 C 于点 N . (Ⅰ)证明:抛物线 C 在点N处的切线与 AB 平行; (Ⅱ)是否存在实数 k 使 NANB 0 ,若存在,求 k 的值;若不存在,说明理由.
问题九:四点共线问题
例题
10、( 08 安 徽 理 ) 设 椭 圆
C:
x2 a2
y2 b2
例题 3、已知椭圆 x 2 y 2 1 的左焦点为 F,O 为坐标原点。(Ⅰ)求过点 O、F,并且 2
与 x 2 相切的圆的方程;(Ⅱ)设过点 F 且不与坐标轴垂直的直线交椭圆于 A、B 两点,
线段 AB 的垂直平分线与 x 轴交于点 G,求点 G 横坐标的取值范围。
题型三:动弦过定点的问题
例题 4、(07 山东)已知椭圆 C 的中心在坐标原点,焦点在 x 轴上,椭圆 C 上的点到焦点距
(Ⅰ)若点 N 是点 C 关于坐标原点 O 的对称点,求△ANB 面积的最小值;
(Ⅱ)是否存在垂直于 y 轴的直线 l,使得 l 被以 AC 为直径的圆截得弦长恒为定值?
若存在,求出 l 的方程;若不存在,说明理由。(此题不要求在答题卡上画图)
练习、(山东 09 理)(22)(本小题满分 14 分)
2
练习 1、如图,直线 y kx b 与椭圆 x2 y2 1交于 A、B 两点,记 ABC 的面积为 S 。 4
(Ⅰ)求在 k 0 , 0 b 1 的条件下, S 的最大值;
(Ⅱ)当 AB 2,S 1时,求直线 AB 的方程。
题型七:弦或弦长为定值问题
例题 9、(07 湖北理科)在平面直角坐标系 xOy 中,过定点 C(0,p)作直线与抛物线 x2=2py(p>0)相交于 A、B 两点。
例题(07 福建)如图,已知点F(1, 0),直线l:x=-1,P 为平面上的动点,过 P 作直 线 l 的垂线,垂足为点 Q ,且 QP QF FP FQ
(Ⅰ)求动点 P 的轨迹 C 的方程;
( Ⅱ ) 过 点 F 的 直 线 交 轨 迹 C 于 A、 B 两 点 , 交 直 线 l 于 点 M, 已 知
精编高三理科数学直线与圆锥曲线位置关系题型与方法 题型一:数形结合确定直线和圆锥曲线的位置关系
例题 1、已知直线 l : y kx 1 与椭圆 C : x2 y2 1 始终有交点,求 m 的取值范围 4m
题型二:弦的垂直平分线问题
例题 2、过点 T(-1,0)作直线 l 与曲线 N : y2 x 交于 A、B 两点,在 x 轴上是否存在一点 E( x0 ,0),使得 ABE 是等边三角形,若存在,求出 x0 ;若不存在,请说明理由。
离的最大值为 3;最小值为 1;(Ⅰ)求椭圆 C 的标准方程;(Ⅱ)若直线 l:y kx m
与椭圆 C 相交于 A,B 两点(A,B 不是左右顶点),且以 AB 为直径的圆过椭圆 C 的右顶
点。求证:直线 l 过定点,并求出该定点的坐标。
题型四:过已知曲线上定点的弦的问题
例题 5、已知点
A、B、C