第六章功能复合材料知识分享
第六章复合材料mme06

6.4.1 金属陶瓷
一、组成及分类
金属陶瓷是金属(通常为钛、镍、钴、铬等及其合金) 和陶瓷(通常为氧化物、碳化物、硼化物和氮化物 等)组成的非均质材料,是颗粒增强型的复合材料。 金属和陶瓷按不同配比组成工具材料(陶瓷为主)、 高温结构材料(金属为主)和特殊性能材料。 二、性能及应用 ●氧化物金属陶瓷 ---多以钴或镍作为粘接金属,热 稳定性和抗氧化能力较好,韧性高。
通常,复合材料的复合结果是密度大大减小,高的比 强度和比模量是复合材料的突出性能特点。 二、抗疲劳性能和抗断裂性能
1. 很好的抗疲劳性能
●复合材料中的纤维缺陷少,本身抗疲劳能力高;
●基体的塑性和韧性好,能够消除或减少应力集中,不易产生 微裂纹; ●塑性变形的存在又使微裂纹产生钝化而减缓了其扩展。
例如:碳纤维增强树脂的疲劳强度为拉伸强度的 70%~ 80%,一般金属材料却仅为30%~50%。 2. 抗断裂能力好 基体中有大量细小纤维,较大载荷下部分纤维断裂 时载荷由韧性好的基体重新分配到未断裂纤维上, 构件不会瞬间失去承载能力而断裂。
6.3.3 碳基复合材料
• 一、组成及特点---碳基复合材料是碳纤维及其制品(如
碳毡)增强的碳基复合材料。
●具有许多碳和石墨的特点,如密度小、导热性 高、膨胀系数低以及对热冲击不敏感; ●具有优越的机械性能:强度和冲击韧性比石墨高5 ~10倍,比强度非常高;随温度升高强度升高;断裂 韧性高、蠕变低; ●化学稳定性高,耐磨性极好, 是耐温最高的高温复合材料 (达2800℃)。
●自动控温开关
由温度膨胀系数不同的黄铜片和铁片复合而成的,如果单 用黄铜或铁片,不可能达到自动控温的目的。导电的铜片 两边加上两片隔热、隔电塑料,可实现一定方向导电、另 外方向绝缘及隔热的双重功能。
第六章复合材料表界面的分析表征

41
不同处理碳纤维增强复合材料冲击 载荷与冲击时间的对应关系
A. 接枝聚丙烯酰胺碳纤维; B. 接枝聚丙烯 酸碳纤维; C. 氧等离子处理碳纤维; D. 未 处理碳纤维
氧等离子处理(曲线C)碳纤维 复合丝试样的冲击载荷曲线主 要弹性承载能U1差不多比未处 理者增加近3倍,表明基体变形 更大,也有更多的纤维发生形 变。相反塑性承载能U2却小到 可略视的地步,几乎没有什么 纤维拔出和与基体的脱粘,充 分表明了强结合的界面特征。
25
碳纤维表面官能团的分析
还原剂,消除自由基,证明等 离子处理产生的大部分是游离
基,不是酚羟基
图6-25 等离子处理时间对自由基浓度的影响
在等离子处理初期,自由基浓度迅速增加,处 理5分钟后,自由基浓度增加渐趋平缓。
27
图6-26 UHMWPE纤维表面活性的衰减
经等离子处理后的UHMWPE纤维暴露在空气中,表 面自由基的浓度随时间而衰减,表面活性在逐渐减小
36
6.4.2 复合材料界面的动态力学分析
a-接枝玻纤 b-未接枝玻纤 涂敷聚苯乙烯树脂的玻璃纤维辫子的动态
力学扭辫曲线
曲线b在92℃处出现一个 尖锐的聚苯乙烯玻璃化转变 损耗峰,而曲线a上,在聚 苯乙烯玻璃化转变损耗峰高 温一侧还有一个小峰,一般 称为α’峰,也叫做界面峰。
界面粘结强,则试样承 受周期负荷时界面的能力损 耗大,α’峰越明显。
复合材料界面受到因 热膨胀系数不同引起 的热残余应力。热残 余应力的大小正比于 两者的热膨胀系数之 差Δα和温差ΔT, 也与基体和纤维的模 量有关。
29
❖ 6.4 界面力学性能的分析表征
复合材料 第六章 功能复合材料

48
如果把软磁材料(例如Fe--Si--A1合金) 制成粉末,表面被极薄的A12O3层或高聚物
分隔绝缘,然后热压或模压固化成块状软
磁体,则
49
从图A、B、D曲线看出,它的r值在相当宽的驱
动频率范围内不随交变场频率的升高而下降,从
而保持在一个较平稳的恒定值。
50
这种复合软磁材料的相对磁导率r值可 由下式描述:
20
因此,通常可以将一种具有两种性能相 互转换的功能材料X/Y和另一种换能材料Y/Z 复合起来,可用下列通式来表示,即:
X / Y .Y / Z X / Z
式中,X、Y、Z分别表示各种物理性能。 上式符合乘积表达式,所以称之为相 乘效应。
21
相乘效应的组合可以非常广泛,已
被用于设计功能复合材料。
18
相补效应和相抵效应常常是共同存在的。
显然,相补效应是希望得到的,而相抵
效应要尽量能够避免。 所有这些,可通过相应复合材料的设计 来加以实现。
19
相乘效应
两种具有转换效应的材料复合在一起, 即可发生相乘效应。
例如,把具有电磁效应的材料与具有
磁光效应的材料复合时,将可能产生具有
电光效应的复合材料。
合率来表示,则为
Ec EmVm E f V f
10
平行效应
显示这一效应的复合材料,它的各
组分材料在复合材料中,均保留本身 的作用,既无制约,也无补偿。
11
对于增强体(如纤维)与基体界 面结合很弱的复合材料,所显示的复 合效应,可以看作是平行效应。
12
相补效应
组成复合材料的基体与增强体,在性
23
诱导效应
在一定条件下,复合材料中的一个组分 材料可以通过诱导作用使另一个组分材料的
化学知识点初中复合材料

初中化学知识点:复合材料1.什么是复合材料?复合材料是由两种或更多种不同物质组合而成的材料。
它们的组合使得复合材料具有比单一物质更好的性能和特性。
2.复合材料的组成复合材料通常由两个主要组成部分构成:基体和增强材料。
基体是主要成分,起到固化增强材料的作用。
增强材料则提供了复合材料的特殊性能。
3.基体的种类基体可以是金属、陶瓷、聚合物等。
不同的基体材料具有不同的特性。
金属基体材料通常具有高强度和刚性,适用于需要承受高压和高温的应用。
陶瓷基体材料具有良好的耐磨性和耐腐蚀性,适用于高温和化学环境下的应用。
聚合物基体材料具有轻质和良好的绝缘性能,适用于需要轻质和绝缘的应用。
4.增强材料的种类增强材料可以是纤维、颗粒、颗粒等。
纤维增强材料是最常见的类型,如碳纤维、玻璃纤维等。
纤维增强材料具有高强度和刚性,能够增加复合材料的强度和耐用性。
颗粒增强材料可以改善复合材料的耐磨性和耐腐蚀性能。
5.复合材料的制备方法制备复合材料的方法有很多种,其中最常见的是层压法和浸渍法。
层压法是将基体和增强材料层层叠加,并通过压力和温度使其固化在一起。
浸渍法是将基体浸入增强材料的浆料中,使其吸附增强材料,并通过固化使其固定在基体上。
6.复合材料的应用复合材料具有广泛的应用领域。
在航空航天领域,复合材料被广泛应用于飞机和宇航器的结构件,以提高其强度和轻量化。
在汽车制造领域,复合材料可以用于制造车身和零部件,以提高汽车的燃油效率和碰撞安全性。
此外,复合材料还可以应用于建筑、体育用品、电子设备等领域。
7.复合材料的优点和挑战复合材料相比传统材料具有许多优点,如高强度、轻质、耐腐蚀等。
然而,复合材料的制备过程较为复杂,成本较高,并且在环境和可持续性方面面临挑战。
因此,如何平衡复合材料的性能和成本,以及如何解决其可持续性问题,是复合材料研究的重要课题。
总结:复合材料是由两种或更多种不同物质组合而成的材料。
它们的组合使得复合材料具有比单一物质更好的性能和特性。
--复合材料力学第六章细观力学基础

(二)纵向泊松比
21
RVE的纵向应变关系式:
2 f 2V f m2Vm
两边同时除以 1 ,可得:
21 f V f mVm
(三)纵横(面内)剪切模量
G12
在剪应力作用下,RVE的剪应变有如下 关系:
12 f V f mVm
以
12
12
G12
可在复合圆柱模型上施加不同的均匀应力边界条件,利用 弹性力学方法进行求解而得到有效模量,结果为:
2
2Gm
E
f
rf2
ln(
R rf
)
其中 Gm 为基体剪切模量,rf 为纤维半经,R为纤维间距,
l为纤维长度,R与纤维的排列方式和 V f 有关。
ET(短) ET (长)
2、Halpin-Tsai方程
EL Em
1
2
l d
LV
f
1 LV f
ET
1 2TV f
Em 1 TV f
此时,对L取:
RVE的要求: 1 、 RVE 的 尺 寸 << 整 体 尺 寸 , 则宏观可看成一点;
2、RVE的尺寸>纤维直径;
3、RVE的纤维体积分数=复合材料的纤维体积分数。
纤维体积分数:
Vf
vf v
v f —纤维总体积;
v —复合材料体积
注意:
只有当所讨论问题的最小尺寸远大于代表性体积单元时,
复合材料的应力应变等才有意义。
并可由RVE的解向邻近单元连续拓展到整体时,所得的有效 弹性模量才是严格的理论解。
则只有满足上述条件的复合材料的宏观弹性模量才能通过 体积平均应力、应变进行计算;或按应变能计算。
复合材料力学第六章2

变分符号
屈曲前平板保持平的,当外载荷达到某一临 界值时,层合板产生微弯状态,即小变形范围。 满足平衡方程。
像弯曲问题推导基本微分方程那样,将几何方程代入 物理方程,再代入平衡方程,就可得以下方程:
0 x Nx kx 0 Ny Aij y Bij ky 0 xy N xy k xy
D12 D22 D26
D16 k x D26 k y D66 k xy
u0, x w0, xx Bij v0, y Dij w0, yy u0, y v0, x 2w0, xy
B12 B22 B26
B16 k x B26 k y B66 k xy
u0, x w0, xx Aij v0, y Bij w0, yy u0, y v0, x 2w0, xy
D11 w, xxxx 4 D16 w, xxxy 2 D12 2 D66 w, xxyy 4 D26 w, xyyy D22 w, yyyy B11 u, xxx 3B16 u, xxy B12 2 B66 u, xyy B26 u, yyy B16 v, xxx B12 2 B66 v, xxy 3B26 v, xyy B22 v, yyy N x w, xx 2 N xy w, xy N y w, yy 0
A11u, xx 2 A16u, xy A66u, yy A16v, xx A12 A66 v, xy A26v, yy B11w, xxx 3B16 w, xxy B12 2 B66 w, xyy B26 w, yyy 0 A16u, xx A12 A66 u, xy A26u, yy A66v, xx 2 A26v, xy A22v, yy B16 w, xxx B12 2 B66 w, xxy 3B26 w, xyy B22 w, yyy 0
复合材料第六章功能复合材料

2.1.2 软磁复合材料
电器元件的小型化,导致磁路中追求更 高的驱动频率,为此应用的软磁材料,除在 静态磁场下经常要求的高饱和磁化强度和高 磁导率外,还要求它们具有低的交流损耗PL。
46
通常较大尺寸的金属软磁材料,其相对 磁导率 r 随驱动频率的增大而急速下降, 如下图所示:
47
Fe--Si---Al粉末颗粒复合体相对磁导率随驱动频率的变化 48
18
相补效应和相抵效应常常是共同存在的。 显然,相补效应是希望得到的,而相抵 效应要尽量能够避免。 所有这些,可通过相应复合材料的设计 来加以实现。
19
相乘效应
两种具有转换效应的材料复合在一起, 即可发生相乘效应。
例如,把具有电磁效应的材料与具有 磁光效应的材料复合时,将可能产生具有 电光效应的复合材料。
58
2.2 磁性材料
作为记录介质的强磁性材料,主要性能 指标是矫顽力Hc和剩余磁化强度Mr的大小。
这两个性能指标不仅受磁性材料种类的 影啊,也受颗粒的大小和形状的影响。
59
下表列出了目前使用的磁记录介质材料的磁
特性。
各种磁性粉末的特性
磁性材料
Mr/T
Hc/A.m-1
-Fe2O3
(1400~1800)*10-4
常用的物理乘积效应见下表所示:
22
复合材料的乘积效应
A相性质X/Y
压磁效应 压磁效应 压电效应 磁致伸缩效应 光导效应 闪烁效应 热致变形效应
B相性质Y/Z
复合后的乘积性质
(X/Y)(Y/Z)=X/Z
磁阻效应
压敏电阻效应
磁电效应
压电效应
场致发光效应
压力发光效应
压阻效应
磁阻效应
C-C复合材料

精品课件
6.3.1 C/C用碳纤维选择
1)碳纤维碱金属等杂质含量越低越好 C/C的一个重要用途是耐烧蚀材料,钠等碱金属是
碳的氧化催化剂; 当C/C用来制造飞行器烧蚀部件时,飞行器飞行过
程中由于热烧蚀而在尾部形成含钠离子流,易被 探测和跟踪,突防和生存能力受到威胁。 制造C/C的碳纤维碱金属含量要求<100mg/kg,目 前黏胶基碳纤维和PAV基碳纤维(特别是石墨纤维) 碱金属含量均满足要求。碱金属含量<50mg/kg的 超纯碳纤维的研制也正在进行中。
低压浸渍很难得到高致密度的C/C,其密度 一般为1.6~1.85,空隙率约为8~10%。
精品课件
3)高压浸渍
PIC工艺:浸渍和碳化都在高压下进行,利 用等静压技术使浸渍和碳化都在热等静压 炉内进行。可提高产碳率降低空隙率。
表6-5 PIC工艺压力对致密化的影响,当外 压增加到6.9MPa时产碳率显著增加,高密 度C/C复合材料需要51.7~103.4MPa的外压。
精品课件
1)等温法
工艺过程:将预制体放入等温感应炉中加 热,导入碳氢化合物和载气,碳氢化合物 分解后,碳沉积在预制体中。
工艺控制:为使碳均匀沉积,温度应该控 制得使碳氢化合物的扩散速度低于碳的沉 积速度。
特点:该法制得的C/C中碳沉积均匀,因而 性能也较均匀。但沉积时间较长,容易使 材料表面产生热裂纹。
表6-7 C/C在航天飞机上的应用 表6-8 C/C在战略导弹上的应用。
精品课件
图6-1 C/C在航天飞机上的应用部位
航天飞机表面温度
C/C在航天飞机上应用部位
图6-2 导弹鼻嘴
精品课件
6.5.2 刹车材料方面的应用