蓄能器的基本功能

蓄能器的基本功能
蓄能器的基本功能

蓄能器的基本功能

蓄能器的基本功能

蓄能器的功用主要分为存储能量、吸收液压冲击、消除脉动和回收能量等。

2.1 存储能量

这一类功用主要应用蓄能器能够较大量存储能量的功能。在实际使用中又可细分为作辅助动力源、减小装机容量、补偿泄漏、作紧急动力源以及构成恒压油源等。

2.1.1 作辅助动力源

典型液压源回路见图2-1,带蓄能器的液压源回路见图2-2。

图2-1 一般液压源回路图2-2 带蓄能器的液压源回路

两种回路从表面看仅为是否有蓄能器的差别,两种回路的性能差别却非常大。蓄能器作为能量储存装置在液压源回路中出现,其主要用途是作为辅助油源,该回路经常在间歇性操作工况的液压系统中被采用。液压源回路中安装蓄能装置,在减小液压泵的驱动功率、节约能源、降低噪声、消除肪动、降低设备运行成本等方面效果非常明显;另一方面还可以提高液压系统的安全性和可靠性,一旦发生故障或停电时,还可以作为应急动力源,促使主机恢复到安全状态,避免重大事故的发生。

这类回路在液压系统工作时能补充油量,减少液压油泵供油,降低电机功率,减少液压系统尺寸及重量,节约投资。常用于间歇动作,且工作时间很短;或在一个工作循环中速度差别很大,要求瞬间补充大量液压

油的场合。

典型辅助能源回路如图2-3所示。液压机液压系统中当模具接触工作慢进及保压时,部分液压油储入蓄能器;而在冲模快速向工件移动及快速退回时,蓄能器与泵同时供油,使液压缸快速动作。

对于图2-4所示的回路,调节节流阀,可以控制油缸运动速度,低速时系统压力波动很小,油泵保持卸荷状态,由蓄能器提供压力油,蓄能器成为动力源,驱动油缸运动。

图2-4 蓄能器为动力源的回路

图2-5所示的回路设置大小两个蓄能器,可以完成高、低压两个泵的功能。快进时,油泵和大蓄能器一起供油。当移动件碰上快速开关A时二位二通阀动作,接通小蓄能器的回路,此时,小蓄能器的压力大于大蓄能器的压力,故单向阀B截止,油泵和大蓄能器的油过不来,由快进转为工作进给,同时,油泵向大蓄能器充油。如果工作进给时间比蓄能器充油时间长,应用卸荷阀使油泵卸荷。

【例2-1】某轧钢厂实际年轧制能力大大超出了当初的年设计能力,年轧制能力的大大提高,导致轧制速度的提高。液压系统如图2-6所示。液压缸是其执行机构,由于轧制速度的提高,液压缸在同一时间内所需的液压油就更多,液压泵长时间处于超负荷状态,导致能耗增加,液压泵发热过高而损坏。同时,液压泵输出的液压油油温上升,密封件老化加快,极易泄漏,从而要求停机处理。当液压泵供油不足时,一组蓄能器就向系统供油,但是还不能满足系统供油需要时,蓄能器皮囊就极易破裂,对管路的冲击就会加大。

如果对恒压变量泵进行改造,加大其流量,那么液压泵的驱动电机也要重新进行匹配,再加上泵站内设

备布置、空间布局也要重新考虑。通过对液压系统的分析、比较,提出了一种代价最小,最切实可行的方法,就是加大蓄能器容量,经过比较选用了德国的HYDAC蓄能器。

改造完成后,用于主机生产,无需更换蓄能器皮囊。降低了工人的劳动强度,又降低了成本,提高了生产效益。

图2-6 液压系统原理图

1—液压泵;2—单向阀;3—蓄能器;4—过滤器;5—伺服阀;6—液压缸

2.1.2 保持恒压

某些液压执行元件工作中要求在一定的工作压力下长时间保持不动,这时如果启动液压泵来补充泄漏以保持恒压是不经济的,而采用蓄能器则是最经济有效的。

液压系统泄漏(内漏)时,蓄能器能向系统中补充供油,使系统压力保持恒定。常用于执行元件长时间不动作,并要求系统压力恒定的场合。

保压回路如图2-7所示,液压夹紧系统中二位四通阀左位接入,工件夹紧,油压升高,通过顺序阀1、二位二通阀2、溢流阀3使油泵卸荷,利用蓄能器供油,保持恒压。

图2-7 保压回路

1—顺序阀;2—二位二通阀;3—溢流阀

【例2-2】在风力发电机液压系统中,蓄能器用于降低液压泵启动频率。由于液压泵采用间歇工作制,当液压泵停止工作,而系统需要保压时,系统会有不同程度的内泄。使用蓄能器后就可通过释放蓄能器中储存的压力油来补偿系统的泄漏,使液压系统的压力基本维持恒定,这样就降低了液压泵的启动频率。在仅有一个失效制动类型执行机构的液压系统中,蓄能器容积往往选得很小。如选用大容量的蓄能器,在制动过程中必须将蓄能器中储存的压力油泄回油箱,这样就降低了执行机构的响应速度。BONUS600kW风力机的高速

制动液压系统中使用0.32L的蓄能器;NTK300kW风力机的机械制动液压系统中仅使用0.075L的蓄能器;NTK300kW风力机叶尖液压系统中,在高压油口中省略了蓄能器,靠缸体的变形和油液的微量压缩量来储存压力能。

【例2-3】小浪底水利枢纽是一座以防洪减淤为主,并兼顾供水、灌溉、发电等综合利用的大型工程。枢纽泄水建筑物由3条孔板洞、3条排沙洞、3条明流泄洪洞、6条发电洞及正常溢洪道组成。3条明流泄洪洞是枢纽主要泄洪建筑物,承担枢纽的泄洪、排沙、排漂等任务。

明流泄洪洞闸门和液压启闭机布置在进水塔内,每扇弧形闸门各由一台液压启闭机独立操作。

每套液压启闭机均有独立的液压泵站,泵站和油缸均布置在液压启闭机室内。

启闭机采用摇摆式结构,油缸支承在机架轴承座中,吊头与弧门吊耳相连。

启闭机泵站设有两套油泵电机组,其中一套作为工作泵组,一套作为备用泵组。两套油泵电机组共用一套液压控制阀块,油箱、管道均采用不锈钢材料,液压泵站的压力油经过管道进入油缸上、下腔,对闸门进行操作。

液压系统如图2-8所示。

为防止重力以及油液泄漏引起闸门下降,在油缸下腔装有气囊式液压蓄能器,为油缸下腔充液、保压,

并配有蓄能器专用油泵电机组p2。当蓄能器压力降至规定值时,该油泵电机组自动投入运行,为蓄能器充液、增压。蓄能器的使用不但克服了以往机械锁定机构笨重、操作繁冗等缺点,还为方便集中控制和操作提供了前提条件。当闸门处于全开或者局部开启位置,若油缸密封发生泄漏将导致闸门下沉时,油缸下腔通过气囊式蓄能器自动补泄,使闸门保持在所要求的位置。当蓄能器压力低于调定压力时,压力继电器动作,接通蓄能器电机,延时10s后电磁铁通电,蓄能器充压,延时1~2min后电磁铁断电,5s后蓄能器电机停止转动。蓄能器电机只有在主泵组两电机都停机状态下,才能投入运行。

图2-8 启闭机液压系统

2.1.3 作液体补充装置

对于图2-9所示的液压回路,因活塞杆占有一定的体积,蓄能器能补充供给液压缸内无杆腔与有杆腔之间体积差的油量。活塞杆缩回时,油返回到有杆腔内,多余的油储到蓄能器内;活塞杆伸出时,蓄能器内的油补充到无杆腔内。

图2-9 蓄能器作液体补充装置

2.1.4 作应急动力源

大型工程机械的转向和制动多采用液压助力。当转向或制动系统的液压源出现故障时,蓄能器可以帮助解决其应急转向或制动的问题。工厂突然停电,或发生故障,油泵中断供油,蓄能器能提供一定的油量作为应急动力源,使执行元件能继续完成必要的动作。图2-10所示为应急动力源。停电时,二位四通阀右位接入,蓄能器放出油量经单向阀进入油缸有杆腔,使活塞杆缩回,达到安全目的。

图2-10 应急动力源

2.2 吸收液压冲击

2.2.1 概述

输送液体的管道中,由于生产装置和生产过程的调节,常需要启闭阀门,水泵和水轮面也有可能发生突然开、停的情况。这种时候,管道内的液体速度就会发生突然变化,有时还是急剧的变化,液体速度的变化使液体的动量改变,反映在管道内的压强迅速上升或下降,并伴有液体锤击的声音,这种现象称为液击现象,也叫做水锤或水击。液击造成管道内压力的变化有时是很大的,突然加压严重时可使管子爆裂,迅速降压形成的管内负压可能使管子失稳。液击还常导致管道振动、发出噪声,严重影响管道系统的正常运行。

换向阀突然换向,液压泵突然停转,执行元件的运动突然停止,甚至在需要执行元件紧急制动时,都会使管路内液体受到冲击而产生冲击压力,这些情况下安全阀也不能避免其压力的增高,其值可能高达正常压力值的几倍以上;这种冲击压力往往会引起系统中仪表、元件和密封元件发生故障,还会使系统产生强烈的振动。

如图2-11所示的回路,在控制阀或液压缸等受到冲击之前的管路上装设蓄能器,可以吸收或缓和换向阀突然换向,油缸突然停止运动产生的冲击压力。换向阀突然换向时,蓄能器吸收了液压冲击,使压力不会剧增。

图2-11 吸收液压冲击的回路

2.2.2 应用实例Ⅰ

飞机对加注油料的质量要求较高,另外,考虑到易于维护、工作寿命、动作的灵活性等因素通常选用皮囊式蓄能器作为水击压力缓冲器。在管路内油压作用下皮囊内保持必需的剩余压力,皮囊内气体与所输送油料之间彼此隔开。

在加油系统管网中采用皮囊式蓄能器能够有效地抑制瞬变压力波,削减水击压力波动幅值,降低末端阀门在关闭过程中产生的压力波动频率;皮囊式蓄能器的初始空气体积越大抑制瞬变压力波动的效果越理想;与初始容积相对应,初始压力越大时由于其气体初始容积变小,因而其抑制效果要比初始压力小的效果要差些;安装位置越靠近水击压力发生源,蓄能器控制效果越理想;选用皮囊式蓄能器作为水击压力缓冲器时应进行系统动态分析,同时统筹兼顾缓冲器的安装位置、容积大小及其运行参数之间关系才能更好地发挥控制水击作用;为了有效地控制水击,皮囊式蓄能器应尽量设置在飞机加油管路上,或安装在给加油车加油的加

油站内,并尽可能直接靠近水击压力起源地。

2.2.3 应用实例Ⅱ

在煤矿液压支架修理完成后,进行液压油缸工作试验过程中,即液压支架无负载液压系统中,经常会发

现油缸的伸缩是不平稳的,不是均匀的伸缩运动。在井下不管是移架还是升降液压支架,即液压支架有负载的液压系统中,同样会经常出现类似的现象。同时发现液压管道有振动,甚至剧烈跳动,出现噪声现象,严重时,会导致高压胶管崩裂和接头损坏而卸压,甚至造成人身伤害事故。在液压系统中出现的这类现象大部分是因为系统中产生压力瞬变所导致。

液压系统内的流速发生突变时必将引起液压冲击,在系统中完全避免液压冲击是很难的,但可通过适当途径减小液压支架液压系统的峰值压力,消除高压胶管崩裂卸压伤人,降低噪声。保持系统正常工作的重要途径为:增加乳化液泵的柱塞数,比如由三柱塞改为五柱塞泵,以减小系统压力的脉动;同时使液压系统保持较高的液压固有频率,一般可采用蓄能器来减小液压系统的峰值压力。

2.2.4 应用实例Ⅲ

随着超高层建筑的不断出现,电梯的速度变得越来越快,电梯坑道的建筑空间也要随之发生改变。电梯用缓冲器的行程随着电梯速度的增加要成平方地增加,这样电梯底坑就要随之加深,造成了建筑空间的很大浪费。如果采用弹簧或者柱塞复位,其复位弹簧的高度将占用缓冲器总体高度中相当大的一部分。为了节约空间,降低缓冲器的有效高度,一种利用活塞式蓄能器复位的适用于高速冲击的小尺寸缓冲器被研制出来。缓冲器主要实现缓冲和复位两个功能过程,所设计的新型缓冲器是采用蓄能器在缓冲过程中储存的能量来

实现柱塞复位的。在相同的制停条件下,这种缓冲器缓冲作用的时间短,大部分的动能通过蓄能器转化为油液的内能储存,另一部分通过节流作用转化为热能消耗掉。在理论上,最好的节流方式是梯形凸台和多孔式。在此,综合考虑了结构、功能、成本等各方面因素,从理论设计上确定缓冲性能最优方案,采用径向分布节流小孔来实现缓冲过程的节流。

尽管活塞式蓄能器反应不像皮囊式灵敏,缸体加工和活塞密封性能要求较高,但通过设计,可以实现缓

冲器结构上的一体化,使成本降低、结构紧凑。因此,最终选用活塞式蓄能器。

蓄能器不仅可使缓冲过程平稳,而且其在缓冲过程中储存的能量,可取代传统缓冲器中的复位弹簧,从而大

大缩减缓冲器的轴向尺寸。在高速电梯中采用此设计方案,可以减小底坑的高度,提高空间的利用率。

采用活塞式蓄能器取代气囊式蓄能器,缓冲性能可以满足标准要求,即使由于蓄能器活塞质量的惯性会造成缓冲器外腔压力在缓冲开始阶段的振荡,但是通过减小活塞质量,可以使振荡现象得到明显的减轻,而

且这个振荡是收敛的,不影响缓冲器的整体功能。

采用活塞式蓄能器可以实现缓冲器结构上的一体化。

蓄能器活塞的密封圈与缸壁之间的摩擦力大小对缓冲器的复位时间有较大的影响,宜采用组合密封。

2.3 消除脉动、降低噪声

2.3.1 概述

除螺杆泵之外,其他类型液压泵输出的压力油都存在压力脉动,从而影响液压系统的工作性能。对于采

用柱塞泵且其柱塞数较少的液压系统,泵流量周期变化使系统产生振动。为了减轻或消除压力脉动,通常的

做法是在不变更原设备液压元件的情况下,在液压泵附近设置蓄能器,以吸收压力脉动(如图2-12所示)。系统的压力脉动多是由流量脉动引起的,在一个脉动周期内,高于平均流量的部分被蓄能器吸收,低于平均

流量的部分由蓄能器供给。这就吸收了脉动中的能量,降低了脉动;减小了对敏感仪器和设备的损坏程度。

图2-12 吸收压力脉动蓄能器回路

在多执行机构的液压系统中,由于泵的启动往往滞后,如系统中无蓄能器,在一个执行机构动作时会引

起系统压力大幅下降,影响其他执行机构的正常工作。蓄能器能使其压力波动大大减小。例如,风力发电机

偏航制动器制动时,如蓄能器损坏不起作用,会引起系统压力下降,从而引起机械制动器制动力矩减小。

在实践中往往发现,装设蓄能器前后设备振动状况改善不明显,这当然不是蓄能器的质量问题,实际上蓄能

器在系统中吸收脉动的效果与很多因素有关,如蓄能器和管路中油液的质量、蓄能器的结构参数和状态参数、管路的特性、回路中元件的特性和流量脉动频率等。因此,需要具体地分析。

2.3.2 应用实例

轧钢机液压压下采用三通阀控缸的结构形式,因此,液压缸有杆腔是恒定的压力油作用。这样,如果在轧

制过程中液压缸有杆腔的压力有脉动,这将引起轧制力的波动,从而影响到产品的质量。因此,为保证轧制力稳定,通常在液压缸有杆腔的进油路上设置液压力脉动补偿蓄能器(见图2-13)。

图2-13 轧机压下液压回路

1—动态补偿蓄能器;2—伺服阀;3—压下缸;4—脉动补偿蓄能器

2.4 回收能量

2.4.1 概述

随着工业化进程的加速,能源需求量日益增加,石油资源面临枯竭的危机。汽车节能已成为全球的热点问题。国内外都在研究开发使用新型动力传动系统来提高设备经济性和动力性,降低能源消耗,减少大气污染,保护生态环境。

用蓄能器回收能量可以提高能量利用率,是节能的一个重要途径。蓄能器因为可以暂存能量,所以可以用来回收多种动能、位置势能。具体应用包括回收车辆制动能量、回收工程机械动臂机构位能、回收液压挖掘机转台制动能量、回收石油修井机及钻机管下落重力势能、回收电梯下行重力势能等。

例如,液压升降机是被广泛用于市政工程、建筑、安装、仓储、货物装运及工厂生产过程(在铸造、焊接、喷涂、搬运、装配等工作场合,就有各种升降机被用作输送和定位的工具)中的一种机械设备。较大型升降机的驱动装置一般都选用液压缸,由其结构原理由工作特点所决定。在升降机工作台携带着工件上升时,需要液压缸向其提供驱动力,即液压缸输出能量,把机械(液压)能转换成势能;而在升降机工作台携带着工件下降时,其势能将被释放出来。这种势能如果不能有效地回收利用,则会造成能量浪费。这种能量浪费

对于小型升降机来说尚不严重,但对于载重和举升高度较大、南非频繁工作的机型来说,就非常厉害了。对于此类机型,应在其液压系统中设计储能装置,以把升降机下降过程中释放出的势能储存起来,并在上升时重新加以利用,从而减少无用功的消耗,提高能量的利用效率,并同时达到使系统运行平稳、工作可靠、安全的目的。

对于城市用车辆,需要频繁地起步加速与制动。车速低、油耗高、排放污染与噪声严重是城市车辆的共有问题。制动器频繁地作用,造成能量的无谓消耗。如能把制动器消耗的能量回收,在车辆起步时释放,这无疑是提高能量利用率的有效途径,同时也会改善车辆排放性能。

对于工程机械,液压设备在运行过程中会产生很大的能量损失,利用蓄能器可实现系统节能,减小能量损失,提高传动效率。蓄能器的作用是:在制动过程中,泵/马达呈泵的工况向蓄能器供油,使其回收制动能量,形成制动力矩,制动力矩的大小可通过改变泵/马达的排量进行控制;重新启动时,先由蓄能器释放储存的制动能量,通过泵/马达单独驱动车轮,当机器启动后达到一定速度时,再由发动机驱动;当发动机的输出功率大于驱动车轮所需功率时,多余的能量输入蓄能器储存起来;在发动机的转矩小于驱动车轮的需要时,蓄能器释放能量以加大驱动车轮的转矩。加装蓄能器的主要优点是:吸收或补充发动机的输出转矩,使发动机始终工作在效率最高的工况下,回收与利用制动能量,大大降低了机器行驶中频繁启动和制动时造成的燃油消耗。

图2-14为柴油机的油马达启动系统,在该系统中设置有蓄能器。启动时,扳动二位二通手动换向阀,蓄能器供油驱动马达去带动柴油机启动。柴油机启动后松开手动换向阀,截止通向马达的回路,油泵向蓄能器充油,以备再用。图中手动油泵是在蓄能器泄漏后补油用。

2.4.2 应用实例Ⅰ

车辆静液压储能传动系统如图2-15所示。在该系统中,由于蓄能器的存在使系统中液压泵的流量q1与变量马达的流量q2之间没有直接联系,流量之差(q3=q1-q2)将直接流入或流出液压蓄能器,即液压泵和变量马达有互不相关的转速。变量马达采用对称结构,通过零点的轴向柱塞斜盘式结构,变量马达可以完全可逆工作,即排量V2的大小和方向均可以改变。变量马达可在四象限工作,当变量马达工作在一象限时驱动车辆前进;在三象限时驱动车辆后退,即车辆倒挡工况是通过改变变量马达的旋向来实现的;当在二象限和四象限时分别为前进和后退的制动工况。静液压传动系统通过调节变量马达斜盘的倾斜角及其方向来适应外负载的变化和马达工况的转变。

在车辆传动系统中加入储能元件蓄能器后,传动系统的工作方式发生了很大的变化。主要表现在:①车辆起步时,由发动机或蓄能器或两者同时提供能量驱动车辆起步行驶;②仅由发动机提供能源驱动车辆起步行驶,同时向蓄能器充液,当系统达到规定压力后,发动机停机或处于怠速状态,此时由蓄能器提供车辆行驶所需的能量,直到不能满足车辆行驶要求,发动机才重新开始正常工作,并保持在相应的经济工作区域附近,需要峰值功率时由蓄能器来补充;③当车辆减速或制动时,发动机停机或怠速,液压马达以泵工况方式工作,将车辆的惯性能转化为液压能储存在蓄能器中,根据需要释放出来驱动车辆,这样可实现制动能回收(通常在制动器处以热能形式耗散掉)。因此车辆静液压储能传动系统主要特点为:①发动机可以间歇式工作,降低油耗,减少排放;②采用二次调节技术使发动机负荷与工作负荷完全分离;③蓄能器可提供峰值功率,减少发动机的装机容量;④可减少制动频率和实现部分制动能回收;⑤易于实现车辆直接驱动/全轮驱动,使车辆结构相应简单,减少了由机械传动引起的振动和噪声;⑥改善车辆的操纵性及行驶的平稳性,提高其乘坐的舒适性。

2.4.3 应用实例Ⅱ

在当今社会,城市交通中的机动车辆数量众多,带来了巨大的能量消耗。由于城市人口和车辆集中,造成

城市车辆运行工况的特殊性。特别对于城市用公交车辆,需要频繁地起步加速与换挡制动。车速低、油耗高、排放污染与噪声严重是城市公交车辆的共有问题。

制动器频繁地作用,造成能量的无谓消耗。如能把制动器消耗的能量回收,在车辆起步时释放,这无疑是提高能量利用率的有效途径,同时也会改善车辆的排放性能。

由于带有液压蓄能器的液压系统具有能量密度高、可控性和可靠性高的特点,非常适合车辆这类在起步和制动时短时间需大能量的工况。

车辆在制动初期具有一定的动能,在一般制动情况下,这部分能量除被道路阻力、风阻消耗外,大部分被制动器以摩擦形式消耗掉。为回收这部分动能,在车辆传动系上加额外的阻力源,把动能转化为液压能储存起来。车辆制动能量回收系统以双向变量泵-马达为能量转化装置,以皮囊式蓄能器为能量储存单元,系统布置简图如图2-16所示。在车辆制动时,控制单元2根据制动踏板1的制动强度要求,打开二通插装阀8,使高压蓄能器7与双向变量泵-马达11高压端接通,同时也供给泵-马达排量来控制油压,操纵泵-马达排量在正方向,使它以泵的方式工作,车辆的动能带动泵-马达旋转,起到阻力源作用,同时把低压液压油压入液压蓄能器转化为高压油,实现能量的回收转化。系统在作辅助动力源时,把泵-马达排量调整到反方向,这样可做到高低压油路端口不变,旋转方向不变。这时泵-马达以马达的方式工作,打开二通插装阀8,高压蓄能器7中的高压油推动泵-马达旋转,辅助车辆起步。

图2-16 系统布置原理图

1—制动踏板;2—控制单元;3—发动机;4—传动系;5—驱动轮;6—低压蓄能器;7—高压蓄能器;8—二通插装阀;9—安全阀;10—过滤器;11—双向变量泵-马达;12—排量控制油路

2.4.4 应用实例Ⅲ

采用伺服泵或变速泵,不经节流元件,直接控制差动液压缸的运动,是液压控制技术领域实现节能、减小系统发热的有效途径之一,也是目前国内外的研究热点。发展优化的回路原理,在满足系统动静态特性要求的同时,使能耗降低到最小。基于这一思想,针对注塑机中运动的特点,用单台变量泵结合蓄能器和旁通比例阀复合控制差动缸运动的回路原理,不仅简化了系统,也使锁模机构每工作循环的能耗由原18kW/s降低为

11kW/s。

用变量泵、比例阀和蓄能器复合控制差动缸驱动注塑机锁模机构的回路原理如图2-17所示。

回路的特点是,液压缸活塞杆伸出时,液压泵提供动力,同时将液压缸运动的动能转换为压力能存储在高压蓄能器中;活塞杆收回时,蓄能器向系统提供能量。为了消除回程中电动机处于制动状态时消耗的能量,在液压泵和油箱之间并联一比例节流阀,这样,在活塞杆收回时,液压泵停止工作,用比例节流阀控制缸的速度。该回路原理既适用于变速泵,也适用于传统伺服泵组成的系统,并且只需要单方向工作的液压泵。注塑机存在较长的保压和冷却周期,选用伺服电动机与定量泵组成的变速泵用作动力源,降低电动机在冷却、保压等工作周期的能耗。

2.5 其他功能

2.5.1 输送异性液体

蓄能器用于输送异性液体的回路如图2-18所示。蓄能器内的隔离件(隔膜、气囊式活塞)在液压油作用下往复运动,输送被隔开的异性液体。常将蓄能器装于不允许直接接触工作介质的压力表(或调节装置)和管路之间。

2.5.2 作液压空气弹簧

采用液压蓄能器和过载传感器,可使车轮在行驶中遇到坑洼时,主动地将车轮抬高或降低,以保持车身处于水平状态。

蓄能器可作为液压空气弹簧吸收冲击压力,弹簧刚度KT等于气囊压缩时的压力差产生的当量液压缸作用力除以当量液压缸的位移,单位为Pa·m。即

式中P1、P2——最低工作压力和最高工作压力,Pa;

A——当量液压缸的有效面积,m2;

V1、V2——压力为P1、P2时气体的体积,m3。

活塞式、皮囊式、隔膜式蓄能器的最大区别

皮囊式蓄能器

优点:

1.皮囊(胶囊)惯性小,反应灵敏,适合用作消除脉动;

2.皮囊将油气隔开,油气不会混合(不破裂的情况下);

3.维护容易、附属设备少、安装容易、充气方便。

缺点:

1.皮囊的使用寿命通常较短(相对活塞式而言),而且各品牌的皮囊质量差异很大;

2.导致皮囊寿命缩短而破裂的因素很多,其中包括皮囊本身的质量寿命差异、皮囊装配各步骤操作不当(如事先未充液润滑)、预充气各步骤操作不当(如未能缓慢充气)、预充气压力计算误差、油口流速接近或超过7m/s、作储能用时单次往复时间接近或少于10秒、皮囊在工作中与菌型阀相碰撞、温度变化大(包括季节温差大)、长期横向振动摇晃、流体腐蚀、介质内微小固体杂质惯性冲击,等等;

3.皮囊破裂时,可能会导致蓄能器突然失效,同时油箱喷油、气爆,导致系统事故或维修及停机等损失;

4.皮囊不能做得太大,否则影响皮囊寿命,美国ASME标准一般最大为60升;

5.工作压力不能太高,国内最高(3倍或更小安全系数)一般为31.5Mpa,拓步皮囊式蓄能器(4倍安全系数)为51.8Mpa ;

6.在快速释放油液时,囊式蓄能器的菌型阀可能会提前关闭,导致蓄能器突然暂时失效;

7.因皮囊材质为橡胶,强度不高,不能承受很大的压力波动(注意皮囊压缩比),波动幅度过大会大大降低皮囊寿命;所以同时,皮囊式蓄能器一般也不适合串联气瓶或气瓶组使用。

活塞式蓄能器

优点:

1.通常使用寿命比皮囊式蓄能器更长;

2.相对于皮囊式的更换皮囊,活塞式更换密封件成本更低,操作更简便;

3.安装容易、结构简单、维护方便,充气方便;

4.跟皮囊式突然失效(皮囊破裂而泄露)不同,活塞式一般具备多道密封,即使失效也是逐渐、缓慢地失效(泄露),对于某些设备或系统,蓄能器的突然失效可能导致事故或重大损失,此时应选用活塞式蓄能器;

5.

活塞式蓄能器可以做得很大,拓步活塞式蓄能器的常规型号单件容积可以达到760升,非常规型号可以更大;

6.压力可以很高,虽然国内活塞式蓄能器(3倍或更小安全系数)只能做到21Mpa或31.5Mpa,但是拓步蓄能器(4倍安全系数)活塞式常规型号可以做到138Mpa(1380 Bar),非常规型号可以更高;

7.耐高温型号性能更稳定,拓步耐高温型号活塞式蓄能器可承受230摄氏度以下高温;

8.可以承受很大的压力波动幅度,并适合串联气瓶或气瓶组(大大提高容积利用率)。缺点: 1.低压情况下活塞因惯性影响大而不适于作高频往复运动,故活塞式蓄能器不适于

在低压情形下用于吸收脉动、高频振动;(但其它如作辅助动力源、蓄能保压、吸收液压冲击、回收能量等功能上,活塞式和皮囊式的性能是相同的;另外,在高压情况下,如

13Mpa以上,压力越高,活塞的惯性影响就越来越小,经验证明,此时采用活塞式蓄能器尤其是小容积型号的,同样可以很好地实现消减脉冲、吸收振动、消除噪音的效果);2.对壳体内壁加工精度及密封件等要求很高,否则容易渗漏,各品牌的质量差异较大;拓步活塞式蓄能器独特的设计,使渗漏降至最低,通常连续使用3-5年才需要补充气体;3.壳体内壁精度、密封材质、润滑设计等,都会影响到活塞运动的摩擦力大小,各品牌的质量差异较大;

4.活塞式蓄能器一般比皮囊式要重一些(拓步的某些轻型活塞式蓄能器除外);

5.活塞

式蓄能器一般比皮囊式要贵(拓步蓄能器的一小部分活塞式型号比皮囊式价格便宜)。

隔膜式蓄能器

优点:

1.其重量和容积比最小,反应灵敏,低压消除脉动效果显著。

缺点:

1.压力小,一般最大为7Mpa;

2.容积小,一般最大为11.4升。

气囊式、皮囊式、胶囊式蓄能器

☆ 能提供一个辅助能源,既所储存的能源能在高峰时刻应用,以便选用较小的泵。

☆ 防止闭式系统中管路及系统组件因热胀冷缩而受到损坏。

☆ 可经常保持液压系统中一定的流量和压力。

☆ 在管道系统中减少因压力巨变而产生的振动和损失。

☆ 补充液体容积以保持一定的压力。

☆ 吸收液体流路中的冲击振动,以减少管路,装置和仪表的损坏从而节约费用。

☆ 当停泵或停电时,可提供一个应急能量以便安全地做完一个工作循环。

☆ 可较长时间地使系统维持一个必须的高压而无需开泵,以防止油料过热减少泵磨损并节约能源。

☆ 为设备的严重磨损区提供不问断但流量不入的润滑油。

典型的用途应用:

☆ 建设工程、矿山设备中用于紧急情况下的操纵和刹车。

☆ 液压传动中用于换向时吸收冲击。

☆ 注模铸造设备操作中用于在一个短时间内提供高压。

☆ 柱塞式/隔膜式泵等设备减少振动。

☆ 叉车及车载升降台等设备用于压力突变时起阻尼作用。

☆ 机床上用于保持压力以采用小规模的油泵。

☆ 汽轮机上用于提供润滑油。

☆ 油井、井口防喷器上用于作关闭闸门的备用动力。

蓄能器在系统中的应用、选型、计算

高压蓄能器在高压EH油系统中是如何发挥作用的?什么时候发挥作用?

高压蓄能器主要是平衡管路油压波动。具体分析一个特殊例子:当系统的多数油动机快速开启时(比如汽轮机开始冲转,2个中压调节门同时开启,或者2900转时的阀切换,6个高调门同时开启),系统油压必然快速下降,此时油泵来不及做出反映,蓄能器在设计

上位置不仅靠近油动机并且能比油泵更加迅速的向系统补充油液,避免系统油压下降到9.7MPA时造成保护动作而停机。蓄能器的重要性在高压EH油系统中举足轻重。

流体实际上是不可压缩的,不能储存能量,因而液压蓄能器利用气体(氮气)可压缩性来储存流体。蓄能器实质上是一个储存压力流体的腔室,靠气体的可压缩性将不可压缩的流体能量得以储存,以备做有用功。上述的流体与液压回路相联结,当系统压力升高,流体压缩气体而进入蓄能器;当系统压力降低,压缩气体膨胀,并迫使流体流回液压回路。

蓄能器的典型应用:流体储存,紧急能源,吸收脉动,涌流控制,噪声衰减,车辆减震,容积补偿,压力补偿,渗漏补偿,热胀吸收,力学平衡,增加流量。

储蓄液压能:

(1)对于间歇负荷,能减少液压泵的传动功率当液压缸需要较多油量时,蓄能器与液压泵同时供油;当液压缸不工作时,液压泵给蓄能器充油,达到一定压力后液压泵停止运转。(2)在瞬间提供大量压力油。

(3)紧急操作:在液压装置发生故障和停电时,作为应急的动力源。

(4)保持系统压力:补充液压系统的漏油,或用于液压泵长时期停止运转而要保持恒压的设备上。

(5)驱动二次回路:机械在由于调整检修等原因而使主回路停止时,可以使用蓄能器的液压能来驱动二次回路。

(6)稳定压力:在闭锁回路中,由于油温升高而使液体膨胀,产生高压可使用蓄能器吸收,对容积变化而使油量减少时,也能起补偿作用。

缓和冲击及消除脉动:

(1)吸收液压泵的压力脉动。

(2)缓和冲击:如缓和阀在迅速关闭和变换方向时所引起的水锤现象。

注:

1.缓和冲击的蓄能器,应选用惯性小的蓄能器,如气囊式蓄能器、弹簧式畜能器等。

2.缓和冲击的蓄能器,一般尽可能安装在靠近发生冲击的地方,并垂直安装,油口向下。如实在受位置限制,垂直安装不可能时,再水平安装。

3 .在管路上安装蓄能器,必须用支板或支架将蓄能器固紧,以免发生事故。

4.蓄能器应安装在远离热源地地方。

水泥厂立式辊磨中蓄能器的选择案例

磨辊的油缸压力在运行中的变化曲线。当蓄能器太小,设定正常压力Pn太大时,则液压弹簧系统很硬,这时磨辊随着料层厚度变化使液压系统压力变化幅度很大。为很好地发挥蓄能器缓冲振动作用,蓄能器要选得足够大,与液压油缸相连管道应有足够的断面,而且蓄能器应尽量靠近油缸。蓄能器选得小,产生较大振动。一般认为在磨辊加压的接杆上测得振动速度在1~5mm/s内较为合适,以此为标准来选择蓄能器。还建议蓄能器氮气充气压力:Po=0.9×pmin

式中:Pmin一液压系统最小压力,MPa;液压系统压力变化值△P=Pmax—_Pmin=25%Pn ;Pn一正常工作压力,MPa。

蓄能器的容量计算

作辅助动力源

V0—所需蓄能器的容积(m3)

p0—充气压力Pa,按0.9p1>p0>0.25 p2充气

V x—蓄能器的工作容积(m3)

p1—系统最低压力(Pa)

p2—系统最高压力(Pa)

n—指数;等温时取n=1;绝热时取n=1.4

吸收泵的脉动

蓄能器的计算

3.蓄能器的计算 3.1. 状态参数的定义 P0=预充压力 P1=最低工作压力 P2=最高工作压力 V0=有效气体容量 V1=在P1时的气体容量 V2=在P2时的气体容量 t0=预充气体温度 t min=最低工作温度 t max=最高工作温度 ①皮囊内预先充有氮气,油阀是关闭的,以防止皮囊脱离。 ②达到最低工作压力时皮囊和单向阀之间应保留少量油液(约为 蓄能器公称容量的10%),以便皮囊不在每次膨胀过程中撞击阀,因为这样会引起皮囊损坏。 ③蓄能器处于最高工作压力。最低工作压力和最高工作压力时 的容量变化量相当于有效的油液量。 △V=V1-V2 预充压力的选择 贺德克公司的皮囊式蓄能器允许容量利用率为实际气体容量的75%。因此预充氮气压力和最高工作压力间的比例限于1:4,另外预充压力不得超过最低系统压力的90%。遵照这种规定可

保证较长的皮囊使用寿命。 其它压缩比可采用特别的措施达到。为了充分地利用蓄能器的容量,建议使用下列数值: 蓄能: P 0,tmax =0.9×P 1 吸收冲击: P 0,tmax =0.6÷0.9×P m (P m =在自由通流时的平均工作压力) 吸收脉动: P 0,tmax =0.6×P m (P m =平均工作压力) 或P 0,tmax =0.8×P 1(在多种工作压力时) 3.2.1 预充压力的极限值 P 0≤0.9×P 1 允许的压缩比为 P 2:P 0≤4:1 此外,贺德克公司低压蓄能器还需注意: SB35型:P 0max =20 bar SB35H 型:P 0max =10 bar 3.2.2 对温度影响的考虑: 为了即使在相当高 态蓄能器的充气和检验P 0charge 须作如下选择: P 0,to = P 0,tmax × 273 + t 273 + t max 0 t 0=预充气体温度(℃)

RMZ说明书35-170~300-970

一、概况: RMZ型煤气增压风机是根据二段式煤气炉的发展趋势,结合单段式煤气发生炉而开发的新型煤气排送机,它从根本上解决了长期以来依赖进口风机或用罗茨鼓风机噪音高流量不能调节的状况。 从投放市场以来的运行证明:该机噪音低、性能曲线平坦、流量调节区域大、效率高、耗能低,特别是密封性好,运行稳定,深受广大顾客的好评。 该机可制成顺时针或逆时针方向旋转,出口角度分别为0度、90度、180度三个方向,用户可根据实际管网分布需要自行选择。 二、用途: 本机专门适用于厂矿煤气站煤气增压,高炉、焦炉、转炉煤气增压,氨气、沼气、甲烷等气密性严谨的气体输送,以及高压强制鼓风。 三、型号编制说明 以RMZ60-700为例 RMZ——热煤气增压 60——风机流量(m3/min) 700——风机全压(mmH2O) [500℃标准状态下(0.455kg/m3)空气所测的全压] 四、结构特征: 该风机为板焊式整体结构,主要有以下部件组成: 1、叶轮。叶轮是整台风机的心脏,因此该机的叶型按新的高效风机理论进 行优化设计,材料根据不同需要分别选用优质不锈钢或合金制造,具有 较好的抗腐能力和足够的强度。叶轮成型后,经静、动平衡校正,精度 为G4级(高于国标G6.3级)。 2、机壳。用优质碳素钢与机座整体焊接而成,保证了整机的刚性,机壳内 涂环氧树指,以增强抗腐性能;机壳上部设G2″蒸汽管接口,下部设G1″ 排污阀;风机的进出口法兰采用标准法兰,以利用户管道联接。 3、密封组。本密封主要采用软填料密封和离心密封,密封内无易损件,结 构十分简单,效果特别可靠,更换方便。 4、电机。本机配套的电机采用YB系列电机,YB系列电机防爆等级为dⅡ BT4,防护等级为IP55。 五、安装: 1、安装前应详细检查各部件是否因包装运输不妥而导致损坏,如发现损坏, 应修整后才能进行安装。 2、检查各部分联接有无松动,若有应即时紧固之。 3、基础做成后,将风机和电动机装上,并检查各部分水平以及风机与电动 机轴线是否一致,将蜗壳与转子各部分之间间隙校正好,然后再灌水泥 浆。 4、水泥干燥后,再检查各部分之水平、轴线及间隙,然后紧固地基螺栓。 5、安装风机之进出口管道,严格防止管道等部件的重量承受在风机上,从 而影响风机的安装质量要求,必要时管道应加装支撑。

蓄能器作用与原理

1.蓄能器的作用 北京汉德上提供的锐蓄能器的作用 1.辅助动力源 ☆提供一个辅助能源,即所储存的能源能在高峰时刻应用,以便选用较小的泵。用较小的泵,也可以实现在瞬间提供大量压力油。 ☆平稳保持液压系统中一定的流量和压力。 ☆补充液体容积以保持一定的压力。 ☆当液压装置发生故障、停泵或停电时,作为应急的动力源,以便安全地做完一个工作循环,如用于船舶液压方向舵。 ☆较长时间地使系统维持一个必须的高压而无需开泵,以防止油料过热减少泵磨损并节约能源。 ☆保持系统压力:补充液压系统的漏油,或用于液压泵长时期停止运转而要保持恒压的设备上。 ☆驱动二次回路:机械在由于调整检修等原因而使主回路停止时,可以使用蓄能器的液压能来驱动二次回路。 ☆稳定压力:在闭锁回路中,由于油温升高而使液体膨胀,产生高压可使用蓄能器吸收,对容积变化而使油量减少时,也能起补偿作用。 ☆为设备的严重磨损区提供不间断但流量不大的润滑油。建设工程、矿山设备中用于紧急情况下的操纵和刹车。 ☆注模铸造设备操作中用于在一个短时间内提供高压。 ☆机床上用于保持压力以便采用小规模的油泵。 ☆汽轮机上用于提供润滑油。 ☆油井、井口防喷器上用于作关闭闸门的备用动力。 ☆流体储存,紧急能源,压力补偿,渗漏补偿,热胀吸收,增加流量。 ☆对于间歇负荷,能减少液压泵的传动功率。当液压缸需要较多油量时,蓄能器与液压泵同时供油;当液压缸不工作时,液压泵给蓄能器充油,达到一定压力后液压泵停止运转。☆具体分析一个例子:蓄能器的重要性在高压EH油系统中,当系统的多数油动机快速开启时(比如汽轮机开始冲转,2个中压调节门同时开启,或者2900转时的阀切换,6个高调门同时开启),系统油压必然快速下降,此时油泵来不及做出反映,蓄能器在设计上位置不仅靠近油动机并且能比油泵更加迅速的向系统补充油液,避免系统油压下降到9.7MPA时造成保护动作而停机。 2.吸收脉动 ☆吸收液压泵的压力脉动。 ☆减震,柱塞式/隔膜式泵等设备减少振动。 ☆噪声衰减,柱塞式/隔膜式泵等设备降低噪音。 ☆柱塞式/隔膜式泵等设备降低能耗。 ☆使柱塞式/隔膜式泵等设备输出压力更加平稳,平衡管路油压波动3.吸收冲击 ☆吸收缓冲突发和剧烈的冲击造成的系统内压力巨变。 ☆缓和阀在迅速关闭和变换方向时所引起的水锤现象。 ☆在管道系统中减少因压力巨变而产生的振动和损失。 ☆吸收液体流路中的冲击振动,以减少管路,装置和仪表的损坏从而节约费用。 ☆液压传动中用于换向时吸收冲击。 ☆叉车及车载升降台等设备用于压力突变时起阻尼作用。

蓄能器使用步骤

低压透平油蓄能器充氮步骤及测压方法 在汽轮机低压透平油纯电调系统中设有容量为10L的蓄能器,现将充氮步骤及测压方法简述如下: 一、蓄能器充氮步骤: 1、将蓄能器项部的六角罩盖螺母拆下,装上充气工具。 2、将连接充气工具软管另一端的组件的接头螺母与氮气瓶上的 接头旋上并拧紧。 3、开启蓄能器下部连接压力油管路上的进油截止阀(工作油压为 零)。 4、将充气工具中放气的针阀B关闭,再顺时针拧充气工具上端 的手柄A,将蓄能器的充气嘴顶开。 5、然后缓慢打开氮气瓶上的阀门,向蓄能器充氮。注意:在缓慢 打开氮气瓶上阀门时,必须同时监视充气工具上的压力表读数,当压力达到要求的充氮压力时,即关闭氮气瓶上的阀门。设计充氮压力一般为额定工作压力的60%。 例如工作压力为:20MPa 充氮压力为1.2MPa 工作压力为:1.2MPa 充氮压力为0.72MPa 6、随后逆时针拧充气工具上端的手柄A,使蓄能器的充气阀关闭 后才可拆去充气工具及连接氮气瓶的软管组件。 7、检查蓄能器顶部的充气嘴有无漏气,若有漏气。则需更换充气 嘴;若无泄漏,则装上蓄能器充气嘴上的六角罩盖螺母,充氮完毕。

二、蓄能器测压方法 在机组运行一定的时间,或长期停机后需重新启动时,应对蓄能器进行检查,并测定充氮压力值,当氮气压力值低于工作压力的50%时,则应重新充氮气,检查测定氮气压力方法如下: 1、将蓄能器顶部的六角罩盖螺母拆下,装上充气工具。 2、将连接充气工具的软管拆下,换上堵头。 3、旋动充气工具上的手柄A,将蓄能器的充气嘴顶开,由充气工 具上的压力表测取蓄能器压力值,若低于工作压力的50%时,则必须进行补充氮气。 4、充氮方法及步骤如上所述。

蓄能器的原理

蓄能器技术概述 《液气压世界》2007年第6期阅读次数:1665 蓄能器是一种能把液压储存在耐压容器里,待需要时又将其释放出来的能量储存装置。蓄能器是液压系统中的重要辅件,对保证系统正常运行、改善其动态品质、保持工作稳定性、延长工作寿命、降低噪声等起着重要的作用。蓄能器给系统带来的经济、节能、安全、可靠、环保等效果非常明显。在现代大型液压系统,特别是具有间歇性工况要求的系统中尤其值得推广使用。 1.1 蓄能器的工作原理 液压油是不可压缩液体,因此利用液压油是无法蓄积压力能的,必须依靠其他介质来转换、蓄积压力能。例如,利用气体(氮气)的可压缩性质研制的皮囊式充气蓄能器就是一种蓄积液压油的装置。皮囊式蓄能器由油液部分和带有气密封件的气体部分组成,位于皮囊周围的油液与油液回路接通。当压力升高时油液进入蓄能器,气体被压缩,系统管路压力不再上升;当管路压力下降时压缩空气膨胀,将油液压入回路,从而减缓管路压力的下降。 蓄能器类型多样、功用复杂,不同的液压系统对蓄

能器功用要求不同,只有清楚了解并掌握蓄能器的类型、功用,才能根据不同工况正确选择蓄能器,使其充分发挥作用,达到改善系统性能的目的。 1.2 蓄能器的类型 蓄能器按加载方式可分为弹簧式、重锤式和气体式。 弹簧式蓄能器如图1(a)所示,它依靠压缩弹簧把液压系统中的过剩压力能转化为弹簧势能存储起来,需要时释放出去。其结构简单,成本较低。但是因为弹簧伸缩量有限,而县弹簧的伸缩对压力变化不敏感,消振功能差,所以只适合小容量、低压系统(P≦1.0~ 1.2MPa),或者用作缓冲装置。 (a)弹簧式(b)重锤式 图1-1 弹簧式和重锤式蓄能器 重锤式蓄能器如图1(b)所示,它通过提升加载在密封活塞上的质量块把液压系统中的压力能转化为重力

S60系列机器简易操作手册

S60系列喷码机简易操作手册    开机操作: 1、喷码机电源开关位于机箱左上边。接通喷码机电源。  左侧蓝色指示灯亮起,这时表示机器开始启动,  方可松开按键(图1);   2、等待约半分钟直到系统启动初使化完毕,液晶屏幕图像出现,图1  3、在机器启动到稳定状态的过程中,先显示伟迪捷LOGO图案,  然后才进入待机界面; 4、此时机器开始运转,但泵没有运转, 机器无法喷印信息,属于待机状态。 机器显示屏进入 “主菜单”界面(图2)。    运行操作: 当机器处于待机状态时,在键盘左侧按墨线开/关键图2 2~3秒的时间,状态栏显示即变为"开机",等待约2分钟,墨线指示灯变为常亮,状态栏显示:正在喷印。现在喷码机已经做好打印信息的准备。由印字触发信号(光电眼等)触发后进行印字。    停止、喷印操作: 需要机器停止喷印时,直接在“主画面”界面按 停止打印键, 此处会自动变换为开始打印,同时墨线指示灯熄灭, 机器将自动处理回到待喷印状态。 如需机器喷印时,只需在此界面重新按开始打印键即可。 关机操作: 1、用户需要关闭机器时,在键盘左侧 按住墨线开/关键2~3秒的时间. 状态栏提示:关机  1、约两分钟后状态栏显示变为"喷码机关闭"。墨线绿色指示灯停止闪烁并保持熄灭状态.  2、.按下机箱左边的电源开关,关闭喷码机电源(如图1)。    选择信息操作: 在键盘“主题菜单键”界面中按进入信息读取界面,使用 键选择所需信息的文件名,然后在菜单栏中选择读取到编辑栏 ,即所需信息显示在编辑界面中,按菜单栏中的打印信息 ,则喷码机现在喷印的内容即为所选择的信息内容。  墨水、溶剂的添加操作: 当机器屏幕左侧的“橙色报警指示”灯亮时,同时在屏幕左上角报警栏 显示溶剂液位低或者墨水液位低时,则需要补充墨水或溶剂,用户需要打开机器墨水箱盖,拧开墨水缸或者溶剂缸的盖子,加入相应型号的墨水或者溶剂即可。同时,随着液位的上升,警报消除。

四柱液压机工作原理、结构、特点

四柱液压机工作原理、结构、特点 四柱液压机工作原理,四柱液压机是一种利用油泵输送液压油的静压力来加工金属、塑料、橡胶、木材、粉末等制品的机械设备。下面随小编去了解下四柱液压机。 一、四柱液压机工作原理 四柱液压机的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。动力机构通常采用油泵作为动力机构,一般为积式油泵。为了满足执行机构运动速度的要求,选用一个油泵或多个油泵。低压(油压小于2.5MP)用齿轮泵;中压(油压小于6.3MP)用叶片泵;高压(油压小于32.0MP)用柱塞泵。各种可塑性材料的压力加工和成形,如不锈钢板钢板的挤压、弯曲、拉伸及金属零件的冷压成形,同时亦可用于粉末制品、砂轮、胶木、树脂热固性制品的压制。 二、四柱液压机结构 按作用力的方向区分,液压机有立式和卧式两种。多数液压机为立式,挤压用液,结构压机则多用卧式。按结构型式分,液压机有双柱、四柱、八柱、焊接框架和多层钢带缠绕框架等型式,中、小型立式液压机还有用C型架式的。C型

架式液压机三面敞开,操作方便,但刚性差。冲压用的焊接框架式液压机刚性好,前后敞开但左右封闭。在上传动的立式四柱自由锻造液压机中,油缸固定在上梁中,柱塞与活动横梁刚性连接,活动横梁由立柱导向,在工作液的压强作用下上下移动。横梁上有可以前后移动的工作台。在活动横梁下和工作台面上分别安装上砧和下砧。工作力由上、下横梁和立柱组成的框架承受。采用泵-蓄能器驱动的大、中型的自由锻水压机常采用三个工作缸,以得到三级工作力。工作缸外还设有向上施加力的平衡缸和回程缸。 三、四柱液压机特点 机器具有独立的动力机构和电气系统,采用按钮集中控制,可实现调整、手动及半自动三种工作方式:机器的工作压力、压制速度,空载快下行和减速的行程和范围,均可根据工艺需要进行调整,并能完成顶出工艺,可带顶出工艺、拉伸工艺三种工艺方式,每种工艺又为定压,定程两种工艺动作供选择,定压成型工艺在压制后具有顶出延时及自动回程。 更多四柱液压机的相关资讯,请持续关注变宝网资讯中心。 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.360docs.net/doc/1c17363425.html,/?cjq 买卖废品废料,再生料就上变宝网,什么废料都有!

蓄能器的原理

蓄能器技术概述 蓄能器是一种能把液压储存在耐压容器里,待需要时又将其释放出来的能量储存装置。蓄能器是液压系统中的重要辅件,对保证系统正常运行、改善其动态品质、保持工作稳定性、延长工作寿命、降低噪声等起着重要的作用。蓄能器给系统带来的经济、节能、安全、可靠、环保等效果非常明显。在现代大型液压系统,特别是具有间歇性工况要求的系统中尤其值得推广使用。 1.1 蓄能器的工作原理 液压油是不可压缩液体,因此利用液压油是无法蓄积压力能的,必须依靠其他介质来转换、蓄积压力能。例如,利用气体(氮气)的可压缩性质研制的皮囊式充气蓄能器就是一种蓄积液压油的装置。皮囊式蓄能器由油液部分和带有气密封件的气体部分组成,位于皮囊周围的油液与油液回路接通。当压力升高时油液进入蓄能器,气体被压缩,系统管路压力不再上升;当管路压力下降时压缩空气膨胀,将油液压入回路,从而减缓管路压力的下降。 蓄能器类型多样、功用复杂,不同的液压系统对蓄能器功用要求不同,只有清楚了解并掌握蓄能器的类型、功用,才能根据不同工况正确选择蓄能器,使其充分发挥作用,达到改善系统性能的目的。 1.2 蓄能器的类型 蓄能器按加载方式可分为弹簧式、重锤式和气体式。 弹簧式蓄能器如图1(a)所示,它依靠压缩弹簧把液压系统中的过剩压力能转化为弹簧势能存储起来,需要时释放出去。其结构简单,成本较低。但是因为弹簧伸缩量有限,而县弹簧的伸缩对压力变化不敏感,消振功能差,所以只适合小容量、低压系统(P≦1.0~1.2MPa),或者用作缓冲装置。 (a)弹簧式(b)重锤式 图1-1 弹簧式和重锤式蓄能器 重锤式蓄能器如图1(b)所示,它通过提升加载在密封活塞上的质量块把液压系统中的压力能转化为重力势能积蓄起来。其结构简单、压力稳定。缺点是安装局限性大,只能垂直安装;不易密封;质量块惯性大,不灵敏。这类蓄能器仅供暂存能量用。这两种蓄能器因为其局限性已经很少采用。但值得注意的是,有些研究部门从经济角度考虑在这两种蓄能器的结构上做一些改进,在一定程度

囊式蓄能器使用说明书

囊式蓄能器使用维护说明书 NXQ 系列液压囊式蓄能器是液压系统中重要的不可缺少的液压辅件,常见的联接形式有螺纹联接和法兰联接(见图1)。主要工作原理:液压囊式蓄能器是利用气体(氮气)的可压缩性来蓄积液体的原理(即采用氮气作为压缩介质)而工作的。是利用胶囊内气体体积随压力的变化而变化,从而达到储存或释放液压来储蓄能量、稳定压力、消除脉冲、吸收冲击、补偿容量和补偿泄漏等作用。 图1 1.安装位置 蓄能器应选择尽量靠近装置的场所安装。用于缓冲和吸收脉动时,应尽可能安装在靠近振动源处。为充分发挥蓄能器功能,蓄能器应垂直安装。为便于蓄能器的维护和检查,蓄能器的上方及周围应留有一定空间。 2.蓄能器的固定 安装蓄能器,应牢固地支持在托架上或壁面上。径长比过大时,还应设置抱箍加固。蓄能器固定推荐采用图2的形式。 图2 3.蓄能器与管路连接 国标蓄能器系通过过渡接头与管路连接。螺纹连接接头形式见表2(仅供参考),与进油阀所连接的接头应注意拧入端口内孔尺寸(Φ )不能太小,以防阀杆顶住接头卡死,造成胶囊夹破。法兰连接形式见表3(仅供参考)。 4.安装注意事项 .不得在蓄能器上进行焊接,铆接或机械加工; .蓄能器与管路系统之间应设置操作简便的截止阀,此阀供充气、检查蓄能器、调节放油速度或长时间停机时使用; .蓄能器与液压泵之间应装设单向阀,当泵电机停止运转时,防止蓄能器中所储存的压力油倒流;

.为防止蓄能器对管路系统的危害,对大于等于10L的蓄能器,在进入蓄能器的位置应设置安全阀或溢流阀; .蓄能器的胶囊内只允许充装氮气,严禁充装空气或者氧气,胶囊外的介质为石油基液压液。 5.充氮--充氮条件 .蓄能器投入使用前应给蓄能器胶囊充入氮气; .使用中蓄能器检查发现胶囊内氮气漏损时应给胶囊补充氮气。 6.充气方法 .充气前应准备好氮气瓶和充氮工具 (见图3),用充气工具进行充氮,当充气压力大于10MPa时,还应采用增压器(充氮小车) (见图4)加压到充气压力; .先用刷子蘸取洗衣粉液或肥皂水涂在蓄能器各接口和密封处,如发现漏气,应卸压并及时维修; .接好测压装置;拧紧放气塞,以免充气时漏气; .将充气工具一端与蓄能器充气口连接,另一端通过充气管路接头与氮气瓶出气口连接; .顺时针旋开蓄能器上端的针阀,顶开阀门; .打开氮气瓶上的阀门开关,接通气源。 6.7.一边慢慢打开充气工具控制开关进行充气,让压力表指针读数缓慢上升,一边仔细观察压力表指针读数; .充氮应缓慢进行,只有当胶囊膨胀关闭进油阀后,才允许适当加大充气速度。 .当压力达到预定(一般取~时,立即关闭充气工具控制开关(氮气压力超过,不易被压缩,达不到吸收冲击的效果); .关闭氮气瓶上的阀门开关,再逆时针旋转关闭蓄能器上端的针阀,关闭阀门; .将充气工具两端分别从蓄能器充气口和氮气瓶出气口松开卸下,与氮气瓶一起收好。 图3充氮工具

液压元件的计算与选择

第二节第四节液压元件的计算与选择 一、液压泵 首先依据初选的系统压力选择液压泵的结构类型,一般P<21MPa,选用齿轮泵和叶片泵;P>21MPa,则选择柱塞泵。然后确定液压泵的最大工作压力和流量。液压泵的最大工作压力必须等于或超过液压执行元件最大工作压力及进油路上总压力损失这两者之和,液压执行元件的最大工作压力可以从工况图或表中找到;进油路上总压力损失可以通过估算求得,也可以按经验资料估计,见表10-3。 液压泵的流量必须等于或超过几个同时工作的液压执行元件总流量的最大值以及回路中泄漏量这两者之和。液压执行元件总流量的最大值可以从工况图或表中找到(当系统中备有蓄能器时,此值应为一个工作循环中液压执行元件的平均流量);而回路中泄漏量则可按总流量最大值的10%-30%估算。 在参照产品样本选取液压泵时,泵的额定压力应选得比上述最大工作压力高20%-60%,以便留有压力储备;额定流量则只需选得能满足上述最大流量需要即可。 液压泵在额定压力和额定流量下工作时,其驱动电机的功率一般可以直接从产品样本上查到。电机功率也可以根据具体工况计算出来,有关的算式和数据见第三章相关部分或液压工程手册。 二、阀类元件 阀类元件的规格按液压系统的最大压力和通过该阀的实际流量从产品样本上选定。各类液压阀都必须选得使其实际通过流量最多不超过其公称流量的120%,否则会引起发热、噪声和过大的压力损失,使阀的性能下降。选用液压阀时还应考虑下列问题:阀的结构形式、特性、压力等级、连接方式、集成方式及操纵方式等。对流量阀应考虑其最小稳定流量;对压力阀应考虑其调压范围;对换向阀应考虑其滑阀机能等。 1.流量阀的选择 选择节流阀和调速阀时还要考虑其最小稳定流量是否符合设计要求,一般中、低压流量阀的最小稳定流量为50ml/min~100ml/min;高压流量阀的最小稳定流量为min~20ml/min。 流量阀对流量进行控制,需要一定的压差,高精度流量阀进、出口约需1MPa的压差。普通调速阀存在起始流量超调的问题,对要求高的系统可选用带手调补偿器初始开度的调速阀或带外控关闭功能的调速阀。 对于要求油温变化对外负载的运动速度影响小的系统,可选用温度补偿型调速阀。 2.溢流阀的选择

蓄能式液控蝶阀(水泵型)说明书

蓄能器 液控缓闭止回蝶阀 HBD743HS-10C 使用说明书高能阀门集团有限公司

目录 1.产品简介 2.型号说明 3.标准与规范 4.基本参数 5.特殊参数 6.主要零件选用材料 7.产品结构说明 8.工作原理及操作说明 9.吊装及调试维护 10.一般故障及排除方法 11.阀门成套供应范围 12.附件

蓄能器液控缓闭止回蝶阀 1.产品简介 液控缓闭止回蝶阀是目前国内外较先进的管路控制设备,主要安装于水利、电力、给排水等各类泵站的水泵出口,替代止回阀和闸阀的功能。工作时,阀门与管道主机配合,按照水力过渡过程原理,通过预设的启闭程序,有效消除管路水锤,实现管路的可靠截止,起到保护管路系统安全的作用。 本公司生产的液控缓闭止回蝶阀流阻系数小、自动化程度高、功能齐全、性能稳定可靠,是我公司设计人员在广泛搜集、研究、总结国内外同类产品性能的基础上,引入阀门、液压、电气等行业的多项研究成果,厚积而薄发,开发出来的新一代智能化高效节能产品。公司技术力量雄厚,并可根据用户的特殊要求单独进行设计,多方位满足广大用户对该类产品的需要。 该产品主要有如下特点: 1、可取代水泵出口处原电动闸阀和止回阀的功能,并把机、电、液系统集成为一个整体,减少占地面积及基建投资。 2、电液控制功能齐全,无需另外配置即可以作为一个独立的系统单机就地调试、控制;也可以作为集散性控制系统(DCS)的一个设备单元,通过I/O通道由中央计算机进行集中管理,与水泵、及其他管道设备实现联动操作;并配有手动功能,无动力电源时也可以实现手动开、关阀,满足特殊工况下的阀门调试、控制要求。 3、可控性好,调节范围大、适应性强。电液控制系统设有多处调节点,可以按不同的管道控制要求进行启闭程序设置,保证在满足开、关阀条件时,阀门能够自动按预先设定的时间、角度开启和分快关、慢关两阶段。并能实现无电关阀,有效消除破坏性水锤,防止水泵和水轮机组飞逸事故的发生,降低管网系统的压力波动,保障设备的安全可靠运行。 4、主阀密封面为三偏心金属密封或双偏心橡胶密封结构,启闭轻松、密封可靠;并有一道额外加大的偏心,使阀门具有良好的自关闭、自密封性能。中、小通径蝶板设计成流线型平板结构,大通径蝶板设计成双平板桁架式结构,排挤小,水流平顺,阀门流阻系数仅为 0.15~0.8,远小于止回阀的流阻系数(1.7~2.6),节能效果明显。 2.型号说明 HB D 7 4 3 H – 10 C 阀门材料:镍铬铸铁 公称压力:0.6MPa 密封材料:不锈钢 结构形式:三偏心 连接方式:法兰连接 驱动方式:液压传动 阀门类型:蝶阀 功能特征:蓄能罐式

43s Chinese Simply Guide

RELIABILITY·TOTAL SOLUTIONS PROVIDER 43S 简明使用指南

安全信息 警告注意事项 警告事项表示对用户健康 和安全的潜在危险。 致命电压 接通电源后,喷码机存在 致命电压,只有经培训和授权的人员才能进行维护操作。 眼睛防护 此标志提醒您:在进行任 何如墨水、溶剂和清洗剂有关的操作时,必须佩戴已核准的眼镜防护装置 火灾危险 墨水、溶剂、清洗剂是易挥发,易燃物,必须遵照当地的规定储存和处理。 此标志提醒您:在进行任何如墨水、溶剂和清洗剂有关的操作时,必须佩戴已核准的手部防护装置 手部防护 注意事项。 在使用喷码机之前必须阅读这些 本页包含重要的危险注意事项, 危险信息

切勿… × 使用非伟迪捷公司指 定耗材,否则将失去保修资格; × 在喷码机、墨水、溶剂 和清洗剂附近抽烟或使用明火; × 吸入过量的溶剂; × 让墨水、溶剂沾染眼睛 和皮肤; × 让墨水或溶剂进入本 地的排水系统; 务必… √ 佩戴防护眼镜和手套;√ 将墨水、溶剂和清洗剂存储在原厂容器中,放置在通风良好的储存室,避免阳光直射,环境温度为0~50℃; √ 根据本地法规回收废墨水,废溶剂和清洗材料; √ 在通风良好的区域工作; 与墨水、溶剂和清洗剂有关的医疗注意事项,请参阅本指南后面的“墨水、溶剂相关急救措施” 墨水、溶剂和清洗剂注意事项

如果没有“原料安全数据表”请向伟迪捷当地分支机构索取建议 操作者应该: √接受急救培训,并了 解使用可燃物和/或 毒性物质工作时可能 产生的后果; √持有“原料安全数据 表”。这些材料说明在 需要急救时应该采取 的医护行动; 眼睛沾染 用干净的自来水冲洗眼 睛至少15分钟,然后立 即就医治疗。 皮肤沾染 脱下被沾染的衣服,用香 皂和水冲洗被沾染的皮 肤区域。不要用清洗剂清 洗皮肤上的墨水。 墨水、溶剂相关急救措施…

蓄能器结构及型号含义

蓄能器结构及型号含义 用途及工作原理 蓄能器为液压传动系统中必不可少的重要部件,有储存能量、稳定压力、吸收液压冲击、消除液压脉动、减少电耗等功能。 NXQ-蓄能器内腔由皮囊分为两个部分:囊内装氮气,囊外充液压油。当液压泵将液压油压入畜能器时,皮囊就受压变形,气体体积随压力增加而减少,液压油被逐渐储存。若液压系统工作需要液压油,则畜能器将液压油排出,使系统的能量得到补偿。

容量选择 当畜能器冲液或排液较慢,足以使氮气在受压或卸压时能与周围环境充分地进行热交换,从而使工作温度保持不变,此为等温变化,反之,当畜能器充液排液迅速,使氮气受压或卸压时与周围环境不能充分地进行热交换,此为绝热变化。 充气压力 吸收冲击-以畜能器设置点的常用压力或稍高一点的压力作为充气压力; 吸收脉动-以脉动的平均压力的60%作为充气压力; 能量储存-充气压力应低于系统最低工作压力的90%和高于最高工作压力的25%。 NXQ1-F20/20-H NXQ2-L0.4/10-H NXQ1-F4/31.5-H NXQ2-L63/10-H NXQ1-F25/20-a―H NXQ2-L0.63/10-H NXQ1-F6.3/31.5-H NXQ2-L80/10-H NXQ1-F40/20-a-H NXQ2-L1/10-H NXQ1-F16/31.5-H NXQ2-L100/10-H NXQ1-F63/20-H NXQ2-L1.6/10-H NXQ1-F25/31.5-H NXQ2-L150/10-H

NXQ1-F80/20-H NXQ2-L2.5/10-H NXQ1-F40/31.5-H NXQ2-L0.25/20-H NXQ1-F100/20-H NXQ2-L4/10-H NXQ1-F20/31.5-H NXQ2-L0.4/20-H NXQ1-F150/20-H NXQ2-L6.3/10-H NXQ1-F25/31.5-a―H N XQ2-L0.63/20-H NXQ1-F0.25/31.5-H NXQ2-L16/10-H NXQ1-F40/31.5-a-H NXQ2-L1/20-H NXQ1-F0.4/31.5-H NXQ2-L25/10-H NXQ1-F63/31.5-H NXQ2-L1.6/20-H NXQ1-F0.63/31.5-H NXQ2-L40/10-H NXQ1-F80/31.5-H NXQ2-L2.5/20-H NXQ1-F1/31.5-H NXQ2-L20/10-H NXQ1-F100/31.5-H NXQ2-L4/20-H NXQ1-F1.6/31.5-H NXQ2-L25/10-a-H NXQ1-F150/31.5-H NXQ2-L6.3/20-H NXQ1-F2.5/31.5-H NXQ2-L40/10-a-H NXQ2-L0.25/10-H NXQ2-L16/20-H

蓄能器安装法则

蓄能器的安装维护使用说明 1.1蓄能器的安装与维护要点 1.1.1蓄能器的安装 (1)蓄能器安装前的检查 ①产品是否与设计规格型号相同、②充气阀是否紧固、③有无运输过程中造成影响使用的损伤、④进液阀进液口是否堵口好。 (2)蓄能器安装的基本要求 ①蓄能器的工作介质的黏度和使用温度均应与液压系统工作介质的要求相同。 ②蓄能器应安装在检查、维修方便之处。 ③用于吸收冲击、脉动时,蓄能器要紧靠振源,应装在易发生冲击处。 ④安装位置应远离热源,以防止因气体受热膨胀造成系统压力升高。 ⑤固定要牢固,但不允许焊接在主机上,应牢固地支持在托架上或壁面上。长度外径比过大时,还应设置抱箍加固。托架主要用于从下方承受蓄能器(垂直安装、油口向下)的重量,抱箍主要用于防止蓄能器的摇摆晃动。专用的皮囊式蓄能器托架及抱箍一般都带有橡胶垫和橡胶护套。托架及抱箍均可自制,托架平板中央的开口应大于油口并小于蓄能器外径,囊式蓄能器托架平板中央开口最好加橡胶垫圈,抱箍要求不高时可以采用普通的U型抱箍。 ⑥囊式蓄能器原则上应该油口向下垂直安装,倾斜或卧式安装时,皮囊因受浮力与壳体单边接触,将有妨碍正常伸缩运行、加快皮囊损坏、降低蓄能器机能的危险。因此一般不采用倾斜或卧式安装的方法。活塞式蓄能器,应严格按照油口向下垂直安装;卧式安装时,活塞的重量使密封件在侧压下加速磨损;卧式安装或者油口向上安装时,流体内的杂质容易沉淀累积,将磨损缸体内壁及密封件,严重影响密封性能。如有自己加工的连接短管等,要保证其清洁,不携带金属碎屑;安装过程的各阶段,要防止灰尘等固体颗粒进入蓄能器内部及管路。系统在检测、充氮前要将充氮装置用酒精洗干净,检查各阀口是否有碰伤、划痕,各密封装置是否有损坏,一旦发现及时更换和修复。 ⑦在泵和蓄能器之间应安装单向阀,以免在泵停止工作时,蓄能器中的油液倒灌入泵内、流回油箱,发生事故。 ⑧在蓄能器与系统之间,应装设截止阀,此阀供充气、调整、检查、维修或者长期停机使用。最好使用专用蓄能器安全阀组(又叫蓄能器安全阀块,一般由截止阀、安全阀、卸荷阀等一体集成)。

40L低压蓄能器说明书

40L低压蓄能器使用 维护说明书

该系统配备两只40L低压蓄能器,蓄能器与连接块连接,连接块进油口与系统保安油管路相连,出油口与系统无压回油连接。其作用是向保安油管路提供紧急用油,防止保安油压低引起跳机事故。图1.1为低压蓄能器油路图。 图1.1 在该蓄能器连接块上装有两个进油截止阀和两个排油截止阀以及两只压力表。通过此两只截止阀可将蓄能器与系统隔离并放掉蓄能器中的油液,以进行在线维修;两只压力表可直观的观察蓄能器进口油压压力。其中SH1、SH4为蓄能器进油截止阀,SH2、SH3为排油截止阀,当需要检修蓄能器时可SH1、SH4,打开SH2、SH3将蓄能器内部油排回油箱中,待油压下降为0时便可拆卸蓄能器进行维修。正常使用时SH1、SH4进油截止阀完全打开,SH2、SH3排油截止阀完全关闭。 该蓄能器为皮囊式,材质为丁腈皮囊,油路块采用2Cr13不锈钢、连接管 路采用0Cr18Ni9不锈钢钢管连接。进油口DN50与系统保安油连接,出油口DN10 与系统无压回油连接。图1.2为蓄能器组件外形尺寸及油口图。

图1.2 该蓄能器工作介质为HT32透平油,工作介质应维持在工作温度为35℃-65℃之间,避免温度过高或者过低影响蓄能器正常工作。蓄能器额定工作压力682KPa,耐压试验压力为1MPa,充氮压力为0.22MPa。在油冲洗前应将蓄能器进油、回油截止阀全部打开并进行油冲洗至油质化验合格。检查蓄能器内氮气压力为 0.22MPa。若压力不足则应补充充氮。 蓄能器的充氮步骤: 1)关闭蓄能器的进油阀,打开蓄能器排油阀。 2)检测蓄能器的氮气压力表氮气压力为 0.22MPa,否则必须充氮。 3)拆下氮气压力表组件前先旋动手柄至完全松开位置, 再慢慢松开放气螺钉,直到氮气压力表组件处 于无氮气压力自然状态,然后再拆下氮气压力表组 件,换上软管,用充气组件将蓄能器与氮气瓶连接 好。如出现接头螺纹不匹配,则需加工过渡接头。

伟迪捷激光喷码机使用标准操作规程 2

伟迪捷激光喷码机使用标准操作规程 2 修正药业集团股份有限公司 文件编号:SOP?SB-SY-007 版本号:00 文件名称伟迪捷激光喷码机使用标准操作规程文件编号 SOP?SB-SY-007 —起草者起草日期年月日原文件编号 审核者审核日期年月日原文生效日—批准者批准日期年月日版本号 00 颁发单位设备动力部生效日期年月日分发号分发单位与数量质量管理部、设备动力部、斯达舒车间、包装车间各1份 修订记载 版本号生效日期修订原因、依据及内容 00 依据2010版《药品生产质量管理规范》要求编写。 第 1 页共 8 页 修正药业集团股份有限公司 文件编号:SOP?SB-SY-007 版本号:00 目的:建立伟迪捷激光喷码机的标准操作规程,规范该设备的使用操作,指导安 全生产并满足产品工艺的需求。 范围:适用于伟迪倢激光喷码机的操作。 职责:设备动力部技术人员编写; 设备动力部主管、质量管理部审核;设备动力部经理批准; 车间操作工、维修工执行。 内容:

1 操作前检查 1.1 查看“设备使用日志(SMP?SB-GL-007-01)”,了解上一次设备运行情况。 1.2 在启动系统之前,检查以下要点: 1.2.1 系统配置的电源电压和频率是否正确。 1.2.2 电源是否由柔性电源导线连接。 1.2.3 同遥控外部互锁或紧急停机连接器相连接的电路是否已被关闭。 2 操作过程 2.1 将主机上的钥匙旋转至开的位置。 2.2 白色指示灯闪烁后,手柄自动启动。 2.3 输入需要操作的信息。 3 操作结束 3.1 将主机上的钥匙旋转至关的位置。 4 注意事项 4.1 设备所有激光束对视力都有潜在的危害,如果激光直射或反射入眼,有可能导致永久性视力损伤。(防止用眼睛直视激光镜头) 4.2 开机前,检查是否有空气进入镜头。 4.3 切不可用硬物接触镜头,以防止损坏镜头。 5 认真填写“设备使用日志(SMP?SB-GL-007-01)”。 6 附件 第 2 页共 8 页 修正药业集团股份有限公司 文件编号:SOP?SB-SY-007 版本号:00 (1)试题 培训: 培训部门:设备动力部

蓄能器计算

蓄能器在系统中的应用、选型、计算 蓄能器在系统中的应用、选型、计算 高压蓄能器在高压EH油系统中是如何发挥作用的?什么时候发挥作用? 高压蓄能器主要是平衡管路油压波动。具体分析一个特殊例子:当系统的多数油动机快速开启时(比如汽轮机开始冲转,2个中压调节门同时开启,或者2900转时的阀切换,6个高调门同时开启),系统油压必然快速下降,此时油泵来不及做出反映,蓄能器在设计上位置不仅靠近油动机并且能比油泵更加迅速的向系统补充油液,避免系统油压下降到9.7MPA时造成保护动作而停机。蓄能器的重要性在高压EH油系统中举足轻重。 流体实际上是不可压缩的,不能储存能量,因而液压蓄能器利用气体(氮气)可压缩性来储存流体。蓄能器实质上是一个储存压力流体的腔室,靠气体的可压缩性将不可压缩的流体能量得以储存,以备做有用功。上述的流体与液压回路相联结,当系统压力升高,流体压缩气体而进入蓄能器;当系统压力降低,压缩气体膨胀,并迫使流体流回液压回路。 蓄能器的典型应用:流体储存,紧急能源,吸收脉动,涌流控制,噪声衰减,车辆减震,容积补偿,压力补偿,渗漏补偿,热胀吸收,力学平衡,增加流量。 储蓄液压能: (1)对于间歇负荷,能减少液压泵的传动功率当液压缸需要较多油量时,蓄能器与液压泵同时供油;当液压缸不工作时,液压泵给蓄能器充油,达到一定压力后液压泵停止运转。 (2)在瞬间提供大量压力油。 (3)紧急操作:在液压装置发生故障和停电时,作为应急的动力源。 (4)保持系统压力:补充液压系统的漏油,或用于液压泵长时期停止运转而要保持恒压的设备上。 (5)驱动二次回路:机械在由于调整检修等原因而使主回路停止时,可以使用蓄能器的液压能来驱动二次回路。 (6)稳定压力:在闭锁回路中,由于油温升高而使液体膨胀,产生高压可使用蓄能器吸收,对容积变化而使油量减少时,也能起补偿作用。 缓和冲击及消除脉动: (1)吸收液压泵的压力脉动。 (2)缓和冲击:如缓和阀在迅速关闭和变换方向时所引起的水锤现象。 注: 1.缓和冲击的蓄能器,应选用惯性小的蓄能器,如气囊式蓄能器、弹簧式畜能器等。 2.缓和冲击的蓄能器,一般尽可能安装在靠近发生冲击的地方,并垂直安装,油口向下。如实在受位置限制,垂直安装不可能时,再水平安装。 3 .在管路上安装蓄能器,必须用支板或支架将蓄能器固紧,以免发生事故。 4.蓄能器应安装在远离热源地地方。 水泥厂立式辊磨中蓄能器的选择案例 磨辊的油缸压力在运行中的变化曲线。当蓄能器太小,设定正常压力Pn太大时,则液压弹簧系统很硬,这时磨辊随着料层厚度变化使液压系统压力变化幅度很大。为很好地发挥蓄能器缓冲振动作用,蓄能器要选得足够大,与液压油缸相连管道应有足够的断面,而且蓄能器应尽量靠近油缸。蓄能器选得小,产生较大振动。一般认为在磨辊加压的接杆上测得振动速度在1~5mm/s内较为合适,以此为标准来选择蓄能器。还建议蓄能器氮气充气压力: Po=0.9×pmin

蓄能器的基本功能

蓄能器的基本功能 蓄能器的基本功能 蓄能器的功用主要分为存储能量、吸收液压冲击、消除脉动和回收能量等。 2.1 存储能量 这一类功用主要应用蓄能器能够较大量存储能量的功能。在实际使用中又可细分为作辅助动力源、减小装机容量、补偿泄漏、作紧急动力源以及构成恒压油源等。 2.1.1 作辅助动力源 典型液压源回路见图2-1,带蓄能器的液压源回路见图2-2。 图2-1 一般液压源回路图2-2 带蓄能器的液压源回路 两种回路从表面看仅为是否有蓄能器的差别,两种回路的性能差别却非常大。蓄能器作为能量储存装置在液压源回路中出现,其主要用途是作为辅助油源,该回路经常在间歇性操作工况的液压系统中被采用。液压源回路中安装蓄能装置,在减小液压泵的驱动功率、节约能源、降低噪声、消除肪动、降低设备运行成本等方面效果非常明显;另一方面还可以提高液压系统的安全性和可靠性,一旦发生故障或停电时,还可以作为应急动力源,促使主机恢复到安全状态,避免重大事故的发生。 这类回路在液压系统工作时能补充油量,减少液压油泵供油,降低电机功率,减少液压系统尺寸及重量,节约投资。常用于间歇动作,且工作时间很短;或在一个工作循环中速度差别很大,要求瞬间补充大量液压

油的场合。 典型辅助能源回路如图2-3所示。液压机液压系统中当模具接触工作慢进及保压时,部分液压油储入蓄能器;而在冲模快速向工件移动及快速退回时,蓄能器与泵同时供油,使液压缸快速动作。 对于图2-4所示的回路,调节节流阀,可以控制油缸运动速度,低速时系统压力波动很小,油泵保持卸荷状态,由蓄能器提供压力油,蓄能器成为动力源,驱动油缸运动。 图2-4 蓄能器为动力源的回路

Dn1600蓄能器快关蝶阀液压系统说明书

XkDFYZB-6*300E--P 蓄能器快关蝶阀液压系统(Dn1600/0.25快关蝶阀用)

蓄能器快关蝶阀液压系统 一、液压系统结构参数和调节设定 1、液压油缸 配套液压缸型号:QBT2—D140*450。液压缸采用高强度无缝钢管经高精度控机床加工后经 珩磨而成,缸底集成缓闭装置(可调节),液压缸外形(见图七)。缓闭速度调节阀:顺时针旋转为减 少缓闭速度;缓闭角度调节阀:顺时针旋转为减少缓闭角度。 2、液压装置部分基本参数 油箱溶积95L 加油数量75L 额定流量6L/min 快速流量300L/min 工作压力9.0-11.0MPa 蓄能器容量25L 蓄能器充氮气压力 5.5MPa 保压性能4h压降不大于2MPa(稳压后) 开阀时间10-30秒(0-90°)可调 关阀时间10-30秒(0-90°)可调 快关时间大于2秒(包括缓冲时间) 过滤精度10u 装置总重约280kg(不包括液压油) 装置外形1200*500*1400(长*宽*高) 工作介质N46号液压油(必要时加40号抗冻液压油) 应用环境按常规工业设备要求 3、结构组成和功能简介 蝶阀液系统驱动装置主要由油箱电动机油泵组、蓄能控制阀组、滤油管路系统、执行液压缸,PLC电气控制系统等部件组成:系统主要负责油路控制,提供蝶阀开启动力,并完在蝶阀的慢开、 慢关、快关过程的控制。 油箱电动机油泵组—主要用于储存液压装置工作时需要的油液同时供给液压系统所需压力油。 滤油管路系统—过滤进入工作回路的油液,保证系统油液清洁,使得各控制阀能正常动作; 蓄能器控制组—按系统要求为控制驱动外界负载作快速运动提供压力油。 油路控制阀组简图见附图(一),主要由油路块、叠加式溢流阀、单向阀、电磁阀(DT1、DT2)、 叠加式液控单向阀、叠加式液控单向节流阀、电磁球阀DT3,、上限压力继电器KP1, 下限压力继 电器KP2、过滤压力差继电KP3、压力表、插装阀CF1、插装阀CF2、针阀等组成: 溢流阀—设定系统安全压力;(出厂设定值为12.5MPa) 顺时针旋转为调高设定值。 节流阀—调节系统开、关阀速度;顺时针旋转向里拧到底为最慢值。 压力继电器KP2—设定系统压力控制下限点(出厂设定值:9.5MPa); 顺时针旋转为调高设定值。 压力继电器KP1--设定系统油压的控制上限点(出厂设定值:11.0MPa); 顺时针旋转为调高设定值。 压力表1—显示系统供油管路内油液压力;压力表2—显示蓄能器内油液压力。

16MPa调速器的蓄能器、接力器和油泵参数选择

16MPa调速器的蓄能器、接力器和油泵参数选择 李晃 Ⅰ.参数选择原则 参数选择中按下述原则进行: 1.在油泵不工作的条件下, 蓄能器在正常工作油压下限p omin降到最低操作油压p R时至少能提供3个导叶接力器行程的油量。在上述要求的基础上,应适当应适当增大蓄能器容积,延长油泵打油间隔时间,以减少油泵的起停次数。 2.每台油泵的每分钟输油量按油泵的市场供应情况选取,可大于GB/9652.1的规定。 3.取蓄能器的预充压力为0.9p R ,且缓慢充压;在此基础上再适当增大蓄能器容积;正常工作油压的变化范围(p omax~p omin)取名义工作油压的±5%,即16MPa~1 4.4MPa。 4.最低操作油压p R的选择,应遵守使所选蓄能器容积小、且接力器的容积不宜过大的原则,从而降低产品成本。 Ⅱ.最低操作油压p R的选择对所需蓄能器容积的影响 已知接力器工作容量,那么接力器容积V S: V S=A / p R×10-6(m3) 式中:A—接力器工作容量(N·m); p R—最低操作油压(MPa)。 蓄能器在正常工作油压下限降到最低操作油压时能提供3~4个导叶接力器行程的油量进行蓄能器容积选择计算,先设提供的可用油体积V u=4V S。 所需的在正常工作油压下限时蓄能器氮气体积V air: V air= V u /{(p omin / p R)1/1.3-1} 式中:p omin—正常工作油压下限(MPa) 。 事故低油压紧急停机后达最低操作油压时的氮气体积V Rair: V Rair= V air+V u =V u /{(p omin / p R)1/1.3-1}+V u =V u[1/{(p omin / p R)1/1.3-1}+1] 设蓄能器预充压力为0.9p R,此时蓄能器氮气体积即所需蓄能器容积V o: V o = V Rair /0.9 =4.44A[1 / {(p omin / p R)1/1.3-1}+1](1/p R) 从上式可知,已知接力器工作容量和正常工作油压下限,所需蓄能器容积是最低操作油压的函数。 设K= p R / p omin,那么蓄能器氮气体积即所需蓄能器容积V o: V o=4.44 [1 /{(1/K)1/1.3-1}+1]( A/K p omin) =kA/ p omin

相关文档
最新文档