直线的方程经典题型总结加练习题 含答案

合集下载

(完整版)直线的一般式方程(附答案)

(完整版)直线的一般式方程(附答案)

直线的一般式方程[学习目标] 1.掌握直线的一般式方程.2.了解关于x 、y 的二元一次方程Ax +By +C =0(A 、B 不同时为0)都表示直线,且直线方程都可以化为Ax +By +C =0的形式.3.会进行直线方程不同形式的转化.知识点 直线的一般式方程1.在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x ,y 的二元一次方程;任何关于x ,y 的二元一次方程都表示一条直线.方程Ax +By +C =0(其中A 、B 不同时为0)叫做直线方程的一般式.2.对于直线Ax +By +C =0,当B ≠0时,其斜率为-A B ,在y 轴上的截距为-C B ;当B =0时,在x 轴上的截距为-C A ;当AB ≠0时,在两轴上的截距分别为-C A ,-CB .3.直线一般式方程的结构特征 (1)方程是关于x ,y 的二元一次方程.(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列. (3)x 的系数一般不为分数和负数.(4)虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程. 思考 (1)当A ,B 同时为零时,方程Ax +By +C =0表示什么? (2)任何一条直线的一般式方程都能与其他四种形式互化吗?答 (1)当C =0时,方程对任意的x ,y 都成立,故方程表示整个坐标平面; 当C ≠0时,方程无解,方程不表示任何图象.故方程Ax +By +C =0,不一定代表直线,只有当A ,B 不同时为零时,即A 2+B 2≠0时才代表直线.(2)不是.当一般式方程中的B =0时,直线的斜率不存在,不能化成其他形式;当C =0时,直线过原点,不能化为截距式.但其他四种形式都可以化为一般式.题型一 直线的一般形式与其他形式的转化例1 (1)下列直线中,斜率为-43,且不经过第一象限的是( )A.3x +4y +7=0B.4x +3y +7=0C.4x +3y -42=0D.3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A. 3 B.-5 C.95 D.-33答案 (1)B (2)D解析 (1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项正确. (2)令y =0则x =-3 3.跟踪训练1 一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,求此直线方程.解 设所求直线方程为x a +yb =1,∵点A (-2,2)在直线上,∴-2a +2b =1.①又∵直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.② 由①②可得⎩⎪⎨⎪⎧ a -b =1,ab =2,或⎩⎪⎨⎪⎧a -b =-1,ab =-2. 解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-1,b =-2.第二个方程组无解.故所求直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0.题型二 直线方程的应用例2 已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.解 方法一 l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.方法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13. ∴所求直线的方程为4x -3y +13=0.跟踪训练2 a 为何值时,直线(a -1)x -2y +4=0与x -ay -1=0. (1)平行;(2)垂直.解 当a =0或1时,两直线既不平行,也不垂直;当a ≠0且a ≠1时,直线(a -1)x -2y +4=0的斜率为k 1=-1+a2,b 1=2;直线x -ay -1=0的斜率为k 2=1a ,b 2=-1a .(1)当两直线平行时,由k 1=k 2,b 1≠b 2, 得1a =-1+a 2,a ≠-12, 解得a =-1或a =2.所以当a =-1或2时,两直线平行. (2)当两直线垂直时,由k 1·k 2=-1, 即1a ·(-1+a )2=-1,解得a =13. 所以当a =13时,两直线垂直.题型三 由含参一般式方程求参数的值或取值范围例3 (1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足______. (2)当实数m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1.①倾斜角为45°;②在x 轴上的截距为1. (1)答案 m ≠-3解析 若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎪⎨⎪⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)解 ①因为已知直线的倾斜角为45°, 所以此直线的斜率是1, 所以-2m 2+m -3m 2-m=1,所以⎩⎪⎨⎪⎧m 2-m ≠0,2m 2+m -3=-(m 2-m ), 解得⎩⎪⎨⎪⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.②因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎪⎨⎪⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎨⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.跟踪训练3 已知直线l :5ax -5y -a +3=0. (1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围. (1)证明 直线方程变形为y -35=a ⎝⎛⎭⎫x -15, 它表示经过点A ⎝⎛⎭⎫15,35,斜率为a 的直线. ∵点A ⎝⎛⎭⎫15,35在第一象限,∴直线l 必过第一象限.(2)解 如图所示,直线OA 的斜率k=35-015-0=3.∵直线不过第二象限, ∴直线的斜率a ≥3. ∴a 的取值范围为[3,+∞).一般式求斜率考虑不全致误例4 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y -(2m -6)=0,若此直线的斜率为1,试确定实数m 的值.分析 由直线方程的一般式,可转化为斜截式,利用斜率为1,建立方程求解,但要注意分母不为0.解 由题意,得⎩⎪⎨⎪⎧-m 2-2m -32m 2+m -1=1,①2m 2+m -1≠0. ② 由①,得m =-1或m =43.当m =-1时,②式不成立,不符合题意,故应舍去; 当m =43时,②式成立,符合题意.故m =43.1.若方程Ax +By +C =0表示直线,则A 、B 应满足的条件为( ) A.A ≠0 B.B ≠0 C.A ·B ≠0 D.A 2+B 2≠02.已知ab <0,bc <0,则直线ax +by =c 通过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0B.x -2y +1=0C.2x +y -2=0D.x +2y -1=04.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-125.已知两条直线y =ax -2和3x -(a +2)y +1=0互相平行,则a =________.一、选择题1.直线x +y -3=0的倾斜角的大小是( ) A.45° B.135° C.1 D.-12.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为( ) A.-2 B.2 C.-3 D.33.直线l 的方程为Ax +By +C =0,若直线l 过原点和二、四象限,则( ) A.C =0,B >0 B.A >0,B >0,C =0 C.AB <0,C =0D.AB >0,C =04.直线ax +3my +2a =0(m ≠0)过点(1,-1),则直线的斜率k 等于( ) A.-3 B.3 C.13 D.-135.直线y =mx -3m +2(m ∈R )必过定点( ) A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)6.若三条直线x +y =0,x -y =0,x +ay =3构成三角形,则a 的取值范围是( ) A.a ≠±1 B.a ≠1,a ≠2 C.a ≠-1D.a ≠±1,a ≠27.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )二、填空题8.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =_______.9.若直线mx+3y-5=0经过连接点A(-1,-2),B(3,4)的线段的中点,则m=______.10.直线l:ax+(a+1)y+2=0的倾斜角大于45°,则a的取值范围是______________.11.已知两条直线a1x+b1y+4=0和a2x+b2y+4=0都过点A(2,3),则过两点P1(a1,b1),P2(a2,b2)的直线方程为________________.三、解答题12.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.13.(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值.(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?当堂检测答案1.答案D解析 方程Ax +By +C =0表示直线的条件为A 、B 不能同时为0,即A 2+B 2≠0. 2.答案 C解析 由ax +by =c ,得y =-a b x +cb ,∵ab <0,∴直线的斜率k =-ab >0,直线在y 轴上的截距cb<0.由此可知直线通过第一、三、四象限. 3.答案 A解析 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y-1=0. 4.答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 5.答案 -3或1解析 两条直线y =ax -2和3x -(a +2)y +1=0互相平行,所以a 3=1a +2≠-21,解得a =-3或a =1.课时精练答案一、选择题 1.答案 B解析 直线x +y -3=0,即y =-x +3,它的斜率等于-1,故它的倾斜角为135°,故选B. 2.答案 D 解析 由已知得m 2-4≠0,且2m 2-5m +2m 2-4=1,解得:m =3. 3.答案 D解析 通过直线的斜率和截距进行判断. 4.答案 D解析 由点(1,-1)在直线上可得a -3m +2a =0(m ≠0),解得m =a ,故直线方程为ax +3ay +2a =0(a ≠0),即x +3y +2=0,其斜率k =-13.5.答案 A解析 由y =mx -3m +2,得y -2=m (x -3).所以直线必过点(3,2). 6.答案 A解析 因为直线x +ay =3恒过点(3,0),所以此直线只需不和x +y =0,x -y =0两直线平行就能构成三角形.所以a ≠±1. 7.答案 C解析 将l 1与l 2的方程化为斜截式得: y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C. 二、填空题 8.答案 35解析 由两直线垂直的条件,得2a +3(a -1)=0,解得a =35.9.答案 2解析 线段AB 的中点为(1,1),则m +3-5=0,即m =2. 10.答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合要求; 当a ≠-1时,直线l 的斜率为-aa +1,只要-a a +1>1或者-aa +1<0即可,解得-1<a <-12或者a <-1或者a >0.综上可知,实数a 的取值范围是 (-∞,-12)∪(0,+∞).11.答案 2x +3y +4=0解析 由条件知⎩⎪⎨⎪⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求.三、解答题12.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距都为0,当然相等,所以a =2,方程即为3x +y =0.当a ≠2时,截距存在且均不为0,所以a -2a +1=a -2,即a +1=1.所以a =0,方程即为x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,所以⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,所以a ≤-1.综上,a 的取值范围是a ≤-1.13.解 方法一 (1)由l 1:2x +(m +1)y +4=0, l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3,∴m 的值为2或-3. (2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3.当l 1⊥l 2时,k 1·k 2=-1, 即(-a +21-a )·(-a -12a +3)=-1,∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 方法二 (1)令2×3=m (m +1), 解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, 显然l 1与l 2不重合,∴l 1∥l 2. ∴m 的值为2或-3. (2)由题意知直线l 1⊥l 2,∴(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1,将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2.。

(完整版)直线与方程练习题及答案详解

(完整版)直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

直线方程习题带参考答案

直线方程习题带参考答案

1 / 4一选择题1. 1. 已知直线经过点已知直线经过点A(0,4)A(0,4)和点和点B (1,2),则直线AB 的斜率为(的斜率为(B B B ))A.3 B.-2 C. 2 D. A.3 B.-2 C. 2 D. 不存在不存在2.过点(1,3)-且平行于直线032=+-y x 的直线方程为(的直线方程为(A A A ))A .072=+-y x B B..012=-+y x C .250x y --=D .052=-+y x 3. 3. 在同一直角坐标系中,表示直线在同一直角坐标系中,表示直线y ax =与y x a =+正确的是(C )x yO x yO x yO xyO A B C D 4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( A A ))A .32-B B..32C C..23- D D..235.5.过过(x 1,y 1)和(x 2,y 2)两点的直线的方程是两点的直线的方程是( C ) ( C ) 112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则(则( A A A ))A A、、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K3C C、、K 3﹤K 2﹤K 1D D、、K 1﹤K 3﹤K 27、直线2x+3y-5=0关于直线y=x 对称的直线方程为(对称的直线方程为( A A A ))A 、3x+2y-5=0 B 3x+2y-5=0 B、、2x-3y-5=0两直线交点(两直线交点(11,1)L 1L 2x oL 3C 、3x+2y+5=0D 3x+2y+5=0 D、、3x-2y-5=0 对称点(对称点(-1-1-1,,4)8、与直线2x+3y-6=0关于点关于点(1,-1)(1,-1)(1,-1)对称的直线是(对称的直线是(对称的直线是( D D D )) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=09、直线5x-2y-10=0在x 轴上的截距为a,a,在在y 轴上的截距为b,b,则(则(则( B B B )) A.a=2,b=5; B.a=2,b=5-; C.a=2-,b=5; D.a=2-,b=5-.1010、直线、直线2x-y=7与直线3x+2y-7=0的交点是(的交点是( A A A )) A (3,-1) B (-1,3) C (-3,-1) D (3,1)1111、过点、过点P(4,-1)P(4,-1)且与直线且与直线3x-4y+6=0垂直的直线方程是(垂直的直线方程是( A A A )) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=0二填空题(共20分,每题5分)分) 12. 12. 过点(过点(过点(11,2)且在两坐标轴上的截距相等的直线的方程)且在两坐标轴上的截距相等的直线的方程 y=2x 或x+y-3=013两直线2x+3y 2x+3y--k=0和x -ky+12=0的交点在y 轴上,则k 的值是的值是 ±61414、两平行直线、两平行直线0962043=-+=-+y x y x 与的距离是2010。

直线的方程(解析版)

 直线的方程(解析版)

直线的方程题型一:倾斜角、斜率问题典例1、直线3310x y ++=的倾斜角为( )A .150B .120C .30D .60答案: A解析: 求出直线斜率,可得倾斜角.【详解】 直线3310x y ++=的斜率为33k =-,所以倾斜角为150°. 故选:A.【点睛】本题考查直线的倾斜角,解题时可先求得直线斜率,由斜率与倾斜角关系得倾斜角. 典例2、如果过P (-2,m ),Q (m ,4)两点的直线的斜率为1,那么m 的值是( )A .1B .4C .1或3D .1或4答案: A解析: 根据直线的斜率公式,列出方程,即可求解,得到答案.【详解】由题意,过过P (-2,m ),Q (m ,4)两点的直线的斜率为1,根据直线的斜率公式,可得41(2)m m -=--,解得1m =. 故选:A.【点睛】本题主要考查了直线的斜率公式的应用,其中解答中熟记直线的斜率公式,准确运算是解答的关键,着重考查了计算能力,属于基础题.典例3、直线2x ﹣3y+1=0的一个方向向量是( )A .(2,﹣3)B .(2,3)C .(﹣3,2)D .(3,2) 答案: D解析: 由题意可得:直线2x ﹣3y+1=0的斜率为k=,所以直线2x ﹣3y+1=0的一个方向向量=(1,),或(3,2)故选D .典例4、直线l 的一个法向量(cos 1)n θ=,(θ∈R ),则直线l 倾角α的取值范围是_______。

答案: 3[0][)44πππ⋃,,解析: 依题意可得,直线l 的方向向量为(1,cos )θ-,则tan cos [1,1]αθ=-∈-,所以3[0,][,)44ππαπ∈⋃典例5、已知线段AB 的端点()()2,1,1,4A B -,直线l 过原点且与线段AB 不相交,则直线l 的斜率k 的取值范围是__________________答案: (-∞,-4+∞)解析: 求出直线,OA OB 的斜率,观察线段AB 是否过y 轴,即可得。

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。

30° B。

45° C。

60° D。

90°2.如果三个点A(3,1)。

B(-2,b)。

C(8,11)在同一直线上,那么实数b等于多少?A。

2 B。

3 C。

9 D。

-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。

y + 2 = (3/√3)(x + 1) B。

y - 2 = 3/2(x - 1) C。

3x - 3y + 6 - 3 = 0 D。

3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。

相交 B。

平行 C。

重合 D。

异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。

(-2,1) B。

(2,1) C。

(1,-2) D。

(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。

第一、二、三象限 B。

第一、二、四象限 C。

第一、三、四象限 D。

第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。

√(23/2) B。

√(2/23) C。

√(23+5) D。

√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。

y = -2x + 4 B。

y = (1/2)x + 4 C。

y = -2x - 3 D。

y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。

2 B。

1 C。

-1 D。

-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。

3x - y + 5 = 0.x + 2y - 7 = 0 B。

直线方程经典题型总结

直线方程经典题型总结

直线与直线方程经典题型题型一:倾斜角与斜率【例1】下列说法正确的个数是( )①任何一条直线都有唯一的倾斜角;②倾斜角为030的直线有且仅有一条;③若直线的斜率为θtan ,则倾斜角为θ;④如果两直线平行,则它们的斜率相等A. 0个B.1个C.2个D.3个【练习】如果0<AC 且0<BC ,那么直线0=++C By Ax 不通过( )A.第一象限B.第二象限C.第三象限D.第四象限【例2】如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )A .k sin α>0B .k cos α>0C .k sin α≤0D .k cos α≤0【练习】图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ).A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2【例3】经过点()2,1P 作直线l ,若直线l 与连接()10—,A ,()1,4B 的线段总有公共点,求直线l 的倾斜角α与斜率k 的取值范围。

【练习】已知两点()4,3-A ,()2,3B ,过点()1-2,P 的直线l 与线段AB 有公共点,求直线l 的斜率k 的取值范围。

【例4】若直线l 的方程为2tan +=αx y ,则( )A.α一定是直线l 的倾斜角B.α一定不是直线l 的倾斜角C.α—π一定是直线l 的倾斜角D.α不一定是直线l 的倾斜角【练习】设直线0=++c by ax 的倾斜角为α,且0cos sin =+αα,则b a 、满足( )A.1=+b aB.1=b a —C.0=+b aD.0=b a —题型二:斜率的应用【例5】若点()()()4,0,0,2,2C a B A ,共线则a 的值为_________________.【练习】若三点()()()b C a B A ,0,0,2,2, ()0≠ab 共线,则b a 11+的值为_____________. 【例6】已知实数y x 、满足82=+y x ,当32≤≤x 时,求x y 的最大值为_______,最小值为_________________ 【练习】1、若45ln ,23ln ,12ln ===c b a ,则( ) A.c b a << B.a b c << C.b a c << D.c a b <<2、求函数1212+=x x y —的值域.题型三:两直线位置关系的判断已知,两直线21,l l 斜率存在且分别为21,k k ,若两直线平行或重合则有21__________k k ,若两直线垂直则有21__________k k .【例7】已知直线1l 的倾斜角为 60,直线2l 经过点()3,1,A ,()322—,—B ,判断直线1l 与2l 的位置关系.【练习】1、已知点()3,2P,()5,4Q ,()a A ,—1,()2,2a B 当a 为何值时,直线PQ 与直线AB 相互垂直?2、已知直线1m 经过点()()3,23—,,a B a A ,直线2m 经过点()()5,6,3N a M ,,若21m m ⊥,求a 的值.【例8】在平面直角坐标系中,对R a ∈,直线012:012:21=+=+—和—y ax l ay x l ( ).A 互相平行 .B 互相垂直.C 关于原点对称 .D 关于直线x y —=对称【练习】直线()()()()07425084123=++=+++——与—y a x a y a x a 垂直,求a 的值.题型四:求直线方程(一)点斜式【例9】根据条件写出下列直线的方程:(1)经过点A(1,2),斜率为2;(2)经过点B (—1,4),倾斜角为 135;(3)经过点C (4,2),倾斜角为 90;(4)经过点D (—3,—2),且与x 轴平行.已知直线过一点,可设点斜式【练习】已知ABC ∆中,()()()0,26,241—,,—,C B A ,BC AD ⊥于D ,求AD 的直线方程.(二)斜截式【例10】根据条件写出下列直线的方程:(1)斜率为2,在y 轴上的截距是5;(2)倾斜角为 150,在y 轴的截距为—2;(3)倾斜角为 45,在y 轴上的截距为0.已知斜率时,可设斜截式: 【练习】求斜率为43,且与坐标轴围成的三角形周长是12的直线l 的方程.(三)截距式【例12】根据条件写出下列直线的方程:(1)在x 轴上的截距为—3,在y 轴上的截距为2;(2)在x 轴上的截距为1,在y 轴上的截距为—4;与截距相关的问题,可设截距式【练习】直线l 过点()3,4P ,且在轴轴、y x 上的截距之比为1:2,求直线l 的方程.(四)两点式【例11】求经过下列两点的直线方程:(1)A(2,5),B(4,3) (2)A(2,5),B(4,5) (3)A(2,5),B(2,7)适时应用“两点确定一条直线”【练习】过点()1,0M作直线l ,使他被两条已知直线04:103:21=+++y x l y x l 和—所截得的线段AB 被点M 平分.求直线l 的方程.【例12】1、已知点A (3,3)和直线l :2543—x y =.求: (1)经过点A 且与直线l 平行的直线方程;(2)经过点A 且与直线l 垂直的直线方程.2、已知三角形三个顶点的坐标分别为A (—1,0),B (2,0),C (2,3),试求AB 边上的高的直线方程.(思考:如果求AB 边上的中线、角平分线呢?)【例13】已知直线l 的斜率为2,且l 和两坐标轴围成面积为4的三角形,则直线l 的方程为________________.【练习】已知,直线l 经过点(—5,—4),且与两坐标轴所围成的三角形面积为5,则直线l 的方程为________________【例14】直线l 不经过第三象限,其斜率为k ,在y 轴上的截距为b (0≠b ),则( )A.00>≤b k 且B.00<≥b k 且C.00><b k 且D.00>>b k 且【练习】两条直线y=ax+b 与y=bx+a 在同一直角坐标系中的图象位置可能是( )A五、直线的交点坐标与距离公式1、求两条直线的交点(联立方程组)例(1)若三条直线:2x+3y+8=0,x-y-1=0 和x +ky +k+21=0相交于一点,则k=(2)已知直线l 1:x+y+2=0, l 2:2x-3y-3=0,求经过的交点且与已知直线3x +y -1=0平行的直线l 的方程。

直线的方程题及答案

直线的方程题及答案

直线的方程题及答案本文将探讨一些关于直线方程的题目,并提供详细的解答。

直线方程是数学中的重要概念,掌握好直线方程的求解方法对理解几何学和代数学都至关重要。

题目一:求直线的斜率和截距已知直线通过点P(2, 3),斜率为2,求此直线的方程。

解答:直线的一般方程为:y = mx + c,其中m为直线的斜率,c为直线的截距。

已知直线通过点P(2, 3)且斜率为2,代入上述方程得:3 = 2 * 2 + c,解得c = -1。

因此,直线的方程为:y = 2x - 1。

题目二:两条直线的交点已知直线l1过点A(1, 2),斜率为3;直线l2过点B(2, 4),斜率为-2。

求直线l1和l2的交点坐标。

解答:设直线l1的方程为y = 3x + c1,直线l2的方程为y = -2x + c2。

由已知,直线l1经过点A(1, 2),代入方程得:2 = 3 * 1 + c1,解得c1 = -1。

直线l2经过点B(2, 4),代入方程得:4 = -2 * 2 + c2,解得c2 = 8。

将c1和c2带入对应方程,得到直线l1的方程为y = 3x - 1,直线l2的方程为y = -2x + 8。

为求两条直线的交点,令它们的y值相等,解方程得:3x - 1 = -2x + 8,解得x = 1,将x = 1代入任一方程得到y = 2。

因此,直线l1和l2的交点为(1, 2)。

题目三:两直线平行或垂直判断已知直线l1的方程为2x + 3y = 4,直线l2经过点C(1, -1),斜率为-2。

判断直线l1和l2是否平行或垂直。

解答:两条直线平行的条件是它们的斜率相等。

直线l1的斜率可用标准形式y = (-a/b)x + c得到,即斜率为-2/3;直线l2的斜率为-2。

由此可知,直线l1和l2的斜率不相等,因此它们不平行。

两条直线垂直的条件是它们的斜率乘积为-1。

直线l1的斜率为-2/3,直线l2的斜率为-2,它们的乘积不等于-1。

直线方程综合训练题集及答案

直线方程综合训练题集及答案

直线方程综合训练1一、选择题1、三角形中,已知三边a,b,c依次所对应的三内角α,β,γ满足lgsinα+lgsin γ=2lgsinβ, 则直线xsin2α+ysinα=α与xsin2β+ysinγ=c的位置关系是( ) (A) 平行(B) 斜交(C) 垂直(D) 重合2、点(a,b)关于直线x+y=0对称的点是( )(A) (-a,-b) (B) (a,-b) (C) (b,a) (D) (-b,-a)3、已知l 平行于直线3x+4y-5=0, 且l和两坐标轴在第一象限内所围成三角形面积是24,则直线l的方程是( ) (A) 3x+4y-122=0 (B) 3x+4y+122=0(C) 3x+4y-24=0 (D) 3x+4y+24=04、点(4,0)关于直线5x+4y+21=0对称的点是()(A) (-6,8) (B) (-8,-6) (C) (6,8) (D) (-6,-8)5、若直线l经过点(1,1),且与两坐标轴所围成的三角形的面积为2,则直线l的条数为( ) (A)1 (B)2 (C)3 (D)46、平面上两点A(4cosα,4sinα)与B(3cosβ,3sinβ)之间的距离的最大值与最小值顺序为()(A)7与1 (B)6与1 (C)7与2 (D)6与27、直线x+2y-1=0的倾斜角为( )(A)43)D (22arctan )C (22arctan )B (4π-ππ8、经过点A (-3,2)和B (6,1)的直线与直线x +3y -6=0相交于M ,M 分AB 所成的比是 ( )(A )-1 (B )21 (C )1 (D )29、如图所示,直线l 1:ax -y +b=0与l 2:bx -y +a=0(ab ≠0,a ≠b)的图象只可能是( )10、由方程11-+-y x =1确定的曲线所围成的图形面积是 ( )(A )1 (B )2 (C )π (D )411、一平行于y 轴的直线把顶点为(0,0)、(1,1)、(9,1)的三角形分成面积相等的两部分,那么这条直线是 ( )(A )x=2.5 (B )x=3 (C )x=3.5 (D )x=412、经过原点,且倾斜角是直线y=22x +1倾斜角2倍的直线是 ( )(A )x=0 (B )y=0 (C )y=2x (D )y=22x13、已知菱形的三个顶点为(a,b )、(-b,a )、(0,0),那么这个菱形的第四个顶点为 ( )(A )(a -b,a +b) (B )(a +b, a -b) (C )(2a,0) (D )(0,2a)14、直线kx -y=k -1与ky -x=2k 的交点位于第二象限,那么k 的取值范围是( )(A )k >1 (B )0<k <21 (C )k <21(D )21<k <115、直线ax +by=ab(a >0,b <0)的倾斜角等于 ( )(A )π-arctg(-b a ) (B )π-arctg b a (C )arctg(-b a ) (D )arctg ba二、填空题1、过点A (-1,2)且倾斜角正弦值为53的直线方程是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即tan

=。

斜率反映直线与轴的倾斜程度。


[)ο
ο90
,

α
时,0

k;当
()ο
ο180
,
90

α
时,0
<
k;当ο
90
=
α时,k不存在。

②过两点的直线的斜率公式:
)
(
2
1
1
2
1
2x
x
x
x
y
y
k≠
-
-
=
所有直线都有倾斜角,但不是所有直线都有斜率
概念考查
1、已知经过点A(-2,0)和点B(1,3a)的直线
1
λ与经过点P(0,-1)和点Q(a,
-2a)的直线
2
λ互相垂直,求实数a的值。

2、直线b
ax
y+
=与a
bx
y+
=在同一坐标系下可能的图是()
3、直线3
)2
(+
-
=x
k
y必过定点,该定点的坐标为()
A.(3,2)B.(2,3)C.(2,–3)D.(–2,3)
4、如果直线0
=
+
+c
by
ax(其中c
b
a,
,均不为0)不通过第一象限,那么c
b
a,
,应满足的关系是()
A.0
>
abc B.0
>
ac C.0
<
ab D.c
b
a,
,同号
5、若点A(2,–3),B(–3,–2),直线l过点P(1,1),且与线段AB相交,则l的斜率k 的取值范围是()
A.
4
3

k或4-

k B.
4
3

k或
4
1
-

k C.
4
3
4≤

-k D.4
4
3

≤k
(3)两点间距离公式:设1122
(,),
A x y
B x y
,()
是平面直角坐标系中的两个点,则
||
AB=
(4)点到直线距离公式:一点
()
00,y x P 到直线0:1
=++C By Ax l 的距离
2
200B A C
By Ax d +++=
概念考查
(1) 求两平行线1l :3x+4y=10和2l :3x+4y=15的距离。

(2) 求过点M (-2,1)且与A (-1,2),B (3,0)两点距离相等的直线方程。

(3) 直线l 经过点P (2,-5),且与点A (3,-2)和点B (-1,6)的距离之比为1:2,求
直线l 的方程
(4) 直线1l 过点A (0,1),2l
过点(5,0),如果
1//l 2
l ,且1l 与2l 的距离为5,求1l 、2l

方程
(5)已知点P (2,-1)
a 、求过P 点且与原点距离为2的直线l 的方程
b 、求过P 点且与原点距离最大的直线l 的方程,最大距离是多少 (5)、求关于点对称的对称问题的方法。

(1)求已知点关于点的对称点。

(距离相等,三点同线) (2)求直线关于点的对称直线。

(平行,点到线距离相等) (3)求点关于直线的对称点。

(在垂直线上,距离相等) (4)求直线关于直线的对称直线。

(平行:距离相等;相交:过交点,点对称) 概念考查
已知直线l :y=3x+3,求:
(1) 点P (4,5)关于l 的对称点坐标;
(2)直线y=x-2关于l的对称直线的方程;
(3)直线l关于点A(3,2)的对称直线的方程。

(6)直线上动点与已知点距离的最大最小值
a. 在直线l上求一点P使|PA|+|PB|取得最小值时,若点A、B位于直线l的同侧,则作点A
(或点B)关于l的对称点A'(或点B'),连接A B'(或AB')交l于点P,则点P即为所求。

若点A、B位于直线l的异侧,直接连接AB交l于P点,则点P即为所求。

可简记“同侧对称异侧连”。

即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可。

b. 在直线l上求一点P使||PA|-|PB||取得最大值时,方法与a恰好相反,即“异侧对称同侧连”。

概念考查
=,在直线l上求一点P,使|PA|+|PB|(1)已知两点A(3,-3),B(5,1),直线:l y x
最小。

||PA|-|PB||最大
(2)求一点P,使
直线的方程经典例题
经典例题透析
类型一:求规定形式的直线方程
1.(1)求经过点A(2,5),斜率是4直线的点斜式方程;
(2)求倾斜角是,在轴上的截距是5;直线的斜截式方程;
(3)求过A(-2,-2),B(2,2)两点直线的两点式方程;
(4)求过A(-3,0),B(0,2)两点直线的截距式方程.
思路点拨:
直线方程有点斜式、斜截式、两点式、截距式、一般式,要根据条件写出直线方程.
解:(1)由于直线经过点A(2,5),斜率是4,由直线的点斜式可得;
(2);

.
总结升华:
写规定形式的方程,要注意方程的形式.
举一反三:
【变式1】
(1)写出倾斜角是,在轴上的截距是-2直线的斜截式方程;
(2)求过A(-2,-3),B(-5,-6)两点直线的两点式方程;
(3)求过A(1,0),B(0,-4)两点直线的截距式方程.
【答案】
(1);

.
类型二:直线与坐标轴形成三角形问题
2.过点P(2,1)作直线与x轴、y轴正半轴交于A、B两点,求△AOB面积的最小值及此时直线的方程.
思路点拨:
因直线已经过定点P(2,1),只缺斜率,可先设出直线的点斜式方程,且易知k<0,
再用k表示A、B点坐标,结合函数及不等式知识求解.
解析:
解法一:设直线的方程为:y-1=k(x-2),
令y=0,得:x=;
令x=0,得y=1-2k,
∵与x轴、y轴的交点均在正半轴上,
∴>0且1-2k>0
故k<0,
△AOB的面积
当且仅当-4k=-,即k=-时,
S取最小值4,
故所求方程为y-1=-(x-2),即:x+2y-4=0.
总结升华:
解法一与解法二选取了直线方程的不同形式,解法三考虑到图形的直观性,利用了形数结合的思想,体现了解题的“灵活性”. 已知直线过一点时,常设其点斜式方程,但需注意斜率不存在的直线不能用点斜式表示,从而使用点斜式或斜截式方程时,要考虑斜率不存在的情况,以免丢解. 而直线在坐标轴上的截距,可正、可负,也可以为零,不能与距离混为一谈,注意如何由直线方程求其在坐标轴上的截距.
类型三:斜率问题
3.求过点,且与轴的交点到点的距离为5的直线方程.
思路点拨:
要对直线是否存在斜率的不同情况加以分类解析,结合题目中的相关条件设出对应的直线方程,然后求解.
解析:
(1)当直线斜率存在时,因为直线与轴相交,所以,设直线的斜率为,
已知直线过点,代入点斜式方程,得,
所以直线与轴的交点为则有,解得,
故所求直线方程为;
(2)当直线斜率不存在时,经过点A且垂直于轴的直线与轴的交点(-4,0)到
的距离也恰好
为5,所以直线也满足条件.
综上所述,所求直线方程为或.
总结升华:
解答此类问题时,容易忽视直线斜率不存在时的情况,同学们在实际解答时要全面考虑.斜率不存在的直线(即垂直于轴的直线)不能用点斜式、斜截式方程求解,点斜式、斜截式方程的使用条件是直线斜率必须存在.因此,用点斜式、斜截式方程求解直线方程时要考虑斜率不存在的情况,以免丢解.
类型四:截距问题
4.求过点且在两坐标轴上截距相等的直线方程.
思路点拨:
要对直线截距的不同情况加以分类解析,结合题目中的相关条件设出对应的直线方程,然后求解.直线在两轴上截距相等,直接考虑截距式方程,也可以用由图形性质,得到k=-1时截距相等,从而选用点斜式. 解题时特别要注意截距都是0的情况,这时选用函
数.
解析:
(1)当截距不为零时,设所求直线方程为,将点代入得,解得

故所求直线方程为;
(2)当截距为0时,直线方程为
综上所述,所求直线方程为或.
总结升华:
注意截距与距离的区别,截距可正、可负、可为零,不可与距离混为一谈.截距式方程的使用条件是直线在轴、轴上的截距都存在且不为零,垂直于坐标轴和过原点的直线不能用该方程求解,因此用截距式方程要考虑截距为零的情况.解答此类问题时,容易遗漏所求直线在在轴、轴上的截距为0的情况,在实际解答时要全面考虑.
P。

相关文档
最新文档