函数模型及其应用教案
高中数学必修一教案-函数模型的应用实例

《函数模型的应用实例》一、教学内容分析:本节课选自人民教育出版社A版的普通高中课程标准实验教科书·数学必修1中3.2.2函数模型的应用实例(第二课时).函数基本模型的应用是本章的重点内容之一,函数模型本身就来源于现实,并用于解决实际问题.本节课的内容是在《几类不同增长的函数模型》和《函数模型的应用实例(一)》内容之后,对于纯数学知识的几类函数及其性质和给定的函数模型应用有了一定的学习,本节课是对以上两节内容的延续与拓展,研究没有给定函数模型或没有确定性函数模型的实际问题进行建模和应用.这节课的内容继续通过一些实例来感受函数模型的建立和应用,逐步体会实际问题中构建函数模型的过程,本节课的函数模型的应用实例主要包括建立确定性函数模型解决问题及选择或建立拟合函数模型解决问题.例5所给的问题的特点是表中数学的变化是有特定规律的,运用表中的数据规律建立数学模型,注意变化范围和检验结果的合理性,同时使用这种有规律的简单数据实例提供了建立数学模型的方法.例6与例5有所区别,表中数据的变化规律特点不是和明显,需要自己根据对数据的理解选择模型,这反映一个较为完整的建立函数模型解决问题的过程,让学生逐步感受和明确这一点.整节课要求学生分析数据,比较各个函数模型的优劣,选择接近实际的函数模型,并应用函数模型解决实际问题.强化读图、读表能力;优化学生思维,提高学生探究和解决问题的能力;强化学生数学应用意识,感受数学的实用性;锻炼学生的吃苦精神,提高学生的团队合作能力.二、教学目标:知识与技能:1.会分析所给出数据,画出散点图.2.会利用选择或建立的函数模型.3.会运用函数模型解决实际问题.过程与方法:1.通过对给出的数据的分析,抽象出相应的确定性函数模型,并验证函数模型的合理性.2.通过收集到的数据作出散点图,并通过观察图像判断问题所适用的函数模型,在合理选择部分数据或计算机的拟合功能得出具体的满意的函数解析式,并应用模型解决实际问题.情感、态度和价值观:1.经历建立函数模型解决实际问题的过程,领悟数学源自生活,服务生活,体会数学的应用价值.2.培养学生的应用意识、创新意识和探索精神,优化学生的理性思维和求真务实的科学态度.3.提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度.三、学生学情分析:1.已掌握了一些基本初等函数的相关知识,有相应的数学基础知识储备.2.在前面的学习中,初步体会了利用给定函数模型解决实际问题的经历,为本节课积累解决问题的经验.3.学生从文字语言向图像语言和符号语言转化较弱;应用意识和应用能力不强;抽象概括和局部处理能力薄弱.四、教学重点、难点重点:根据收集的数据作出散点图,并通过观察图像选择问题所适用的函数模型,利用演算或计算机数据建立具体的函数解析式.难点:怎样合理分析数据选择函数模型和建立具体的函数解析式.五、教学策略分析:基于新课程标准倡导以学生为主体进行探究性学习,教师应成为学生学习的引导者、组织者和合作者的教学理念和最近发展区理论,结合本节课的教学目标,采用如下教学方法:1.问题教学法.在例1的教学中,提出如何能更为直观的发现函数模型,引导学生思考,发现选择函数模型的重要方法,即散点图图像,从而让学生有收获,有成就感.在例2的解决过程中,提出一系列的问题串,学会对问题的剖析,直达问题的核心.使学生的学习过程成为在教师引导下的“再创造”过程,并使学生从中体会学习的兴趣.这样可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃,同时培养了学生自主学习,动手探究的能力.2.分组讨论法.在例2的教学中,遇到难以选择模型时,通过小组讨论,拓展思维,加强合作,解决问题;在获得函数模型后和课堂总结中,组织小组讨论,相互交流成果,扩大成果影响力.这样不仅能够培养学生对数学知识的探索精神和团队协作精神,更能让学生体验成功的乐趣,培养其学习的主动性.3.多媒体辅助教学法:在教学过程中,采用多媒体教学工具,通过动态演示有利于引起学生的学习兴趣,激发学生的学习热情,增大信息的容量,使内容充实、形象、直观,提高教学效率和教学质量。
数学八年级上册《函数》教案

基于课程标准的学科教学设计义,能根据所给信息确定一次函数表达式.4.能画一次函数的图象,理解一次函数图象的变化情况,并利用一次函数图象解决简单的实际问题.5.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程,体会数形结合的思想方法与一次函数中k与b的实际意义.3.单元整体教学思路(教学结构图)课时教学设计课题《一次函数》第一课时课型新授课☑章/单元复习课□专题复习课□习题/试卷讲评课□学科实践活动课□其它1.课程标准分析1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.6.学习活动设计教师活动学生活动环节一:创设情境、导入新课教的活动1播放洋葱数学有关函数的数学史。
学的活动1观看洋葱数学有关函数的数学史。
活动意图说明:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
环节二:展现背景,提供概念抽象的素材教的活动1问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?学的活动1畅所欲言,分享体验。
举手回答:摩天轮上一点的高度h与旋转时间t之间的关系。
《4.5 函数的应用(二)》公开课优秀教案教学设计(高中必修第一册)

第五章函数的应用(二)4.5.3 函数模型的应用本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。
函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。
本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。
课程目标学科素养1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力.a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;d.直观想象:运用函数图像分析问题;e.数学建模:由实际问题建立函模型;f.数据分析:通过数据分析对应的函数模型;教学重点:利用给定的函数模型或建立确定性函数模型解决实际问题.教学难点:利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.多媒体教学过程设计意图核心教学素养目标(一)创设问题情境1.常见函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模拟y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1) (4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a>0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)2.建立函数模型解决问题的基本过程(二)问题探究我们知道,函数是描述客观世界变化规律的数学模型,不同的变化规律需要用不同的函数模型来刻画.面临一个实际问题,该如何选择恰当的函数模型来刻画它呢?通过对常见函数模型的回顾,提出新的问题,提出运用函数模型分析解决实际问题,培养和发展数据分析、数学建模和数学抽象、直观想象的核心素养。
《函数模型及其应用》教案

芯衣州星海市涌泉学校函数模型及其应用教学目的:1.能根据图形、表格等实际问题的情境建立数学模型,并求解;进一步理解函数模型在解决简单的实际问题中的应用,理解函数模型在社会生活中的广泛应用2.在解决实际问题的过程中,培养学生数学地分析问题、探究问题、解决问题的才能,培养学生的应用意识,进步学习数学的兴趣. 教学重点:在解决以图、表等形式作为问题背景的实际问题中,读懂图表并求解. 教学难点: 对图、表的理解. 教学方法: 讲授法,尝试法. 教学过程: 一、情境创设矩形的长为4,宽为3,假设长增加x ,宽减少0.5x ,所得新矩形的面积为S . 〔1〕将S 表示成x 的函数;〔2〕求面积S 的最大值,并求此时x 的值. 二、学生活动 考虑并完成上述问题. 三、例题解析例1有一块半径为R 的半圆形钢板,方案剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,写出这个梯形周长y 和腰长x 间的函数关系式,并求出它的定义域.A BO C DE例2一家旅社有100间一样的客房,经过一段时间是是的经营理论,旅社经理发现每间客房每天的价格与住房率有如下关系:要使每天收入最高,每间客房定价为多少元?例3今年5月,荔枝上.由历年的场行情得知,从5月10日起的60天内,荔枝的场售价与上时间是是的关系大致可用如下列图的折线ABCD表示(场售价的单位为元/500g).请写出场售价S(t)(元)与上时间是是t(天)的函数关系式,并求出6月20日当天的荔枝场售价.练习:1.直角梯形OABC中,AB∥OC,AB=1,OC=BC=2,直线l:x=t截此梯形所得位于l左方图形的f(t)的大致图象为()状可能是()元一个销售,每天可卖200个.假设这种商品每涨价1元,〔2〕假设销售价必须为整数,要使利润最大,应如何定价?5.根据场调查,某商品在最近40天内的价格f(t)与时间是是t满足:l AC DBhH A B C DO 10 40 60f(t)=111(020)241(2040)t t t Nt t t N⎧+<∈⎪⎨⎪-+∈⎩≤,≤≤,,销售量g(t)与时间是是t满足:g(t)=14333t-+(0≤t≤40,t N),求这种商品日销售金额的最大值.四、小结利用图、表建模;分段建模.五、作业。
函数模型及其应用教案

函数模型及其应用教案一、教学目标1. 理解函数的概念,了解函数模型的产生和应用;2. 学习两种常见函数模型的基本形式和参数,并能解决实际问题应用;3. 认识函数模型在现实生活和工程实践中的重要作用;4. 提高学生分析和解决实际问题的能力。
二、教学重点1. 函数的概念与应用;2. 两种常见函数模型的基本形式与参数;3. 实际问题中函数模型的应用。
三、教学难点1. 函数模型在数学联系与实际应用展示之间的联系;2. 如何将实际问题转化为基本形式的函数模型。
四、教学方法1. 讲授教学法;2. 课堂互动式教学法;3. 问题式教学法。
五、教学准备1. 多媒体教学设备;2. 函数模型案例资料。
六、教学过程1. 引入函数是一种重要的数学概念,也是自然科学、经济学、工程技术等领域的基础。
而函数模型则是在实际问题中应用函数的过程中,通过对数据和经验的分析产生的数学模型,可用于预测、控制、优化等目的。
今天我们将学习两种常见函数模型及其应用。
2. 基础知识讲解(1)函数的概念函数是一个输入输出关系的特殊情况。
数学上定义一个函数是指一组数对,其中第一个数(称为自变量)从一个特定集合中取任意一个值,;第二个数(称为因变量或函数值)则从另一集合中取一个值,这个取值完全由第一个数决定。
(2)线性函数模型线性函数模型可以写为 y=a*x+b 的形式,其中 a 称为斜率,b称为截距。
它的应用非常广泛,比如经济学中的供给函数、消费函数,工程学中的动力学方程等等,都可以通过线性函数模型来描述。
(3)指数函数模型指数函数模型可以用 y=a^x+b 的形式表示,其中 a 称为底数,b 称为位移。
指数函数具有非常广泛的应用,在物理学、天文学、化学、生物学、经济学等领域中都有其用途,比如放射性衰变过程、细胞增殖过程、经济增长过程等等都可以使用指数函数模型来描述。
3. 练习将下列实际问题转化为线性函数模型或指数函数模型,并求出相应的参数或曲线。
高三 一轮复习 函数模型及其应用 教案

函数模型及其应用1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图像的变化随x值增大,图像与y轴接近平行随x值增大,图像与x轴接近平行随n值变化而不同1.易忽视实际问题的自变量的取值范围,合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[试一试]据调查,苹果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x 的函数关系是____________.解决实际应用问题的一般步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:[练一练]如图,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M ,N ,则当MNBN 取最小值时,CN =________.考点一一次函数与二次函数模型1.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费s (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差________元.2.将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;(3)解决函数应用问题时,最后要还原到实际问题.考点二分段函数模型[典例]提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式.(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/小时).[类题通法]应用分段函数模型的关注点(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2)构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏.(3)分段函数的最值是各段的最大(最小)者的最大者(最小者).[针对训练]某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.(1)分别写出国外市场的日销售量f(t)与上市时间t的关系及国内市场的日销售量g(t)与上市时间t的关系;(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.考点三指数函数模型[典例] 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?[类题通法]应用指数函数模型应注意的问题(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.[课堂练通考点]1.(2014·南昌质检)往外埠投寄平信,每封信不超过20 g,付邮费0.80元,超过20 g而不超过40 g,付邮费1.60元,依此类推,每增加20 g需增加邮费0.80元(信的质量在100 g以内).如果某人所寄一封信的质量为72.5 g,则他应付邮费________元.2.(2013·南通调研)甲地与乙地相距250 km.某天小袁从上午7:50由甲地开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有 1 h到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有________km.3.一种产品的成本原为a元,在今后的m年内,计划使成本平均每年比上一年降低p%,成本y是关于经过年数x(0<x≤m)的函数,其关系式y=f(x)可写成_____________________.[课下提升考能]第Ⅰ卷:夯基保分卷1.(2014·苏锡常镇一调)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.2.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S.则S最小时,电梯所停的楼层是________层.3.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时的水的体积为v,则函数v=f(h)的大致图像可能是图中的________.4.如图,书的一页的面积为600 cm2,设计要求书面上方空出2 cm的边,下、左、右方都空出1 cm的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.5.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x的最小值是________.6.(2014·连云港模拟)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y=0.05(x2+4x+8)作为报销方案;(2)若该单位决定采用函数模型y=x-2ln x+a(a为常数)作为报销方案,请你确定整数a的值(参考数据:ln 2≈0.69,ln 10≈2.3).2.(2014·苏州一调)如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠P AQ始终为45°(其中点P,Q分别在边BC,CD上),设∠P AB=θ,tan θ=t.(1)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;(2)问探照灯照射在正方形ABCD内部区域的面积S至多为多少平方百米?3.(2013·徐州调研)徐州、苏州两地相距500 km,一辆货车从徐州匀速行驶到苏州,规定速度不得超过在海岸线上建一度假村P,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为k1),与距离的平方成反比(比例系数都为k2),又知甲油井排出的废气浓度是乙油井的8倍.(1)设乙油井排出的废气浓度为a(a为常数),度假村P距离甲油井x km,度假村P受到甲、乙两油井的污染程度和记为f(x),求f(x)的解析式并求其定义域;(2)度假村P距离甲油井多少时,甲、乙两油井对度假村的废气污染程度和最小?。
函数模型及其应用教案

Modeling and Problem Solving——函数模型及其应用教案中澳课程部王晓叶学情分析:澳方MathB每次的Paper Test都分为两部分,其中Knowledge and Procedures(知识与过程)这个和普通高中数学相似,学生A/B率比较高,但是另外一部分Modeling and Problem Solving(建模与实际问题的解决)学生的A/B率不高。
这一部分内容题目普遍很长、生词量较多,并且都是将数学知识应用于实际生活中,所以大多数学生遇到此类题目都是放弃不做。
MathB这门课又特别注重实际生活问题的解决,而我们的学生这方面意识比较薄弱,抽象概括能力较弱。
所以,我们的教学任务是提高学生的考试成绩等级,提高OP成绩。
但是另一方面,12年级的学生大多数能灵活的使用图形计算器,具有一定的英语语言基础。
教学目标:1.了解函数模型在现实生活中的运用。
2.能够建立恰当的函数模型,并对函数模型进行简单的分析。
3.利用所得函数模型解释有关现象,对某些发展趋势进行预测。
教学重难点:1.建立合适的函数模型2.利用得到的函数模型解决实际问题教学过程一、引入案例、探索新知(如何确定最合适的函数模型)(18分钟)案例:根据《Daily Mail》报道,上个月一名中国留学生将自己车速飙到180公里/小时的录像传到了Instagram个人网页上,并以配以中文:“从Albany开回Perth,一路180公里/小时,将4.5小时的车程缩短到3.5小时。
”目前,他正在接受警方调查。
警察表示,视频显示这名男子在限速110公里/小时的高速公路开到了180公里/小时,他将面临巨额罚款、吊销驾照以及拘留。
Example1:The table below shows the relationship between the velocity of a car and the distance after it braking.Velocity 10 20 30 40 50 60 70 80 90 Distance 2 10 15 20 27 38 47 60 75a. Use the calculator to find the relationship between the velocity of a car and the distance after it braking.b. What’s the minimum safe following distance for a car travelling at 110 km/h on the motor way?澳洲法律常识项目罚款扣分超速少于10km/h 163澳元扣2分超速10km/h-20km/h 357澳元扣3分超速20km/h-30km/h 726澳元扣5分超速30km/h-40km/h 866澳元扣7分未系安全带341澳元扣3分闯红灯437澳元扣3分开车使用手机315澳元扣3分(设计意图:从生活案例引入新知,激发学生的学习兴趣。
函数模型及其应用的教学教案

函数模型及其应用的教学教案教学教案:函数模型及其应用一、教学目标1.了解函数模型的基本概念和特性;2.掌握函数模型在实际问题中的应用;3.培养学生的数学建模能力和问题解决能力。
二、教学重点和难点1.函数模型的基本概念和特性;2.函数模型在实际问题中的应用。
三、教学方法1.讲授与示范相结合;2.小组合作学习;3.课堂实践。
四、教学过程步骤一:导入新知识(10分钟)1.复习函数的基本概念和性质;2.提出问题:“函数模型是什么?它有什么特点?”;3.学生回答问题并进行讨论。
步骤二:讲解函数模型的基本概念(20分钟)1.介绍函数模型的定义和表示方法;2.引导学生理解函数模型的含义:根据已知条件,建立函数模型来描述一个实际问题;3.示范几个常见的函数模型。
步骤三:探究函数模型的特性(20分钟)1.引入函数模型的性质:单调性、奇偶性、周期性等;2.以实例为例,让学生观察并总结函数模型的特性;3.学生合作完成几个练习题。
步骤四:应用函数模型解决实际问题(30分钟)1.通过实例介绍函数模型在实际问题中的应用,如物体自由落体、物种数量增长等;2.让学生进行小组合作,选择一个实际问题,建立相应的函数模型并解决问题;3.学生展示他们的解决方案,进行评价和讨论。
步骤五:巩固与拓展(20分钟)1.让学生复习巩固所学的内容,完成一篇小结;2.引导学生思考:函数模型在其他学科中的应用;3.教师进行点评和总结。
五、教学评估1.课堂表现评价:学生是否积极参与讨论、是否能熟练运用函数模型解决实际问题等;2.书面作业评价:布置相关练习题,检查学生的掌握程度。
六、教学资源1.教材:《数学教材》;2.多媒体教学工具;3.实际问题的资料。
七、教学反思通过本节课的教学,学生能够理解函数模型的基本概念和特性,能够应用函数模型解决实际问题。
在教学过程中,我注重将知识与实际问题相结合,让学生能够在解决问题的过程中感受到函数模型的重要性和应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数模型及其应用教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第33课 函数模型及其应用(1)
分层训练
1.某工厂生产一种产品每件成本为a 元,出厂价为b 元,厂家从每件产品获纯利%p ,则( )
()A %b a p -= ()B %b a p b
-= ()C %b a p a -= ()D %a p b
= 2.某商场进了A B 、两套服装,A 提价20%后以960元卖出,B 降价20%后以960元卖出,则这两套服装销售后 ( )
()A 不赚不亏 ()B 赚了80元
()C 亏了80元 ()D 赚了2000元
3.某商品降价20%后,欲恢复原价,则应提价( )
A 10%
B 20%
C 25%
D 35%
4.某种茶杯,每个0.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函
数 ,其定义域为 .
5.某种商品的进货价为a 元,零售价为每件1100元,若商店按零售价的80%降价出售,仍可获利10%(相对于进货价),则a = 元.
6.建筑一个容积为36000m ,深为6m 的长方体蓄水池,池壁的造价为a 元/2
m ,池底的造
价为2a 元/2m ,把总造价y (元)表示为底的一边长()x m 的函数.
7.某人骑自行车沿直线匀速旅行,先前进了a 千米,休息了一段时间,又沿原路返回b 千
米()b a <,再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是 ( )
()A ()B
()C ()D
8.某物体一天中的温度T 是时间t 的函数:3
()360T t t t =-+,时间单位是小时,温度单位是C ,0t =时表示12:00,其后t 取值为正,则上午8时的温度为 ( ) ()A 8C ()B 18C
()C 58C ()D 128C
9.物体从静止状态下落,下落的距离与开始下落所经过的时间的平方成正比.已知开始下落的最初两秒间,物体下落了19.6米,则下落的距离S (米)与所经过的时间t (秒)间的关系为 .
10.某商人购货,进价已按原价a 扣去25%,他希望对货物定一新价,以便按新价让利20%销售后仍可获得进价的25%的纯利,则此商人经营这种货物的件数x 与获利总额y 之间的函数关系式是 .
O S t O S
t O S t O S t
11.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定位60元.该厂为鼓励销
售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价
就降低0.02元.根据市场调查,销售商一次订购订购量不会超过500件.
(1)设一次订购量为x 件,服装的实际出厂单价为P 元,写出函数()P f x =的表达式;
(2)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元(
服装厂售出一件服装的利润=实际出厂单价-成本)
拓展延伸 t 1.99 3.0 4.0 5.1 6.12 v 1.5 4.04 7.5 12 18.01
现准备用下列函数中的一个表示这些数据满足的规律,其中最接近的一个是( ) (A )2log v t = (B )12
log v t =
(C )212
t v -= (D )22v t =-
13.一辆汽车在某段路程中行驶速率与时间的关系如图所示.
(1)求图中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km ,试建立行驶这段
路程时汽车里程表读数skm 与时间t h 的函数解析式,并作出相应的图象.。