2017学年山东省菏泽市单县八年级下学期数学期末试卷带答案
山东单县北城三中2017——2018学年度下学期期末质量检测八年级数学综合练习试题

A.
B.
(a 13) 2 b 5 c 12 0
C.钝角三角形
,则三角形的形状是 D.直角三角形
B.等边三角形
18.在直线 l 上依次摆放七个正方形(如图所示).已知斜放置的三个正方形的面积分别是 1、2、3, 正放置的四个正方形的面积依次是
S1、S 2、S3、S4
S4
,则
S1 S 2 S 3 S 4
2 2 2
10.如图,大小两个正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③ 的位置停止运动.如果设运动时间为 x,大小正方形重叠部分的面积为 y,则下列图象中,能表 示 y 与 x 的函数关系的图象大致是 B. 4 C. 3 D. 2 3
D.若三角形的三个角之比为 3 : 4 : 5 ,则该三角形为直角三角形 17.知 a、b、c 是三角形的三边长,如果满足 A.底与边不相等的等腰三角形 C. D.
5.关于正比例函数 y=–2x,下列结论中正确的是
第 1 页
a b 的值是 13. 3 的小数部分为 a , 7 的整数部分为 b ,则
A. 4 B. 9
2
b
C. 4 2 3
2 2
D. 4 2 3
14.在 Rt ⊿ ABC 中,斜边 AB 1 ,则 AB BC AC 的值为 A.100° B.105° C.115° D.120° A.2 B.4 C.6 D.8
6.如图,正方形 ABCD 的两条对角线 AC,BD 相交于点 O,点 E 在 BD 上,且 BE=CD,则∠BEC 的度数为
A. 18 C. 24 2.下列式子中,属于最简二次根式的是
1 B. 3
D. 0.3
山东省菏泽市八年级下学期数学期末考试试卷

山东省菏泽市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2017·嘉祥模拟) 函数的自变量x的取值范围是()A . x≤3B . x≠4C . x≥3且x≠4D . x≤3或x≠42. (2分)如图图形中完全是中心对称图形的一组是()A . ①②B . ③④C . ①③D . ②④3. (2分)如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=()A . 30°B . 40°C . 80°D . 108°4. (2分) (2016八上·灵石期中) 设点A(﹣1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A . a>bB . a<bC . a=bD . 无法确定5. (2分)从0—9这10个自然数中任取一个,是2的倍数或是3的倍数的概率是()A .B .C .D .6. (2分) (2017七下·江阴期中) 若一个多边形每一个内角都是135°,则这个多边形的边数是()A . 6B . 8C . 10D . 127. (2分) (2018九下·福田模拟) 我市某小区开展了“节约用水为环保做贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表月用水量(吨)8910户数262则关于这10户家庭的月用水量,下列说法错误的是()A . 方差是4B . 极差2C . 平均数是9D . 众数是98. (2分)已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A . 1B . 2C . 3D . 49. (2分)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A . a<bB . a<3C . b<3D . c<﹣210. (2分)(2013·来宾) 如图,其图象反映的过程是:张强从家去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象,下列回答正确的是()A . 张强在体育场锻炼45分钟B . 张强家距离体育场是4千米C . 张强从离家到回到家一共用了200分钟D . 张强从家到体育场的平均速度是10千米/小时11. (2分)如图,BD是⊙O的弦,点C在BD上,以BC为边作等边三角形△ABC,点A在圆内,且AC恰好经过点O,其中BC=12,OA=8,则BD的长为()A . 20B . 19C . 18D . 1612. (2分)如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若S四边形面积=9,则AB的长为()A . 3B . 6C . 9D . 1813. (2分) (2018八上·海曙期末) 如图,△ABC中,∠A=67.5°,BC=4,BE⊥CA于E,CF⊥AB于 F,D是BC的中点.以F为原点,FD所在直线为x轴构造平面直角坐标系,则点E的横坐标是()A . 2-B . -1C . 2-D .14. (2分) (2017八下·仙游期中) 如图,菱形ABCD的面积为120 ,正方形AECF的面积为50 ,则菱形的边长为()A . 12cmB . 13cmC . 14cmD . 15cm二、填空题 (共4题;共4分)15. (1分) (2015九下·黑龙江期中) 已知一个正比例函数的图像经过点(﹣1,3),则这个正比例函数的表达式是________.16. (1分)一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为________17. (1分)(2014·淮安) 如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1 ,然后顺次连接四边形A1B1C1D1四边的中点,得到四边形A2B2C2D2 ,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3 ,…,按此方法得到的四边形A8B8C8D8的周长为________.18. (1分)正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x 轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2 ,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.三、解答题 (共8题;共95分)19. (5分) (2019八上·亳州月考) 求经过A(-2 ,-3)和B(-3,9)两点的直线解析式。
菏泽八年级下期末测试数学试卷(带解析)

菏泽八年级下期末测试数学试卷(带解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1某工厂共有50名员工,他们的月工资的标准差为S,现厂长决定给每个员工增加工资100元,则他们的新工资的标准差为( )A.S+100B.SC.S 变大了D.S 变小了 2若一组数据1、2、3、的极差是6,则的值为( ) A.7 B.8C.9D.7或-3. 3.在ABC ∆和∆'''中, ''AB A B = ,B B ∠=∠',补充条件后仍不一定能保证ABC ∆∆''',则补充的这个条件是( )A. ''BC B C =B. A A ∠=∠'C. ''AC A C =D. 'C C ∠=∠ 4在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则( )A.1:2B.1:4C.2:5D.2:3 5下列各命题中,其逆命题是真命题的是( )A.全等三角形的三个角分别对应相等B.全等三角形的面积相等C.线段垂直平分线上的点到这条线段两个端点的距离相等D.如果a 、b 都是正数,那么他们的积ab 也是正数6已知在中,则的值为( ) A. B. C. D.7如图,已知AB∥C D,OA:OD =1:4,点M 、N 分别是OC 、OD 的中点,则ΔABO 与四边形CDNM 的面积比为( ).A.1:4 B.1:8 C.1:12 D.1:168若为二次根式,则m的取值为()A.m≤3B.m<3 C.m≥3D.m>3二、填空题9若x、y都为实数,且,则=________。
10已知最简二次根式与是同类二次根式,则a的值为________11用反证法证明:“在一个三角形中,不可能有两个角是钝角”的第一步是:假设12等腰三角形腰上的高与底边夹角为15°,则顶角的度数为。
山东省菏泽市八年级下学期数学期末试卷

山东省菏泽市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列二次根式中,与是同类二次根式的是().A .B .C .D .2. (2分)(2017·中山模拟) 计算3 ﹣4 的结果是()A .B . ﹣C . 7D . ﹣13. (2分) (2019八下·武安期末) 如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A . 6B . 8C . 16D . 554. (2分) (2015八下·金乡期中) 若一直角三角形的两边为5和12,则它第三边的长为()A . 13B .C . 13或D . 13或5. (2分)给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形.②对角线相等的四边形是矩形.③对角形互相垂直且相等的四边形是正方形.④有一条对角线平分一个内角的平行四边形为菱形。
其中不正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2015九上·罗湖期末) 如图,点A在双曲线y= 上,且OA=4,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,如果AB+BC﹣AC=2,则k的值为()A . 8﹣2B . 8+2C . 3D . 67. (2分) (2018八上·深圳期末) 已知一次函数y=kx+b的图象经过点(-2,3),且y的值随x值的增大而增大,则下列判断正确的是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<08. (2分)如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式是()A . y=-2x-3B . y=-2x-6C . y=-2x+3D . y=-2x+6二、填空题 (共6题;共6分)9. (1分) (2016九下·农安期中) 在一次植树活动中,某班共有a名男生每人植树3棵,共有b名女生每人植树2棵,则该班同学一共植树________棵.(用含a,b的代数式表示)10. (1分)(2017·雅安模拟) 如图,在△ABC中,AB=10,∠B=60°,点D,E分别在AB,BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为________.11. (1分)(2017·香坊模拟) 如图,在△ABC中,∠ACB=90°,AC=BC,D是△ABC外一点,连接AD、BD、CD,若∠CDB=90°,BD=3,AD= ,则AC长为________.12. (1分) (2019八下·深圳期末) 如图,在Rt△ABC中,∠B=90°,AB= ,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF= BC,连接DF、EF,则EF的长为________.13. (1分) (2020八下·原州期末) 利用函数图象回答下列问题:(1)函数与函数的交点坐标为________;(2)函数值的解集为________;(3)函数值的解集为________;14. (1分) (2020八上·太原期末) 如图1,在中,.动点从的顶点出发,以的速度沿匀速运动回到点.图2是点运动过程中,线段的长度随时间变化的图象.其中点为曲线部分的最低点.请从下面A、B两题中任选一作答,我选择()题.A.的面积是________,B.图2中的值是________.三、解答题 (共7题;共50分)15. (5分) (2017八上·阿荣旗期末) 计算:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 .16. (5分)已知:a= -2,b= +2,分别求下列代数式的值:(1) a2b-ab2(2) a2+ab+b217. (5分) (2019八下·瑞安期中) 在平面直角坐标系中,□ABCD的对称中心在原点,点A,B的坐标分别为A(-1,3),B(-2,-1)(1)在如图直角坐标系中,画出这个平行四边形.(2)写出点C、D的坐标,则C________,D________.(3)□ABCD的周长为________.18. (10分)(2020·吉林模拟) 学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟,乙的速度为________米/分钟;(2)图中点A的坐标为________;(3)求线段AB所直线的函数表达式;(4)在整个过程中,何时两人相距400米?19. (5分)已知:如图,平行四边形ABCD中,对角线AC的垂直平分线交AD于点E,交BC于点F,求证:四边形AFCE是菱形.20. (5分) (2019八下·兰州期中) 某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10-25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠.请你帮忙设计一下,该单位选择哪家费用较少?21. (15分)(2017·新野模拟) 如图,在平面直角坐标系中,已知矩形OABC的三个顶点A(0,10),B(8,10),C(8,0),过O、C两点的抛物线y=ax2+bx+c与线段AB交于点D,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共6题;共6分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、答案:13-2、答案:13-3、考点:解析:答案:14-1、考点:解析:三、解答题 (共7题;共50分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、答案:18-2、答案:18-3、答案:18-4、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:。
山东省菏泽市八年级下学期数学期末考试试卷

山东省菏泽市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如图,在□ABCD中,AB=4,AD=7,∠ABC平分线交AD于点E,交CD的延长线于点F,则DF的长是()A . 2B . 3C . 4D . 52. (2分) (2019八上·宝鸡月考) 如图,Rt△ABC中,∠B=90°,AB=9,BC=6,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长等于()A . 3B . 4C . 5D . 63. (2分) (2019八下·卢龙期末) 小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=B C,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中不正确的是()A . ①②B . ②③C . ①③D . ②④4. (2分)(2017·天水) 如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以 cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ 的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A .B .C .D .5. (2分)点A(﹣3,2)关于x轴对称的点是B,点B关于y轴对称的点是C,则点C的坐标是()A . (﹣3,2)B . (3,2)C . (﹣3,﹣2)D . (3,﹣2)6. (2分) (2019八上·天台月考) 如图,在六边形ABCDEF中,∠A+∠F+∠E+∠D = ,∠ABC的平分线与∠BCD的平分线交于点P,则∠P度数为().A .B .C .D .7. (2分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF 交AC于点H,则的值为()A .B . 1C .D .8. (2分) (2020七下·张家港期末) 如图,大正方形的边长为m,小正方形的边长为n,若用x,y表示四个长方形的两边长(x>y),观察图案及以下关系式:① ;② ;③ ;④ .其中正确的关系式有()A . ①②B . ①③C . ①③④D . ①②③④9. (2分)若关于x的一元二次方程(k-1)x2+x+2=0有实数根,则k应满足()A . k≤B . k≤且k≠1C . k≤且k≥0D . 0≤k≤且k≠110. (2分)下列命题中,是真命题的是()A . 有理数都是有限小数B . 同旁内角互补C . 函数y= 自变量x的取值范围是x≥3D . 若甲、乙两组数据中各有20个数据,平均数 = ,方差S甲2=1.25,S乙2=0.96,则说明乙组数据比甲组数据稳定11. (2分)(2017·泰安) 如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB 于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A . 1B . 2C . 3D . 412. (2分)一元二次方程x(x-2)=0根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根二、填空题 (共4题;共5分)13. (2分)(2018·遵义模拟) 一个四边形的四个内角中最多有________个钝角,最多有________个锐角.14. (1分) (2019八上·宽城期末) 《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图,在△ABC中,∠ACB=90º,AC+AB=10,BC=3,则AC=________.15. (1分) (2020九上·金牛期末) 若是关于x的一元二次方程的解,则代数式的值是________.16. (1分) (2016七下·莒县期中) 如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为________度.三、解答题 (共4题;共40分)17. (10分) (2019八下·杭州期末) 化简或解方程(1);(2)18. (10分) (2016七下·文安期中) 如图,直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使点C与坐标原点O是对应点,请画出平移后的三角形,并指出A、B两点的对应点A1、B1的坐标;(2)求△ABC的面积.19. (10分) (2019九上·萧山月考) 如图,在平行四边形ABCD中,EF∥AB.(1)写出所有相似三角形;(2)若,,求的长.20. (10分)已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2) M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共5分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共4题;共40分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:。
山东省菏泽市 八年级(下)期末数学试卷(含答案)

2017-2018学年山东省菏泽市鄄城县八年级(下)期末数学试卷副标题一、选择题(本大题共4小题,共12.0分)1.已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示,kx+b0D.2.如果b-a=-6,那么(a-)÷的值是()A. 6B.C.D.3.等腰△ABC的底角若为顶角的,过底边上的一点D作底边BC的垂线交AC于点E,交BA的延长线于点F,则△AEF是()A. 等边三角形B. 直角三角形C. 钝角三角形D. 等腰但非等边三角形4.若分式有意义,则x的取值范围是()A. B. C. D.二、填空题(本大题共3小题,共9.0分)5.如图,在平行四边形ABCD中,BE⊥AD,BF⊥CD,垂足分别为E、F,∠A=60°,AE=3cm,CF=4.5cm,则平行四边形的面积是______cm2.6.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是BC的三倍,则图中四边形ACED的面积为______.7.若不等式组的解集是-1<x<1,则(a+b)2008=______.三、计算题(本大题共2小题,共16.0分)8.先化简,再求值.(-)÷,其中x=6.9.由甲、乙两个工程队承包某校园绿化工程,甲、乙两队单独完成这项工程所需时间比是2:3,两队合做6天可以完成.(1)求两队单独完成此工程各需多少天?(2)甲乙两队合做6天完成任务后,学校付给他们30000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?四、解答题(本大题共3小题,共23.0分)10.解不等式组,并把解集在数轴上表示出来.>11.如图所示,已知∠CAE=65°,∠E=70°,且AD⊥BC,如果△ABC经过旋转后与△ADE重合.(1)旋转中心是哪个点?(2)旋转了多少度?(3)∠BAC的度数是多少?12.因式分解:(1)x3-12x2y+36xy2(2)9(2x+y)2-(x-2y)2答案和解析1.【答案】D【解析】解:当x=2时,y=0,根据表可以知道函数值y随x的增大而减小,故不等式kx+b<0的解集是x>2.故选:D.由表格得到函数的增减性后,再得出y=0时,对应的x的值即可.此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解一次函数的增减性是解决本题的关键.2.【答案】A【解析】解:原式=(-)•==a-b,∵b-a=-6,∴a-b=6,则原式=6.故选:A.先化简二次根式,再由b-a=-6得a-b=6,据此可得答案.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.3.【答案】A【解析】解:设等腰△ABC的底角为x°,∵等腰△ABC的底角若为顶角的,∴顶角为4x°,∴x+x+4x=180°,∴x=30°,∴∠B=∠C=30°,∴∠EAF=60°,∵FD⊥BC,∴∠F=90°-∠B=60°,∴AE=AF,∴△AEF是等边三角形.故选:A.由等腰△ABC的底角若为顶角的,可求得∠B=∠C=30°,继而求得∠AEF=∠F=60°,则可判定△AEF是等边三角形.此题主要考查了等边三角形的判定,综合利用了等腰三角形和直角三角形的性质.4.【答案】B【解析】解:∵分式有意义,∴6-x≠0,解得:x≠6.故选:B.直接利用分式有意义的条件进而分析得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.5.【答案】27【解析】解:∵AB∥CD,AD∥BC,BF⊥DA,BE⊥CD,∴∠ABE=∠FBC=90°,在Rt△ABE中,∠A=60°,AE=3cm,∴∠ABE=30°,∴AB=2AE=6cm,在Rt△BCF中,BF=CF•tan60°=cm,∴S=AB•BF=6×=27(cm2),平行四边形ABCD故答案为27.解直角三角形分别求出AB、BF即可解决问题;本题主要考查了平行四边形的性质以及解直角三角形的应用,根据∠FBE的度数得出∠ABF和∠CBE的度数是解题的关键.6.【答案】60cm2【解析】解:∵△DEF是△ABC平移得到的,∴AD∥CF,AD=CF,∴四边形ACFD是平行四边形,∵S△ABC=12,CF=3BC,△ABC和▱ACFD的高相等,∴S▱ACFD=12×3×2=72,∴S四边形ACED =S▱ACFD-S△DEF=S▱ACFD-S△ABC=72-12=60,故答案是60cm2.由于△DEF是△ABC平移得到的,根据平移的性质可得AD∥CF,AD=CF,那么四边形ACFD是平行四边形,又知S△ABC=12,CF=3BC,△ABC和▱ACFD的高相等,易求S▱ACFD=72,进而可求四边形ACED的面积.本题考查了平行四边形的判定和性质,解题的关键是先求出▱ACFD的面积,熟练掌握平移的性质.7.【答案】1【解析】解:,解不等式①得,x>a+2,解不等式②得,x<,所以不等式组的解集为a+2<x<,∵不等式组的解集为-1<x<1,∴a+2=-1,=1,解得a=-3,b=2,(a+b)2008=(-3+2)2008=1.故答案为:1.先求出不等式组的解集,然后根据不等式组的解集求出a、b的值,再代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.【答案】解:(-)÷====,当x=6时,原式==.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.9.【答案】解:(1)设甲队单独完成此工程需x天,则乙队单独完成此工程需x天根据题意得+=1,解得x=10,经检验x=10为原方程的解,当x=10时,x=15,答:甲、乙队单独完成此工程分别需10天、15天;(2)甲队所得报酬为:30000×=18000(元);乙队所得报酬为:30000×=12000(元).【解析】(1)设甲队单独完成此工程需x天,则可表示出乙队单独完成此工程需x天,利用工作共量为1列方程+=1,再解方程、检验,然后计算x即可;(2)甲队所得报酬等于30000乘以甲的工作量;乙队所得报酬等于30000乘以乙的工作量.本题考查了分式方程:列分式方程解应用题的一般步骤:设、列、解、验、答.10.【答案】解:解不等式得:x<2,解不等式得:x≥-1,即不等式组的解集为:-1≤x<2,不等式组的解集在数轴上表示如下:【解析】分别解两个不等式,找出两个不等式解集的公共部分即为不等式组的解集,并将解集在数轴上表示出来即可.本题考查解一元一次不等式组和在数轴上表示不等式组的解集,正确掌握解一元一次不等式组的方法是解题的关键.11.【答案】解:(1)旋转中心是点A;(2)旋转的角度即为∠CAE=65°;(3)根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F,则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.【解析】(1)由旋转的定义可得;(2)由旋转的定义即可得;(3)根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF中易求∠B=25°,所以利用△ABC的内角和是180°来求∠BAC的度数即可.本题考查了旋转的性质.解题的过程中,利用了三角形内角和定理和直角三角形的两个锐角互余的性质来求相关角的度数.12.【答案】解:(1)x3-12x2y+36xy2=x(x2-12xy+36y2)=x(x-6y)2;(2)9(2x+y)2-(x-2y)2=[3(2x+y)+(x-2y)][3(2x+y)-(x-2y)]=(7x+y)(5x+5y)=5(x+y)(7x+y).【解析】(1)直接提取公因式x,再利用完全平方公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.。
山东省菏泽市八年级下学期数学期末考试试卷

山东省菏泽市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·高邮模拟) 下列式子中的最简二次根式是()A .B .C .D .2. (2分)下列二次根式中与是同类二次根式的是()A .B .C .D .3. (2分)(2017·眉山) 下列说法错误的是()A . 给定一组数据,那么这组数据的平均数一定只有一个B . 给定一组数据,那么这组数据的中位数一定只有一个C . 给定一组数据,那么这组数据的众数一定只有一个D . 如果一组数据存在众数,那么该众数一定是这组数据中的某一个4. (2分) (2017八下·建昌期末) 九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S2如下表:甲乙丙丁平均数(分)145146145146方差11 1.5 1.7老师想从中选派一名成绩较好且状态稳定的同学参加全省中学生数学竞赛,那么应选()A . 甲B . 乙C . 丙D . 丁5. (2分) (2017八下·海淀期末) 如图,在△ 中, ,,边上的中线,那么的长是()A .B .C .D .6. (2分) (2020九上·呼兰期末) 若双曲线经过第二、四象限,则直线经过的象限是()A . 第一、二、三象限B . 第一、二、四象限C . 第一、三、四象限D . 第二、三、四象限7. (2分) (2020八上·武汉期末) 甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A . 他们都骑了20 kmB . 两人在各自出发后半小时内的速度相同C . 甲和乙两人同时到达目的地D . 相遇后,甲的速度大于乙的速度8. (2分)如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为()A . 3B . 4C . 5D . 69. (2分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE。
山东省菏泽市八年级下学期期末考试数学试题

山东省菏泽市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017九上·黑龙江月考) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分)(2019·台州模拟) 下列说法错误的是()A . 两组对边分别平行的四边形是平行四边形B . 两组对边分别相等的四边形是平行四边形C . 一组对边平行,另一组对边相等的四边形是平行四边形D . 一组对边平行且相等的四边形是平行四边形3. (2分)已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为()A . 2B . 8C . 2或8D . 34. (2分)当x>0时,四个函数 y=—x ,y=2x+1,,,其中y随x的增大而增大的函数有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·深圳模拟) 点A,B的坐标分别为(-2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<-3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为-5;④当四边形ACDB为平行四边形时,a= .其中正确的是()A . ②④B . ②③C . ①③④D . ①②④6. (2分) (2019·遵义) 为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12131415人数71032A . 12岁B . 13岁C . 14岁D . 15岁7. (2分)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年山东省菏泽市单县八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列说法中不正确的是()A.﹣是5的平方根B.﹣3是﹣27的立方根C.4的平方根是16 D.(﹣2)2的算术平方根是22.(3分)下列说法不一定成立的是()A.若a>b,则c﹣a<c﹣b B.若c﹣a<c﹣b,则a>bC.若a<b,则ac2<bc2D.若ac2<bc2,则a<b3.(3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种 B.4种 C.5种 D.6种4.(3分)一次函数y=kx﹣k(k≠0),若y随x的增大而减小,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,在△ABC中,AB=8,点D、E分别是AB、AC的中点,BF平分∠ABC交DE于F,则DF的长是()A.2 B.2.5 C.3 D.46.(3分)下列各组二次根式化简后,被开方数不相同的一组是()A.和B.和C.和D.和7.(3分)下列计算正确的是()A.×=B.+==2 C.=9 D.﹣==38.(3分)如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是()A.x<1 B.x>1 C.x<3 D.x>39.(3分)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.310.(3分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种 B.3种 C.4种 D.5种二、填空题(本题共8小题,每小题4分,共32分)11.(4分)在同一数轴上表示2的点与表示﹣的点之间的距离是.12.(4分)若不等式组有四个整数解,则m的取值范围是.13.(4分)计算:=.14.(4分)函数y=x+1的图象与x轴、y轴围成三角形的面积为.15.(4分)如图,四边形ABCD是对角线互相垂直的四边形,且AB=BC,请你添加一个适当的条件,使四边形ABCD成为菱形.(只需添加一个即可).16.(4分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.17.(4分)等腰三角形的两条边长分别为2和5,那么这个三角形的周长等于.18.(4分)如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点D为斜边AB上一点,若AB=14,BD=6,将△BCD绕点C逆时针方向旋转到△ACE的位置,对于下列说法:①△ADE是直角三角形,②△CDE是等腰三角形,③DE=10,④CD=5.其中正确说法是(填序号).三、解答题(满分58分)19.(12分)解答下列各题:(1)计算:(﹣)+﹣(2)解不等式5x+2>3(x﹣1)20.(7分)已知:=,且x是偶数,求:代数式(x+2)的值.21.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD 分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.22.(10分)将两块直角三角板如图所示摆放在直角坐标系中(图①),其中AD=CB′=2,BD=B′D′=4.(1)点C坐标是.(2)把△CB′D′向右平移1个单位(图②),则△CB′D′各顶点的坐标分别是:C (,),B′(,),D′(,),四边形ABCD′的形状是(填平行四边形、矩形、菱形、正方形).(3)当四边形ABCD′是菱形时(在备用图中画出符合条件的图形),需要把图①中的△CB′D′向右平移多少个单位?并说明理由.23.(10分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示槽中水的深度与注水时间之间的关系,线段DE表示槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是;(2)注水多长时间时,甲、乙两个水槽中水的深度相同;(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)24.(10分)一次函数y=﹣x+2的图象在平面直角坐标系中交x轴、y轴分别于A、B两点,交直线y=kx于P.(1)求点A、B的坐标;(2)若OP=PA,求k的值;(3)在(2)的条件下,C是线段BP上一点,CE⊥x轴于E,交OP于D,若CD=2ED,求C点的坐标.2016-2017学年山东省菏泽市单县八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列说法中不正确的是()A.﹣是5的平方根B.﹣3是﹣27的立方根C.4的平方根是16 D.(﹣2)2的算术平方根是2【解答】解:A、﹣是5的平方根,正确;B、﹣3是﹣27 的立方根,正确;C、4的平方根是±2,故本选项错误;D、(﹣2)2=4,4的算术平方根是2,正确;故选:C.2.(3分)下列说法不一定成立的是()A.若a>b,则c﹣a<c﹣b B.若c﹣a<c﹣b,则a>bC.若a<b,则ac2<bc2D.若ac2<bc2,则a<b【解答】解:c=0时,若a<b,则ac2≤bc2,故选:C.3.(3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种 B.4种 C.5种 D.6种【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:B.4.(3分)一次函数y=kx﹣k(k≠0),若y随x的增大而减小,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=kx﹣k,y随着x的增大而减小,∴k<0,即﹣k>0,∴该函数图象经过第一、二、四象限.故选:C.5.(3分)如图,在△ABC中,AB=8,点D、E分别是AB、AC的中点,BF平分∠ABC交DE于F,则DF的长是()A.2 B.2.5 C.3 D.4【解答】解:∵AB=8,点D是AB的中点,∴BD=AB=4,∵点D、E分别是AB、AC的中点,∴DE∥BC,∴∠BFD=∠FBC,∵BF平分∠ABC,∴∠FBD=∠FBC,∴∠BFD=∠FBD,∴DF=BD=4,故选:D.6.(3分)下列各组二次根式化简后,被开方数不相同的一组是()A.和B.和C.和D.和【解答】解:A、=,=,被开方数不相同,符合题意;B、=,=3,被开方数相同,不符合题意;C、=2,=,被开方数相同,不符合题意;D、=,==2,被开方数相同,不符合题意.故选:A.7.(3分)下列计算正确的是()A.×=B.+==2 C.=9 D.﹣==3【解答】解:A、原式==,所以A选项正确;B、与不能合并,所以B选项错误;C、原式=3,所以C选项错误;D、原式=2﹣=,所以D选项错误.故选:A.8.(3分)如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是()A.x<1 B.x>1 C.x<3 D.x>3【解答】解:一次函数y=kx+b经过点(3,2),且函数值y随x的增大而增大,∴当y<2时,x的取值范围是x<3.故选:C.9.(3分)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.3【解答】解:△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选:D.10.(3分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种 B.3种 C.4种 D.5种【解答】解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.二、填空题(本题共8小题,每小题4分,共32分)11.(4分)在同一数轴上表示2的点与表示﹣的点之间的距离是2+.【解答】解:在同一数轴上表示2的点与表示﹣的点之间的距离是2﹣(﹣)=2+.故答案为:2+.12.(4分)若不等式组有四个整数解,则m的取值范围是﹣1<m ≤0.【解答】解:解不等式1+x≥m,得:x≥m﹣1,解不等式6﹣2x>0,得:x<3,∵不等式组有4个整数解,∴﹣2<m﹣1≤﹣1,解得:﹣1<m≤0,故答案为:﹣1<m≤013.(4分)计算:=.【解答】解:=(4)=×=.14.(4分)函数y=x+1的图象与x轴、y轴围成三角形的面积为.【解答】解:令x=0,解得y=1,即函数与y轴交点坐标为(0,1),令y=0,解得x=﹣1,即函数与x轴交点坐标为(﹣1,0),所以,图象与x轴,y轴围成的三角形面积s=×1×1=.故答案为:.15.(4分)如图,四边形ABCD是对角线互相垂直的四边形,且AB=BC,请你添加一个适当的条件AB=AD(答案不唯一),使四边形ABCD成为菱形.(只需添加一个即可).【解答】解:添加AB=AD(答案不唯一),∵AB=BC,AC⊥BD,∴OA=OC,∴DA=DC,∵AB=AD,∴AB=BC=DA=DC,∴四边形ABCD是菱形.故答案为:AB=AD(答案不唯一).16.(4分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式10n ﹣5(20﹣n)>90.【解答】解:根据题意,得10n﹣5(20﹣n)>90.故答案为:10n﹣5(20﹣n)>90.17.(4分)等腰三角形的两条边长分别为2和5,那么这个三角形的周长等于10+2.【解答】解:①若腰长为2,则有2×2<5,故此情况不合题意,舍去;②若腰长为5,则三角形的周长=2×5+2=10+2.故答案为:10+2.18.(4分)如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点D为斜边AB上一点,若AB=14,BD=6,将△BCD绕点C逆时针方向旋转到△ACE的位置,对于下列说法:①△ADE是直角三角形,②△CDE是等腰三角形,③DE=10,④CD=5.其中正确说法是①②③④(填序号).【解答】解:∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°.由旋转的性质可知∠EAC=∠B=45°,∴∠EAD=90°,故①正确.∵∠C=90°,∴∠ACD+∠BCD=90°.由旋转的性质可知:∠DCB=∠ACE,CE=CD,∴∠ECD=90°.∴△CDE是等腰三角形,故②正确.∵AB=14,BD=6,∴AD=8.由旋转的性质可知AE=BD=6,∴在Rt△ADE中,DE==10,故③正确.∵△ECD为等腰直角三角形,ED=10,∴CD=5.答案:①②③④.三、解答题(满分58分)19.(12分)解答下列各题:(1)计算:(﹣)+﹣(2)解不等式5x+2>3(x﹣1)【解答】解:(1)原式=﹣+3﹣=6﹣2+3﹣=6+;(2)去括号得5x+2>3x﹣3,移项得5x﹣3x>﹣3﹣2,合并同类项得2x>﹣5系数化1得x>﹣.20.(7分)已知:=,且x是偶数,求:代数式(x+2)的值.【解答】解:由=,可得:所以,解得:6<x≤9,又因为x是偶数,所以x=8,所以(x+2)=(8+2)=10=2.21.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD 分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴▱ABCD的周长=2(BC+AB)=20.22.(10分)将两块直角三角板如图所示摆放在直角坐标系中(图①),其中AD=CB′=2,BD=B′D′=4.(1)点C坐标是(﹣4,﹣2).(2)把△CB′D′向右平移1个单位(图②),则△CB′D′各顶点的坐标分别是:C(﹣3,﹣2),B′(﹣3,0),D′(1,0),四边形ABCD′的形状是矩形(填平行四边形、矩形、菱形、正方形).(3)当四边形ABCD′是菱形时(在备用图中画出符合条件的图形),需要把图①中的△CB′D′向右平移多少个单位?并说明理由.【解答】解:(1)∵CB′=2,BD=4,∴C(﹣4,﹣2).故答案为(﹣4,﹣2).(2)如图2中,把△CB′D′向右平移1个单位,易知C(﹣3,﹣2),B′(﹣3,0),D′(1,0),∵=,=,∴=,∴=,∵∠ADB=∠CB′B,∴△ABD∽△BCB′,∴∠ABD=∠BCB′,∵∠BCB′+∠CBB′=90°,∴∠CBB′+∠ABD=90°,∴∠ABC=90°,∵AB=CD′,AB∥CD′,∴四边形ABCD′是平行四边形,∵∠ABC=90°,∴四边形ABCD′矩形.故答案分别为﹣3,﹣2,﹣3,0,1,0,矩形.(3)如图3中,把图①中的△CB′D′向右平移4个单位时,四边形ABCD′是菱形.理由:把图①中的△CB′D′向右平移4个单位时,点C坐标是(0,﹣4),点D′坐标是(4,0),所以线段AC与B的′互相垂直平分,所以四边形ABCD′是菱形.23.(10分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示乙槽中水的深度与注水时间之间的关系,线段DE 表示甲槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm;(2)注水多长时间时,甲、乙两个水槽中水的深度相同;(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)【解答】解:(1)乙;甲;乙槽中铁块的高度为14cm;(2)设线段AB、DE的解析式分别为:y1=k1x+b1,y2=k2x+b2,∵AB经过点(0,2)和(4,14),DE经过(0,12)和(6,0)∴,解得,,解得:,∴解析式为y=3x+2和y=﹣2x+12,令3x+2=﹣2x+12,解得x=2,∴当2分钟时两个水槽水面一样高.(3)由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm,当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,设铁块的底面积为acm2,则乙水槽中不放铁块的体积分别为:2.5×36cm3,放了铁块的体积为3×(36﹣a)cm3,∴1×3×(36﹣a)=1×2.5×36,解得a=6,∴铁块的体积为:6×14=84(cm3).(4)60cm2.∵铁块的体积为112cm3,∴铁块的底面积为112÷14=8(cm2),可设甲槽的底面积为m,乙槽的底面积为n,则根据前4分钟和后2分钟甲槽中流出的水的体积和乙槽中流入的水的体积分别相等列二元一次方程组,∵“匀速注水”,没过铁块前和没过铁块后注水速度未变,则总水体积不变∴,解得:m=60(cm2).24.(10分)一次函数y=﹣x+2的图象在平面直角坐标系中交x轴、y轴分别于A、B两点,交直线y=kx于P.(1)求点A、B的坐标;(2)若OP=PA,求k的值;(3)在(2)的条件下,C是线段BP上一点,CE⊥x轴于E,交OP于D,若CD=2ED,求C点的坐标.【解答】解:(1)当x=0时,y=﹣x+2=2,∴B(0,2)当y=0时,y=﹣x+2=0,∴x=4,∴A(4,0);(2)设P(x,y),因为点P在直线y=﹣x+2,且OP=AP,∴x=2,把x=2代入y=﹣x+2,y=1,所以点P的坐标是(2,1),因为点P在直线y=kx上,所以k=;(3)设点C(x,﹣x+2),则D(x,x),E(x,0),因为CD=2DE,所以﹣x+2﹣x=2×x,解得:x=1,则﹣x+2=,所以点C的坐标为(1,).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.ODABCEAODCB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。