电化学传感器(完)
电化学传感器原理及应用

电化学传感器原理及应用电化学传感器是一种将电化学原理应用于传感器的技术。
它利用电化学反应过程中产生的电流、电势或电荷等特性来检测和测量被测物质的浓度、性质或状态。
电化学传感器具有灵敏度高、响应速度快、选择性好、稳定性高等优点,广泛应用于环境监测、生物医学、食品安全等领域。
电化学传感器的原理基于电化学反应,其中最常用的反应是氧化还原反应。
通过在电极表面引入一种催化剂,可以加速氧化还原反应的速率,从而增强传感器的灵敏度。
电化学传感器的工作原理可以分为两种类型:电流型和电势型。
电流型电化学传感器是通过测量电极上的电流变化来间接测量被测物质的浓度。
当被测物质与电极表面发生氧化还原反应时,会产生一定的电流。
电流的大小与被测物质的浓度成正比,通过测量电流的变化可以确定被测物质的浓度。
电流型电化学传感器通常具有快速响应、高灵敏度和较宽的测量范围等优点,常用于检测电解质浓度、氧气浓度等。
电势型电化学传感器是通过测量电极上的电势变化来直接测量被测物质的浓度或活性。
当电极表面与被测物质发生氧化还原反应时,会在电极表面产生一定的电势。
电势的大小与被测物质的浓度或活性成正比,通过测量电势的变化可以确定被测物质的浓度或活性。
电势型电化学传感器具有简单、快速、便携等优点,常用于检测pH 值、离子浓度等。
电化学传感器广泛应用于各个领域。
在环境监测方面,电化学传感器可以检测大气中的有害气体浓度,如二氧化硫、二氧化氮等。
在生物医学领域,电化学传感器可以检测体液中的生物分子浓度,如葡萄糖、乳酸等。
在食品安全方面,电化学传感器可以检测食品中的有害物质,如农药残留、重金属等。
此外,电化学传感器还可以应用于工业过程控制、能源管理等领域。
尽管电化学传感器在各个领域都有广泛的应用,但也存在一些挑战和限制。
首先,电化学传感器对环境条件较为敏感,温度、湿度等因素的变化可能会影响传感器的性能。
其次,电化学传感器对被测物质的反应速率较慢,响应时间比较长。
化学中的电化学传感器应用

化学中的电化学传感器应用电化学传感器在化学中的应用随着科技的不断发展,传感器技术也在不断革新,其中电化学传感器(Electrochemical sensors)是一种基于电化学方法测量物质的特殊传感器。
它通过电化学反应将目标成分转化为电流或电势信号,以此来实现测量分析的目的。
在化学领域中,电化学传感器广泛应用于分析化学,生物化学,环境化学以及工业化学领域。
下面将详细介绍电化学传感器在这些领域中的应用。
分析化学领域在分析化学领域,电化学传感器广泛应用于实现化合物的浓度测量。
在此领域中,最常使用的是分子印迹电化学传感器,利用分子印迹技术来构造传感器中的活性材料,以此来实现对目标分子的高选择性和灵敏度。
这种电化学传感器在药物检测、食品安全检测等领域中都发挥了重要的应用作用。
生物化学领域在生物化学领域中,电化学传感器的应用相对较少,但也有其独特的应用场景。
例如,在DNA检测中,可以利用化学和电化学反应相结合的方法进行检测。
此外,电化学传感器还可以用于生物传感器和医学传感器的制备,这些传感器被广泛用于免疫测定、DNA测序等领域。
环境化学领域在环境化学领域中,电化学传感器的应用范围更为广泛。
例如,在燃料电池、电化学台积木等方面都有广泛的应用。
此外,对于一些有害物质检测,电化学传感器也是不可或缺的工具。
例如,汞是一种常见的污染物,若对水资源进行监测,则可以使用电化学传感器来检测汞的浓度。
工业化学领域在工业化学领域,电化学传感器也有着很广泛的应用。
例如,它们可以用于评估金属的腐蚀状态,从而确定金属的使用寿命。
这种应用方法基于金属腐蚀时的电化学反应来进行。
此外,电化学传感器还可以被用于研究电化学反应过程,例如在铝电解、电沉积等方面都有着广泛的应用。
总的来说,电化学传感器在化学中的应用场景十分广泛。
由于其灵敏度和高选择性,它们已经成为分析化学、生物化学、环境化学以及工业化学中不可或缺的工具之一。
随着科技的不断进步,电化学传感器的技术也在不断完善,相信它们将在更广泛的领域中发挥更重要的作用。
电化学传感器

在实际中,由于电极 表面连续发生电化发应, 传感电极电势并不能保持 恒定,在经过一段较长时 间后,它会导致传感器性 能退化。为改善传感器性 能,人们引入了参考电极 ,通过控制使工作电极和 参比电极之间的电位保持 一定,故传感电极间的电 位保持一定,构成恒电位 仪电路 。
恒电位仪
这是一个电压跟随电路,参比电极与 工作电极的电压差Vout等于输入的给定电 压 U0, 处于接地电位的工作电极相对参比 电极有一个 -U0的电位,因此输入电压在 电池中被反相。在电路中没有给出测量流 出传感器工作电极的电流装置。 可以看出,要得到恒定的电压,电路 上必须满足两个条件,一是具有基准电压 (有时也称给定电压),使恒定的电压值 可调,二是满足恒电位的调节规律,也就 是当电路的参数变化时(如电源电压变化 或由于电化学变化的延续引起电极电位漂 移),恒电位仪应具有自动调节的能力, 使电极电位保持恒定。通常恒电位的调节 是依靠深度电压负反馈来实现的 。
葡萄糖酶电极。其敏感膜为葡萄糖氧化酶,它固定在聚乙烯酰胺 凝胶上。转换电极为Clark氧电极(为测定水中溶解氧含量而设计的一种极谱电极 ), 其Pt阴极上覆盖一层透氧聚四氟乙烯膜。当酶电极插入被测葡萄糖 溶液中时,溶液中的葡萄糖因葡萄糖氧化酶作用而被氧化,此过程 中将消耗氧气。此时在氧电极附近的氧气量由于酶促反应而减少, 通过测量电流值的变化就可以确定葡萄糖浓度。葡萄糖传感器的核 心是酶膜,提高酶膜的性能是提高酶电极性能的关键。
以电阻应变计为转换元件的电阻应变式传感器,主要由弹性元件 、粘贴于其上的电阻应变片、输出电信号的电桥电路及补偿电路构 成。其中感受被测物理量的弹性元件是其关键部分,结构形式有多样, 旨在提高感受被测物理量的灵敏性和稳定性。 电阻应变式传感器工作原理是:由于被测物理量 (如载荷,位移,压力 等)能够在弹性元件上产生弹性变形 (应变),而粘贴在弹性元件表面的 电阻应变计可以将感受到弹性变形转变成电阻值的变化,这样电阻应 变式传感器就将被测物理量的变化转换成电信号的变化量,再通过电 桥电路及补偿电路输出电信号。通过测量此电量值达到测量非电量 值的目的。
电化学传感器原理及应用

电化学传感器原理及应用一、电化学传感器概述电化学传感器是指一种能够将感兴趣的分子或离子浓度信息转化为电信号输出的传感器。
它主要应用于环境监测、生物医学、食品安全、制药工业等领域,是现代生物分子检测、环境监测和化学分析等领域必不可少的检测手段。
电化学传感器基本的实现原理是将感兴趣的分子或离子与电极表面的活性物质发生反应,在反应过程中产生电化学信号对溶液中的感兴趣物质进行检测。
二、电化学传感器的构成电化学传感器通常包含电极、电解质、反应物质这几个部分。
1. 电极电极是电化学传感器的核心部分,电极表面的活性物质与感兴趣分子或离子发生反应,进而使信号电流发生变化。
电极的种类多种多样,主要包括玻碳电极、金电极、纳米线电极等。
其中,玻碳电极是应用最为广泛的一种电极。
2. 电解质电解质是指电化学传感器内以电离分子形式存在的化学物质,它可以提供电极与感兴趣分子或离子之间的电子传输通道。
电解质的种类很多,主要包括离子液体、缓冲溶液等。
3. 反应物质反应物质是指电极表面的活性物质与感兴趣分子或离子发生反应的物质。
反应物质选择合适且灵敏的材料对检测灵敏度具有很大的影响。
反应物质涉及的化学反应种类非常多,包括氧化还原反应、酶催化反应等。
三、电化学传感器的分类电化学传感器可以根据电化学反应类型、检测偏离和实际应用领域等角度进行分类。
1. 按照电化学反应类型电化学传感器可以按消耗(即固定电位法和准定电位法)和生成型(即安培法或容积法)等电化学反应类型分为不同的类型。
其中,消耗型电化学传感器是应用最为广泛的一种,它将感兴趣分子或离子消耗与电极表面的反应物质的消耗联系起来,从而根据电极电位的变化来判断溶液中感兴趣物质的浓度。
2. 按照检测偏离电化学传感器可以按照对电位、电流和阻抗等参数的检测方式进行划分。
其中,电位传感器检测的是电极表面的电势差,电流传感器检测的是电极表面的电流信号,而阻抗传感器检测的是电极表面的阻抗反应,这三种模式在实际应用中具有较高的可靠性和稳定性。
电化学传感器的原理和应用

电化学传感器的原理和应用电化学传感器(Electrochemical Sensor)是利用化学反应过程中的电荷转移现象,通过检测被分析物质的电化学信号来实现对被测物质的检测和分析。
它具有精度高、响应迅速、体积小、便携、易操作等优点,已经被广泛应用于生命科学、医疗、环境监测、工业制造等领域。
电化学传感器的原理电化学传感器的原理是利用电化学反应过程中的电荷转移现象,将反应过程产生的电流或电势信号与物质的浓度相关联,通过检测这些电学信号来实现对被测物质的检测和分析。
电化学传感器的核心部件是电极,一般包括工作电极(Working Electrode)、参比电极(Reference Electrode)、计量电极(Counter Electrode)等组成。
以电化学传感器检测氧气为例,电极系统包括工作电极(银或铂)、参比电极(银-氯化银参比电极)和计量电极(银-银氯化镉电极),整个系统通过电解质联系在一起,构成了一个电池。
当氧气分子进入电极表面时,会发生氧气在工作电极上的反应,反应产生的电流信号可用于监测氧气浓度。
电化学传感器的应用电化学传感器在生命科学、医疗、环境监测、工业制造等领域被广泛应用。
1. 生命科学与医疗电化学传感器在生命科学和医疗领域中得到广泛的应用,例如通过检测人体腋下的气味,诊断患者是否患有癌症;通过检测脑部组织中的化学物质来实现对脑功能的研究和分析。
2. 环境监测电化学传感器在环境监测中可以检测环境中的各种污染物,如:氧气、二氧化碳、一氧化碳、氮氧化物、有机物等。
例如,通过电化学传感器检测环境中的一氧化碳浓度可以监测交通道路上的污染程度。
3. 工业制造电化学传感器在工业制造领域中被广泛应用,例如腐蚀监测、防腐涂料的检测、气体检测等。
在安全工程上,人们可以通过电化学传感器检测工作场所中的有毒气体,保证员工安全。
总之,电化学传感器的应用领域广泛,除了上述领域外还包括:食品安全监测、土壤分析、汽车尾气检测、冶金工业、燃料电池等领域。
电化学传感器的原理与应用

电化学传感器的原理与应用电化学传感器是一种利用化合物在电化学反应过程中的电流、电势或荧光等性质来检测化合物浓度的敏感元件。
它具有高灵敏度、选择性好、响应速度快等特点,在环境监测、生化分析、临床诊断、工业生产等方面具有广泛的应用前景。
一、电化学传感器的原理电化学传感器的原理基于化学之间的电化学反应。
它通过在电化学电极上测量反应中产生的电信号,来测量被检测物质的浓度。
这种电化学反应的种类包括氧化还原反应、电解反应、阳极氧化、阴极还原等。
电化学传感器的信号来源于化学反应过程中涉及的电离的离子和电子。
电化学传感器的组成通常包括电极、电解质、支持电解质、反应层等几个部分。
其中,电极是将待测物质作用在电极表面的方法;电解质是将待测物质溶解在其中,以便反应;支持电解质是电化学反应需要的溶液;反应层是用于将待测物质与电极接触的化学物质层。
二、电化学传感器的类别电化学传感器的类型和应用领域广泛,可分为离子选择性电极、电化学氧化还原电池、阴极还原电极、基于荧光和表面增强拉曼散射等。
1、离子选择性电极离子选择性电极是用分子物质选择性地响应单一离子而制成的。
这种电极通常由吸附于非活性载体上的有机高分子构成。
具有高离子选择性的成分称为配合剂,化合物中的离子由这种配合剂吸附。
这种电极以有机物材料为基础,响应于特定的离子,如氢离子、钾离子和钠离子等。
2、氧化还原电池电化学氧化还原反应是一种反应产生电子和化合物的反应,也是电化学传感器的重要原理。
其中的典型应用是基于氧化还原反应的谷胱甘肽电化学传感器,以及测量血液氧气分压的氧化还原电池。
3、阴极还原电极阴极还原电极是由具有还原性反应的物种和反应性应答层建立的。
这种电极通常涉及还原的氢离子和氧分子这样的络合物。
在航天器上使用的氧气传感器是基于阴极还原电极的。
4、基于荧光和表面增强拉曼散射的电化学传感器基于荧光的电化学传感器主要是利用化学反应产生的荧光信号变化来检测化合物的浓度。
它具有高灵敏度、选择性好、响应速度快等特点,在生化分析和临床诊断中具有广泛应用。
电化学传感器的量测原理与应用

电化学传感器的量测原理与应用随着科技的不断发展,人们对于各种传感器的需求也随之增加。
其中,电化学传感器因为其特殊的工作原理,成为了当今领域中重要的一种传感器。
本文将对电化学传感器的量测原理与应用进行讲解。
一、电化学传感器的基本原理电化学传感器利用电化学反应,将所需要检测的物质转化为电信号,再利用电子技术进行测量。
其基本构成包括:工作电极、参比电极和计量电极。
1.工作电极工作电极是电化学传感器的核心组成部分。
它利用电化学反应的原理,将所需要检测的物质转化为电信号。
一般来说,工作电极通常都是一个具有良好导电性质的材质,例如铂、金等。
通过改变工作电极的材质以及表面的形态,可以有效提高电化学传感器的灵敏度和选择性。
2.参比电极参比电极是电化学传感器的一个辅助部分。
它主要用于稳定电极性质,从而保证电化学反应的稳定性。
一般来说,参比电极通常都是一个由银-银氯化物组成的电极体系。
3.计量电极计量电极是电化学传感器用于测量的部分。
它通常得用作响应电压的测量电极。
计量电极通常是一个由材质相同的工作电极与参比电极组成的体系。
二、电化学传感器的应用电化学传感器可以应用于许多领域,包括医学、环境保护、生产制造等等。
下面将重点介绍电化学传感器在环境保护、生产制造领域的应用。
1.环境保护领域电化学传感器在环境保护领域中的应用是非常广泛的。
例如,可以利用电化学传感器测量空气中的有毒有害气体浓度,来掌握污染物的情况,从而制定相应的预防和治理措施。
此外,在检测水环境中的污染物、地下水中的水质等方面也具有广泛的应用前景。
2.生产制造领域在生产制造领域中,电化学传感器的应用也是不可略过的。
例如,在测量金属溶解度、电化学电池性能、电镀质量等方面,电化学传感器都具有相应的应用价值。
此外,还可以利用电化学传感器测量金属材料中的腐蚀、电解液浓度等参数,从而提高生产的效率和质量。
三、电化学传感器的优点与其他传感器相比,电化学传感器的优点在于:1.灵敏度高电化学传感器可以通过改变工作电极的材质以及表面形态来提高其灵敏度和选择性。
电化学传感器

电化学传感器电化学传感器电化学传感器是一种基于电化学原理的传感器,能够将化学反应转化为电信号来检测和测量目标化合物的浓度或活性。
电化学传感器具有灵敏度高、响应速度快、选择性好等优点,在环境监测、生物医学、工业生产等领域有着广泛的应用。
一、电化学传感器的原理电化学传感器的工作原理基于电化学反应,通过利用电极表面发生的氧化还原反应来检测和测量目标化合物。
常用的电化学传感器主要有离子选择电极、氧气传感器、氢离子传感器等。
离子选择电极是一种用于检测溶液中特定离子浓度的电化学传感器。
其工作原理是利用电极表面的特定离子选择性膜和内部的参比电极构建一个离子电池。
当待测溶液中的特定离子浓度发生变化时,会引起电极表面的氧化还原反应,从而产生电信号。
通过测量电信号的变化,可以准确地测量溶液中特定离子的浓度。
氧气传感器是一种用于测量气体中溶解氧浓度的电化学传感器。
其工作原理是利用氧传感器中的阴阳两极电极间的电势差来测量溶解氧浓度的变化。
当溶液中的溶解氧浓度改变时,电极表面的氧化还原反应也会发生变化,进而引起电势差的变化,从而实现对溶解氧浓度的测量。
氢离子传感器是一种用于测量溶液中酸碱度的电化学传感器。
其工作原理是利用氢离子电极和参比电极之间的电势差来测量溶液的酸碱度。
当溶液中的酸碱度发生变化时,电极表面的氧化还原反应也会随之改变,进而引起电势差的变化,从而实现对溶液酸碱度的测量。
二、电化学传感器的优点和应用电化学传感器具有许多优点,包括灵敏度高、响应速度快、选择性好等。
这些优点使得电化学传感器在许多领域得到广泛应用。
在环境监测方面,电化学传感器可以用于检测和测量大气中的污染物、水体中的有害物质、土壤中的重金属等。
通过测量目标化合物的浓度和活性,可以实时监测环境中的污染程度,从而采取相应的措施进行治理。
在生物医学领域,电化学传感器可以用于检测和测量人体液中的生物标志物、药物浓度等。
例如,血糖传感器可以实时监测糖尿病患者的血糖水平,为糖尿病的治疗提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酪氨酸酶的提取催化活性及生物电化学传感器的构建与应用顾新 0909401008苏州大学材料与化学化工学部 09级化学类摘要:通过测定在不同浓度酪氨酸酶的作用下多巴红的生成速率测定酶的活性。
用加入Na2EDTA观察抑制剂对酶活性的影响。
酶电极的制作以及对酚的测定。
结果表明:加入抑制剂后酶的催化活性降低。
在邻苯二酚加入的瞬间有明显的峰电流产生,说明酪氨酸酶促进酚的氧化。
关键词:酪氨酸酶多巴红酶电极电化学传感器Abstract:Measuring the enzymatic activity through measuring the produce rate under different density of tyrosinase .Adding the Na2EDTA to the liquor and observing the effect. Making the enzymatic electrode pole and measuring the effect to the phenol. The results showed that tyrosinase promote the oxidation of phenol.Key words:tyrosinase dopamine red enzyme electrode electrochemical sensor1、前言生物体内由于生物催化剂酶的存在许多复杂化学反应可以在温和条件下进行得十分顺利和迅速,且酶催化反应具有高效性,选择性,反应条件温和等特性。
生物传感器是利用生物物质作为识别元件,将被测物质的浓度与可测量的电信号关联起来,其中研究最多的是酶传感器。
生物电化学传感器的构建主要包括酶,碳纳米管的应用。
生物传感器具有不需样品处理操作简便,体积小可实现连续在线监测等特点。
本实验通过土豆提取酪氨酸酶,并测定其活性,并将酶进一步固定于电极表面,制成酶电极,可用于酚的测定。
2、实验部分2.1仪器和药品仪器:分光光度计;离心机;粉碎机;超声波清洗器;铂电极;饱和甘汞电极;玻碳电极药品:L-多巴;磷酸氢二钠;氢氧化钠;盐酸;Na2EDTA;盐酸;多壁碳纳米管;酚材料:土豆2.2实验步骤2.2.1 酶的提取12.5g经过冰冻切碎的土豆,加入冰冷的25mL磷酸缓冲溶液(pH=7.0),用粉碎机粉碎均匀。
倒出提取液,立即离心分离。
倾出上层清夜保存于冰箱。
提取液为棕色,在放置过程中不断变黑。
2.2.2酶的活性测量取0.4mL土豆提取液,加2.6mL pH=7.0的缓冲液。
加2mL0.010mol/L的多巴溶液,摇匀。
反应约10min后,使用比色皿中,加入m的比色皿,使用自动扫描分光光度计扫描获取多巴红得吸收光谱。
并可从混合开始以时间间隔1min进行连续扫描,观察吸光度随时间增加的现象。
取2.5mL提取液用pH=7.0的缓冲溶液稀释至10mL,摇匀。
取0.1mL稀释过的提取液于2.9mL pH=6.0的缓冲液,再加2mL多巴溶液,同时开始计时,用分光光度计在475nm处测定吸光度。
开始6min内每分钟读1个数,以后隔2min读1个数,直至吸光度变化不大为止。
取0.2mL、0.3mL、0.4mL已稀释过的提取液重复上述实验,(注意总体积为5mL,每次换溶液洗比色皿只能倒很少量溶液洗1次)。
以吸光度对时间作图,从直线斜率求出酶的活性。
2.2.3抑制剂的影响取0.4mL稀释过的提取液,加入少量固体NaEDTA振动混合,反应一段时间后,配成测2定溶液观察现象。
并按上述实验方法,测定酶的活性,并对实验结果进行对比。
1.2.4酶电极以及样品中酚的测定将酶电极置于0.05mol/L的磷酸盐缓冲溶液(pH=7.0)中,电磁搅拌溶液,在极化电位-0.1V下记录电流-时间曲线,待基本电流稳定后,多次加入一定量的酚溶液,并观察所得曲线。
2.2.4酶电极的制备将玻碳电极用3000目的进口细砂纸湿磨抛光,然后依次用稀HCl,无水乙醇,去离子水清洗各3min,干燥后备用。
取6μL碳纳米管悬浊液滴加于预处理后的玻碳电极表面,红外灯烘干,再取一定量的酪氨酸酶溶液滴在电极表面,室温下放置干燥3h即可。
酶电极不使用时可存放于冰箱中。
2.2.5样品中酚的测定将酶电极置于0.05mol/L的磷酸盐缓冲溶液(pH=7.0)中,电磁搅拌溶液,在极化电位-0.1V下记录电流-时间(i-t)曲线,待基本电流稳定后,多次加入一定量的标准酚溶液,以电流增量对酚的浓度作工作曲线。
3.结果和讨论3.1吸光度随时间的变化表1 不同时间吸光度的变化时间吸光度1 2 3 4 5 6 7 8 91011 0.611 0.659 0710 0.733 0.743 0.752 0.747 0.733 0.733 0.733图1吸光度随时间的变化由图可得,吸光度随时间变化先变大后变小然后趋于平台。
先变大是因为反应逐渐进行多巴红浓度逐渐变大,最大后反应完全,然后逆反应,到达平台时反应平衡。
3.2最大吸收波长的测定表2 不同波长处的吸光度波长/nm 吸光度A400 410 420 430 440 450 455 460 465 470 475 480 485 490 500 0.734 0.734 0.746 0.755 0.753 0.762 0.765 0.766 0.768 0.779 0.791 0.786 0.784 0.776 0.767510 520 530 540 550 560 570 580 590 6000.753 0.722 0.692 0.656 0.629 0.583 0.572 0.561 0.5790.565图2不同波长下多巴红的吸光度由图2可以得出多巴红在475nm 波长处有最大吸收。
3.3酪氨酸酶的活性测量加入不同浓度酪氨酸酶时溶液吸光度随时间的变化情况的记录,并以吸光度对时间作图,从直线斜率求出酶的活性。
表3 不同浓度酪氨酸酶时溶液吸光度随时间的变化时间t/min 加入0.1mL 释后提取液加入0.2mL 释后提取液 加入0.3mL释后提取液 加入0.4mL 释后提取液 0.4mL 释后提取液加抑制剂 10.026 0.057 0.083 0.110 0.109 2 0.038 0.061 0.089 0.116 0.123 3 0.047 0.072 0.103 0.135 0.136 4 0.052 0.076 0.114 0.151 0.147 50.0540.0790.1200.1630.1516 0.056 0082 0.124 0.170 0.1568 0.059 0.083 0.127 0.176 0.15810 0.060 0.083 0.129 0.180 0.16012 0.061 0.083 0.129 0.181 0.16114 0.062 0083 0.129 0.182 0.16216 0.062 0.18318 0.062图3加入0.1ml酪氨酸酶时溶液吸光度随时间的变化由图可知加入0.1mL稀释后的提取液时,产物的生成速率v=0.0021图4加入0.2ml酪氨酸酶时溶液吸光度随时间的变化=0.008由图可知加入0.2mL稀释后的提取液时,产物的生成速率v2图5加入0.3ml 酪氨酸酶时溶液吸光度随时间的变化由图可知加入0.3mL 稀释后的提取液时,产物的生成速率v 3=0.01图6加入0.4ml 酪氨酸酶时溶液吸光度随时间的变化由图可知加入0.4mL 稀释后的提取液时,产物的生成速率v 4=0.013图7加入0.4ml酪氨酸酶和抑制剂时溶液吸光度随时间的变化根据米氏方程 ,以1/vi 对1/[S]作图,由直线斜率和截距可求得km值。
由图可知加入0.4mL稀释后的提取液以及抑制剂时,产物的生成速率v1=0.014,说明加入抑制剂后反应速率明显降低,抑制剂降低了酶的活性。
3.4反应速率与酶浓度的关系表4 反应速率与酶浓度的关系v 1/v [S] 1/[S]0.004 0.008 0.010 0.013 250125100770.10.20.30.41053.32.5对1/vi 对1/[S]作图得图7反应速率与酶浓度的关系直线方程为1/v i =k m /(v max [S])+1/v max ,即1/v max =19.08,v max =0.0524, k m /v max =22.87,所以k m =1.20mol ·L -1. 3.5酚对酪氨酸酶的影响图8酚对酪氨酸酶的影响4.参考文献(1).卞国庆,纪顺俊.综合化学实验[M].苏州:苏州大学出版社,2007(2).王尊本主编.综合化学实验[M].北京:科学出版社,2003:161~166.(3).浙江大学,南京大学,北京大学,兰州大学主编. 综合化学实验[M].北京:高等教育出版社,2001:p183~187.(4).古练权主编.生物化学[M].北京高等教育出版社,2000.(5).Zhao Q ,Guan L H ,Gu Z N,Zhuang Q K.Determination of Phenolic Compounds Basedon the Tyrosinase-Single Walled Carbon NanotubesSensor[J].Electroanalysis,2005(17):85~90.。