第六章-表面活性剂的乳化作用

合集下载

表面活性剂在配方中的作用

表面活性剂在配方中的作用

表面活性剂在配方中的作用表面活性剂在皮革化学品配方中的应用,主要体现在两个方面:一是作为组分之一,利用表面活性剂的基本性质,如表面活性、表面吸附、胶体性质、乳化及分散等性质等,使有效制革组分能够在革中渗透、分散、吸附、扩散等,或者帮助高分子助剂分散均匀,使油溶性的高分子能够形成稳定的乳液或微乳液,进行填充复鞣或在革的表面成膜。

二是本身是制革助剂的主要成分,如作为bc%c1"脱脂剂、加脂剂、柔软剂、防绞褂、渗透剂、消泡剂、防水防油防污剂等。

皮革化学品很少是油溶性的,一般均为水分散体,如胶体、乳液、水溶液等。

表面活性剂的乳化、分散、稳定和增溶在皮革化学品的配制中具有特别重要的作用。

许多助剂在水溶液中的良好分散性是通过表面活性剂的这些作用来改善的。

1润湿和渗透将水滴于石蜡上,水呈球状,水中加入表面活性剂后,则水滴趋于铺展。

这种液体在固体表面的铺展性能称为润湿;而加有表面活性剂的水易于更快地浸透帆布或棉絮,这种液体对于多孔性固体的浸湿过程称为渗透。

提高润湿力的方式主要通过加入表面活性剂改善润湿性能。

表面活性剂的作用体现在改善固体性能,如通过单层吸附使带相反电荷高能表面拒水、抗黏;通过多层吸附使高能表面更加亲水。

改善液体性能,在润湿剂与固体表面带同种电荷时,润湿性增大。

其次,可改变固体表面的粗糙度,加大接触面积,使液体易于填入空隙,趋于完全润湿。

在制革和毛皮加工的多道工序中,润湿和渗透是使皮革化学品与蛋白质纤维作用的前提条件,必须加入润湿剂或渗透剂。

对于低能表面的完全润湿,就要使润湿液的表面张力能降低到低能表面的临界值以下,以改进润湿。

不易形成胶束的表面活性剂分子,如二正辛基磺基琥珀酸钠,即属于良好的润湿剂。

亲水基在分子链中部并呈分支结构或者烃链较短的(如C5~C10链),其润湿性能也较好。

常用的渗透剂有低相对分子质量的非离子表面活性剂,如JFC(脂肪醇聚氧乙烯醚,HLB为12)或烷基酚聚氧乙烯醚(如OP-7);带有支链和强极性基的阴离子表面活性剂,如拉开粉BX-2(丁基萘磺酸钠)、环烷酸钠、烯基琥珀酸磺酸盐等。

第六章 表面活性物质,表面活性剂

第六章 表面活性物质,表面活性剂

6)聚氧乙烯烷基胺
x、y较小时,不溶于水而溶于油,但因有机胺结构, 可溶于低pH值的酸性水溶液。也因于此,它同时具有非 离子及阳离子活性剂的一些特性,如耐酸,不耐碱,可 杀菌等。x、y数目较大时,非离子特性上升,阳离子特 性下降,可与阴离子表活剂混合使用,常用于人造丝生 产中,改进纤维丝的强度,并保持喷丝孔结。
的洗涤剂、乳化。
4)苯酚聚氧乙烯醚(P型表活剂),n=1-30 5)Pluronic型表面活性剂 聚丙二醇与环氧乙烷加成物,最初以“聚醚”的商品 名出现,故称之为聚醚型非离子表面活性剂。
工业上习惯于用4个数字表示这一类活性剂,如 “2070”其分子式中a=c=53,b=34,4个数字中的头丙位 数20代表分子量约为2000,后两位数70代表聚氧乙烯部分 的分子量,占整个分子量的70%。
④磷酸酯盐 与硫酸酯盐相似,但有单酯盐和双酯盐两种。如:
用途:乳化剂,抗静电剂及抗蚀剂
优点:低泡,抗电解质及抗硬水性较强,
应用不多,生产较少。
2、阳(或正)离子表面活性剂 铵 盐 型
通式:[RNH3]+·CL- 或 RNH2·HAc
用途:酸性介质中作乳化、分散、润湿剂、浮选剂。
局限性:PH较高时(pH>7),自由胺易析出,失去表面活性
如月桂醇聚氧乙烯醚的合成
由于这类表面活性剂的亲油基不同,种类较多,可进一 步分类: 1)脂肪醇聚氧乙烯醚,R―O(C2H4O)nH 平平加型Perqqal R中的C原子数8-18 n=1-45 稳定性较好,较易生物降解,较好的水溶性,润滑性好。
2)脂肪酸聚氧乙烯酯RCOO(C2H4O)nH
制备:a与EO缩合 b与聚乙二醇脂化
第六章 表面活性物质
物质溶于水后,对水的表面张力的影响大致有三种情 况,如图6-1所示:

表面活性剂物理化学教案中的表面活性剂的乳化与分散机制

表面活性剂物理化学教案中的表面活性剂的乳化与分散机制

表面活性剂物理化学教案中的表面活性剂的乳化与分散机制表面活性剂是一类具有特殊功能的化学物质,其能够在液体表面降低表面张力并改变液体的分散性质。

在物理化学教学中,研究表面活性剂的乳化与分散机制是非常重要的内容。

本文将从表面活性剂的定义、乳化与分散的概念入手,叙述表面活性剂的乳化与分散机制。

表面活性剂,也被称为界面活性剂,是一类分子具有疏水基团和亲水基团的化合物。

疏水基团通常是碳氢链,而亲水基团可以是羧酸、羟基、胺基等。

由于表面活性剂的这种特殊结构,它们能够积聚在液体表面形成一个有机颗粒层,将液体表面张力降低,同时能够形成胶束结构。

乳化是指将两种互不溶的液体通过添加表面活性剂使其形成一种均匀分散相的过程。

例如,将水和油混合后,由于它们的互不相溶性,两者很快会分层,无法形成均匀的混合相。

但是如果加入表面活性剂,它们能够在分子水平上与水和油两相相互作用,形成胶束结构,使水和油能够均匀分散在一起,形成乳液。

具体来说,当表面活性剂的疏水基团与油相结合,亲水基团与水相结合时,胶束结构就形成了,并且胶束能够将油分子包裹在内部,使其均匀分散在水相中。

分散是指将固体颗粒分散在液体中的过程。

表面活性剂也能够发挥分散剂的作用,将固体颗粒分散在液体中形成悬浮液。

表面活性剂在分散过程中的机制类似于乳化。

当固体颗粒与表面活性剂发生相互作用时,表面活性剂的疏水基团会与固体颗粒表面发生作用,同时亲水基团与液体相互作用,使固体颗粒能够均匀地分散在液体中。

表面活性剂的乳化与分散机制可以通过物理化学的原理来解释。

表面活性剂能够在液体表面形成有机颗粒层,使液体的表面张力降低。

这是因为在表面活性剂吸附在液体界面时,疏水基团朝向液体内部,亲水基团朝向外部,并与其他表面活性剂分子形成相互作用。

这种有机颗粒层改变了液体的分子排列,从而降低了表面张力。

在乳化与分散过程中,表面活性剂的特殊结构使其能够与不同相的分子相互作用,同时通过胶束结构将互不相容的相分散在一起。

表面活性剂的作用

表面活性剂的作用

消泡作用在制革中的应用: 转鼓内浸水、染色,涂 饰剂的喷涂及铬液、栲 胶溶液的配制,通常需 在必要时加入消泡剂
具有消泡作用的物质:
植物油、矿物油、硅油、 液态高级醇、长链脂肪 酸钙盐、一些非离子表 面活性剂如环氧丙烷缩 合物、硬脂酸环氧乙烷 缩合物等。
表面活性剂的洗涤与去污作用
洗涤和去污: 从一种物质(基质)表面把另外的 物质(一种或数种)除掉,使之成为清洁的 物质。
放电平衡, 防止了纤维表面的静电
积累 抗静电作用
表面活性剂乳液
• 乳液类型及其辨别 • 水包油型乳液,以O/W表示; • 油包水型乳液,以W/O表示; • 乳液类型的辨别: • 常用电导法: O/W >W/O • 需要指出的是: • 1.在制革中普遍应用的是O/W型乳液; • 2.乳液是热力学不稳定体系(形成乳
液时,两液体的界面增大)
影响乳液类型的因素
γSG - γLG = γGL. cosθ θ>900,称之为不润湿; θ<900,称之为润湿; θ=00, 称之为铺展。
表面活性剂润湿作用的几个相关概念
• 润湿过程: 铺展润湿、粘附润湿和浸入润湿。 • 铺展润湿: 一种液体与基质(常为固体)接
触并在其上进行铺展时,将从基质表面取代 另一种流体(如空气) • 粘附润湿: 液体与基质接触并粘附在基质上 的润湿 • 浸入润湿: 基质与液体接触润湿时完全被液 体浸没
表面活性剂的发泡与消泡作用
• 几个基本概念
• 1.泡沫: 气体和液体 构成的两相系统,是气 体分散在一个连续液相 中的现象。当将空气通 入含有表面活性剂(如 洗衣粉)的溶液时,表 面气泡具有双重壁膜。
• 2.发泡作用: 能使气 泡稳定存在的作用。用 以发泡的表面活性剂叫 发泡剂或起泡剂。

最新中药药剂学第六章液体药剂习题03药剂

最新中药药剂学第六章液体药剂习题03药剂

第六章液体药剂[X型题]1.下列分散体系属于非均相分散体系的是(BCD )A真溶液B高分子溶液C溶胶D混悬型液体药剂E乳浊液型液体药剂注解:真溶液以分子或离子分散为澄明溶液,高分子溶液以分子分散为澄明溶液,因此二者均是均相分散体系;溶胶是多分子聚集体的形式分散,混悬型液体药剂以固体微粒分散得到多相的液体体系,乳浊液型液体药剂以液滴分散得到的液体多相体系。

2.关于表面活性剂的内容阐述正确的是(ABE )A其能力主要取决于分子结构的“两亲性”B降低表面张力的能力大小与其应用浓度有一定关系C HLB值越小,降低界面张力能力越小D具有两亲性的分子都是表面活性剂E表面活性剂在水中表面吸附达到饱和,再增加表面活性剂的浓度,对降低表面活性作用不再明显增加注解:表面活性剂降低两相间表面(界面)张力主要是因为分子结构中都同时含有亲水基团和亲油基团,即两亲性;此外,表面活性剂降低表面张力的能力大小还与其应用浓度有一定关系,低浓度时,表面活性剂产生表面吸附,即表面活性剂分子被吸附在溶液的表面呈定向排列,从而改变了液体的表面性质,降低了表面张力,当表面活性剂的浓度达到表面吸附饱和再增加表面活性剂的浓度,对降低表面活性作用不再明显增加;HLB值是表面活性剂的性质之一表示亲水亲油平衡值,即只能表示亲水亲油能力的大小不能表示降低界面张力能力大小;表面活性剂一般都是两亲性的分子,但反过来具有两亲性的分子不都是表面活性剂,如乙醇等。

3.下列(CE )不是表述表面活性剂的术语A临界胶团浓度B HLB值C置换价D krafft点E 低共熔注解:置换价是栓剂制备中的术语,是指同体积药物与基质的重量之比;低共熔是如在散剂制备中有特殊性质药物易出现的现象,即两种药物粉末混合将产生润湿或液化现象;krafft 点是离子型表面活性剂有的性质,即溶解度随温度升高而变化,达到某一温度点后,温度急剧升高。

4.能使水的表面张力升高的是(DE )A乙醇B醋酸C油酸钠D硫酸钠E蔗糖注解:乙醇、醋酸可以使表面张力降低,油酸钠可以使表面张力急剧降低。

表面活性剂的主要功能

表面活性剂的主要功能

表面活性剂的主要功能(一)润湿作用当固体与液体接触时,原来的固/气、液/气界面消失而形成了新的固/液界面,这一过程称为润湿。

如纺织纤维是一种多孔性物质,有着巨大的表面,当溶液沿着纤维铺展时,会进入纤维间的空隙,并将空气驱赶出去,把原来的空气/纤维界面变成液体/纤维界面,就是一个典型的润湿过程;而溶液同时会进入纤维内部,这一过程则称为渗透。

帮助润湿和渗透作用发生的表面活性剂称为润湿剂和渗透剂。

把不同液体滴在同一固体表面,可以看到两种不同的现象。

一种是液滴很快在固体表面铺展开形成液∕固新界面,这种情况叫润湿,如图(a)和图(b)所示。

把气∕液界面通过液体与固∕液界面之间的夹角称为接触角,可以看出在润湿的情况下接触角小于90°。

另一种情况是液体不在固体表面上铺展,而是在固体表面缩成一液珠,如把水滴加到固体石蜡表面所形成的现象,这种情况叫不润湿,如图(c)和图(d)所示,此时的接触角大于90°。

通常可通过液体在固体表面受力达到平衡时所形成的接触角的大小来判断润湿或不润湿。

当在水滴中加入表面活性剂时,由于表面活性剂具有降低气∕液界面张力和液/固界面张力的作用,会改变上述受力关系,导致水滴可以在石蜡表面铺展,由不润湿变为润湿。

(二)乳化作用乳化作用是指两种互不相溶液的液体(如油和水),其中一种液体以极小的粒子(粒径为10-8~10-5m)均匀地分散到另一种液体中形成乳状液的作用。

把油滴分散到水中称为水包油型乳状液(O/W),水滴分散到油中则称为油包水型乳状液体(W/O)。

把能帮助乳化作用的表面活性剂称为乳化剂。

作乳化剂使用的表面活性剂有稳定和保护两种作用。

(1)稳定作用乳化剂有降低两种液体间界面张力而使混合体系达到稳定的作用。

因为当油(或水)在水(或油)中分散成许多微小粒子时,扩大了它们之间的接触面积,导致体系能位增加而处于不稳定状态。

当加入乳化剂时,乳化剂分子的亲油基吸附在油滴微粒表面而亲水基伸入水中,并在油滴表面定向排列形成一层亲水性分子膜,使油∕水界面张力降低,降低了体系的能位并且减少了油滴间吸引力,防止油滴聚集后重新分为两层。

大学表面活性剂复习资料(考试用)

大学表面活性剂复习资料(考试用)

大学表面活性剂复习资料(考试用)表面活性剂化学复习资料名词解释题目第一章表面活性剂的概述1.表面:液体或固体和气体的接触面。

(物质和它产生的蒸汽或者真空接触的面)2. 界面:液体与液体,固体与固体或液体的接触面。

(物质相与相之间的分界面称之为界面)3. 表面张力:指垂直通过液面上任一单位长度、与液面相切的收缩表面的力(N/m)。

4. 表面自由能:指液体增加单位表面上所需做的可逆功,或恒温恒压下增加单位表面积时体系自由能的增值,或单位表面上的分子比体相内部同分子量所具有的自由能过剩值,称为表面自由能(J/m2)。

5. 表面活性:在液体中加入某种物质使液体表面张力降低的性质叫表面活性。

如肥皂中的脂肪酸钠,洗衣粉中的烷基苯磺酸钠等。

6. 表面活性剂:是指在某液体中加入少量某物质时就能使液体表面张力急剧降低,并且产生一系列应用功能,该物质即为表面活性剂。

第二章表面活性剂的作用原理1. 吸附:表面上活性剂这种从水内部迁至表面,在表面富集的过程叫吸附。

2. 低表面能固体:表面活性剂的表面能<100mJ/m2的物质3. 高表面能固体:表面活性剂的表面能>100mJ/m2的物质。

4. 胶束:两亲分子溶解在水中达一定浓度时,其非极性部分会互相吸引,从而使得分子自发形成有序的聚集体,使憎水基向里、亲水基向外,减小了憎水基与水分子的接触,使体系能量下降,这种多分子有序聚集体称为胶束。

(2)反胶束:表面活性剂在有机溶剂中形成极性头向内,非极性头尾朝外的含有水分子内核的聚集体,称为反胶团。

(3)临界胶束浓度:表面活性剂溶液的表面张力随着活性剂浓度的增加而急剧地降低,但是当浓度增加到一定值后,表面张力随溶液浓度的增加而变化不大,此时表面活性剂从分子或离子分散状态缔合成稳定的胶束,从而引起溶液的高频电导、渗透压、电导率等各种性能发生明显的突变,这个开始形成胶束的最低浓度称为临界胶束浓度(CMC)。

(4)亲水-亲油平衡值(HLB):系表面活性剂中亲水和亲油基团对油或水的综合亲合力,是用来表示表面活性剂的亲水亲油性强弱的数值。

表面活性剂之乳化剂

表面活性剂之乳化剂


烘焙业经常使用的单、双甘油脂、硬酯酸钠、 DATEM、去水山梨醇脂肪酸酯 (Sorbitanestersoffttyacids)、磷脂、乳清及 大豆蛋白等都是非常经济而又能发挥重要作 用的乳化剂。在选择乳化剂时应考虑产品所 适应的HLB值。不同HLB值的乳化剂具有加和 性,当二种或二种以上的乳化剂适当配合时, 可使得原HLB值范围扩大,增加该乳化剂的适 用范围。所以混合乳化剂的乳化效果最好。
乳化剂的作用

1.乳化作用 2.分散湿润作用 3.起泡作用
乳化剂 - 在食品中的应用

1.焙烤及淀粉制品。 高速面团,增加面筋网、促进充 气、提高发泡性,使焙烤食品的 结构细密;增大体积,使产品膨 松柔软;保持湿度,防止老化, 便于加工,延长货架寿命。 在糕点中使脂肪均匀分散,防止 油脂渗出,改善口感,提高脆性, 并能减少蛋的用量(用量一般为 0.3%~1%)

20世纪60年代以来,人们 开始重视表面活性剂使用的 安全性,加强了对无毒、生 物降解性好的非离子乳化剂 的研究。在食品、化妆品、 医药等行业限制某些乳化剂 的使用,开发出山梨酸醇脂 肪酸酯类、磷脂类、糖脂类 乳化剂等新型乳化剂。
简介

20世纪80年代以来,人们对乳化剂提出多功 能、高纯度、低刺激、高效率的更高要求, 开发出更多的新型乳化剂。 目前乳浊液的种类已从传统的水包油型和油 包水型扩大到多重乳浊液、非水乳浊液、液 晶乳浊液、发色乳浊液、凝胶乳浊液、磷脂 乳浊液和脂质体乳浊液等多种形式。
乳化剂——分类

乳化剂从来源上可分为天然物和人工合成品两大类。 而按其在两相中所形成乳化体系性质又可分为水包 油(O/W)型和油包水(W/O)型两类。衡量乳化 性能最常用的指标是亲水亲油平衡值(HLB值)。 HLB值低表示乳化剂的亲油性强,易形成油包水 (W/O)型体系;HLB值高则表示亲水性强,易形 成水包油(O/W)型体系。因此HLB值有一定的加 和性,利用这一特性,可制备出不同HLB值系列的 乳液。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
者有机相分散在水相或水溶液,和油包水(w/o)型,即 水相或水溶液分散在油相的乳液。此外,还有一类多重乳 液,包括水包油包水(w/o/w)型和油包水包油型(o/w/o) 型。
乳滴的粒径大小直接影响乳液的外观色泽
粒径/μm 50-1.0 1.0-0.1 0.1-0.05 小于0.05
外观色泽 乳白色 蓝乳白色 半透明灰色 全透明
水溶性表面活性剂
硬脂酸三乙醇胺
十六烷基硫酸钠
十六醇聚氧乙烯(30EO)
聚氧乙烯醚脂肪酸缩水山梨 醇(Tween)
羊毛醇聚氧乙烯醚(16- (24EO)
聚氧乙烯醚(20EO)甲基 葡萄糖苷பைடு நூலகம்半硬脂酸脂
油溶性表面活性剂
单硬脂酸甘油酯
十六醇
羟基化羊毛脂
脂肪酸缩水山梨醇 (Span)
羊毛醇聚氧乙烯醚 (5EO)
1.界面吸附膜的机械强度
由于乳滴在热运动时会频繁碰撞 而造成界面破裂,表面活性剂的定 向吸附膜则起了保护作用,其本身 的机械强度就成为决定乳液稳定的 首要因素。一般认为,定向吸附膜 内分子间的相互吸引力越大,排斥 力越小,分子排列则越整齐,膜则 越致密,越具凝聚性,其膜的机械 强度则越强。
常见复合乳化剂的配方
甲基葡萄糖苷倍半 硬脂酸脂
总的用量/% 3-5 3-6 3-6 4-6
3-5
2-3
在混合吸附膜中分子排列的 致密性还与两种分子的结构 有关,例如用十六烷基硫酸 钠与胆甾醇混合可得到排列 紧密的混合膜(见图(a)), 因而能产生稳定的乳液。
而用十六烷基硫酸钠与油醇 或者油酸钠混合,混合吸附 膜排列就不那么紧密,甚至
定性理论,定性解释o/w和w/o型乳 液的生成的理论有两种。
(1)定向楔理论 该理论认为:在乳 液中,乳化剂分子定向吸附于油/水 界面,阻止了乳滴的聚结。由于界 面是弯曲的,所以,亲水端的截面 积大于疏水端的乳化剂分子将有利 于o/w型乳液。
(2)聚结速度理论 从动力学观点来看,油水混合后如果油 滴的聚结速度远小于水滴,则水滴将聚结成连续相而形成 o/w型乳液。反之,若油滴聚结更快,则形成w/o型乳液。 由于油/水界面上乳化剂分子的亲水基一方面阻碍油滴的靠 近,另一方面则促进水滴的聚结。所以,亲水性乳化剂有 利于产生o/w型乳液,反之,亲油性乳化剂则有利于产生 w/o型乳液。
是松散的。
2.膜外存在的电能垒和立体能垒 由于界面上定向吸附膜的存在,
自然会产生膜外的电能垒和立体能 垒,即对抗乳液分散相聚集作用的 电性和空间保护层。
3.连续相粘度的影响
如果乳液的连续相粘度变大,则将对分散相乳滴的热运 动起阻滞作用,使其速度变慢,乳滴难以凝聚,从而提高 乳液的稳定性。此外,当表面活性剂加入油-水系统中, 其浓度达到一定时会出现液晶相,粘度会骤增2-3个数量 级,而且,液晶相会吸附在油-水界面上既减小分散相之
表面活性剂化学及其 应用
第六章 表面活性剂的乳化与破乳 作用
最早的表面活性剂肥皂 有“工业味精”之称。
所谓乳化作用是将一种液体以液滴的形式分散于另一种不 相溶液体中形成乳液的过程。其中,被分散的液体称为分 散相(又称不连续相或内相),而另一种液体则称为分散 介质(又称连续相或外相)。
涂料、农药、切削油剂、化妆品、纺织助剂都是乳液。 乳液一般可分为两种类型:水包油(o/w)型,即油相或
第一节 乳液的稳定性、机理
乳液的稳定性一般包含两方面的含义:
1.乳液类型的稳定性,乳液类型是会转型的,即o/w型变为 w/o型或w/o型变为o/w型。但这种转型尚未破乳,并不一 定构成严重后果;
2.乳液颗粒在分散介质中的分散稳定性。
一.乳液类型的稳定性
1.影响乳液类型的因素
(1)相的加入次序:把水加到含乳化剂的油中,可能得到 w/o型乳液,把油加入含乳化剂的水中可生成o/w型乳液;
(3)优先润湿理论:
许多固体粉末也可以用作乳化剂,它们通过在油-水界面 形成固态膜乳化。若固体粉末易被水润湿,则大头朝向水 相,小头留在油相,可起定向楔那样的作用,形成O/W型 乳液。反之 则形成W/O。
sosw owcosw
0o 90o so sw 所以,s-w界面比s-o界面更
易形成,结果易产生O/W乳液。因此,粘土、二氧化硅等 易形成o/w乳液。反之 则形成W/O。
二.乳液的分散稳定性机理
如前所述,表面活性剂作为乳化剂是乳液稳定不可缺少的 成分。它吸附于液-液界面,降低界面张力,从而降低系 统的表面自由能增量⊿G,即降低了系统的热力学不稳定 性。
界面张力的降低,并不能改变乳液的动力学不稳定性。事 实上,一些能大大降低液-液界面张力的表面活性剂不一 定能形成稳定的乳液,而影响乳液稳定的首要因素则是在 界面上定向吸附的表面活性剂分子膜的机械强度。
(2)乳化剂的性质:油溶性乳化剂倾向于生成w/o型乳液, 而水溶性乳化剂则相反;
(3)相体积比( 74.02% ):增加油对水相的比,则倾 向于生成w/o,反之亦然;
(4)溶解乳化剂的相:将亲水性的乳化剂溶于水相,有利 于生成o/w型乳液;
(5)系统的温度:对于聚氧乙烯醚非离子型表面活性剂的 o/w型乳液,升高温度有利w/o型乳液的生成。而离子型表 面活性剂的一些乳液,在冷却时可能变型为w/o;
(6)电解质和其它添加剂:在离子型表面活性剂的乳化剂 为o/w型乳液中加入电解质,通过中和和交联表面活性离 子,降低亲水性,促使其变型为w/o乳液。对于阴离子乳 化剂,阳离子的变型效能的大小可排列如下: Al3+>Cr3+>Ni2+ >Pb2+>Sr2+≈Ca2+≈Fe2+≈Mg2+
2.乳液类型定性理论
乳液是热力学不稳定分散系统。
例如仅将1mol正辛烷以0.2μm粒径分散于水,则系统界面 增量⊿A=800m2,正辛烷-水的界面张力为γ=50.8mN/m 则在恒温恒压下相应系统的表面自由能增量⊿G =γ⊿A =
40J﹥0.
表面活性剂能自动吸附于液-液表面,并降低界 面张力,是一类重要的乳化剂。
实际上,即使有表面活性剂存在的乳液仍然可能是热力学 不稳定的。例如在上述系统中加入少量的油酸钾,系统趋 于分散稳定,尽管界面张力降到7以下,但。所以,一般 意义上的乳液仅仅是一种具有动力学稳定的多相分散系统, 这类乳液的粒径一般在0.1μm以上,呈现特有的纯的或带 蓝光的乳白色。它的所谓“稳定性”只是在一个有限的时 间内,比如数分钟,也可以数年。
相关文档
最新文档