高瓦斯隧道施工工法

合集下载

高瓦斯隧道施工工法

高瓦斯隧道施工工法

工法内容简介(不少于300字):一、工程概况新建叙永至大村线中坝隧道位于古蔺县护家乡境内,隧址位属低山~低中山区构造剥蚀地貌,斜坡沟谷、山间凹地地形,隧道进口里程D9K53+611, 出口里程D9K57+612,中心里程D9K55+611.5,全长4001m,最大埋深415m。

进口段岩溶水发育,出口段瓦斯含量高,为高瓦斯工区,进口段地下水对溶具H1侵蚀性,出口段地下水对砼具H2侵蚀性。

隧道除进出口段分别位于半径800m、1000m的曲线上外,其余地段均位于直线上。

隧道纵向坡度为3‰、-7.3‰的人字坡。

二、施工工艺主墩承台采用有底钢吊箱施工。

整个钢吊箱分为以下几个部分:1、吊箱底板:由底模主承重梁、次承重梁以及底模板组成。

主承重梁采用2×I36a工字钢,纵桥向10根均匀布置于孔桩两侧。

次梁采用2[16a槽钢(焊成方形截面),按横桥向60cm间距均匀布置在主梁上。

底模采用钢板焊接组拼成整体,外圈设定位槽及定位螺栓,以便固定承台侧模板,在桩身位置留洞,洞的大小比护筒直径大10cm,以方便吊箱下沉。

2、吊箱侧模:为保证外观质量,侧模由大块定型钢模板组拼而成(基本分块大小为1.5m×2.0m),具有足够的刚度和强度。

吊箱侧模直接作为承台的侧模板,模板四周设法兰,板块间用螺栓连接固定,模板在出水面处及顶部设φ20mm对拉杆,方便拆除回收利用。

模板间夹胶带,要求做到接缝严密不漏水。

3、吊箱悬吊系统:由预埋于主墩桩身砼中的钢格构柱、柱顶纵横梁、吊杆等部分组成。

钢格构柱由四个L125×125×12mm角钢分肢和L63×63×6mm缀条组成,单个设计承载力为120t。

柱顶横桥向主纵梁采用2×I56a工字钢,顺桥向横梁采用2×I36a工字钢。

吊杆采用直径Φ32mm精轧螺纹钢筋,两端车丝,配螺母及钢垫板,钢垫板采用20mm厚Q235钢板,吊起底板与侧模。

高瓦斯隧道安全施工(2篇)

高瓦斯隧道安全施工(2篇)

高瓦斯隧道安全施工一、基本要求1.瓦斯隧道施工前,必须建立安全生产管理机构,建立安全生产责任制,建立健全各种安全管理制度,并确保有效实施。

2.瓦斯隧道施工前必须编制专项施工方案;必须编制相应预案。

3.瓦斯隧道施工前应对所有作业人员进行培训和安全教育并签字备查。

4.瓦斯隧道的施工应建立救护队,配备救护装备。

5.瓦斯监测应符合下列规定:①瓦斯隧道洞口必须设置经专业培训的专职瓦检员负责检测记录。

②检测瓦斯用的仪器必须定期进行校验。

凡经大修的仪器,必须经计量检定合格后方可使用。

③易产生局部瓦斯积聚的地点,必须重点检测,并采取有效措施进行处理。

④进入隧道的所有金属管线必须在洞外设置有效的接地装置,其电阻值必须符合相关规定。

二、瓦斯隧道施工安全要求瓦斯隧道施工作业应符合下列安全要求:①当开挖工作面风流中瓦斯浓度超过相关规定参数时必须停止工作,撤出工作人员,切断电源,研究预防和消除措施进行处理。

②由于临时停电或检修,主要通风机停止运转或通风系统遭到损伤的,在恢复正常通风后,所有受到停风影响的地段,必须经过检测人员检查,确认无危险后方可恢复生产。

③高瓦斯隧道掘进工作面应安设隔(抑)爆设施。

三、爆破作业爆破作业应符合下列安全要求:①严格执行“三人连锁爆破制”(指放炮前放炮员将警戒牌交给班组长,班组长派人警戒准备下达放炮命令,然后将自己的放炮命令牌交给瓦斯检查员,经检查瓦斯浓度符合要求后,再将放炮牌交给放炮员)。

②瓦斯作业面必须采用电力起爆,严禁使用半秒、秒级电雷管。

③瓦斯作业面爆破必须使用煤矿许用炸药和煤矿许用电雷管。

④洞内爆破时,人员应撤至洞外。

⑤炮孔的装药及填塞必须符合相关技术指标参数要求。

装药前应清除炮孔内的煤(岩)粉。

⑥爆破母线应采用铜芯绝缘线,严禁使用裸线和铝芯线爆破,爆破母线、连接线和电雷管脚线必须相互扭紧并悬挂,不得与轨道、金属管、钢丝绳、刮板运输机等导电体接触。

四、通风、防尘通风机必须装设在洞外或洞内新风流中,避免污风循环。

瓦斯隧道穿越煤层施工工法(2)

瓦斯隧道穿越煤层施工工法(2)

瓦斯隧道穿越煤层施工工法瓦斯隧道穿越煤层施工工法一、前言瓦斯隧道是指在煤矿地下进行的煤层隧道工程,其目的是为了瓦斯抽放、通风、防治瓦斯事故等工程需要。

瓦斯隧道穿越煤层施工工法是在煤层中穿越煤层开展瓦斯隧道施工的一种方法。

本文将对该工法进行全面介绍,包括工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例。

二、工法特点1. 快速施工:瓦斯隧道穿越煤层施工工法采用先进的工艺和技术手段,可以大大提高施工效率,缩短施工周期。

2. 施工质量高:施工过程中,工法采用了一系列的技术措施,确保了施工质量的达标。

3. 安全性好:在瓦斯隧道穿越煤层施工工法中,安全是首要考虑因素。

采取了多项严格的措施,确保施工安全。

4. 可操作性强:施工工艺简单明了,施工中不仅方便了操作人员的操作,同时也提高了施工效率。

三、适应范围瓦斯隧道穿越煤层施工工法适用于各类的煤层地质条件,并且可适用于不同规模的煤矿,满足了煤矿在开展瓦斯抽放、通风、防治瓦斯事故等工程需要。

四、工艺原理瓦斯隧道穿越煤层施工工法的实际工程需要是将瓦斯隧道穿越煤层,采取的技术措施包括:确定施工位置、预处理煤层、施工方案设计、施工设备选择、材料选用等。

通过对施工工法与实际工程之间的联系进行具体分析和解释,使读者了解该工法的理论依据和实际应用。

五、施工工艺瓦斯隧道穿越煤层施工工法分为准备阶段、施工阶段和收尾阶段。

进入准备阶段,需要确定施工位置、进行煤层预处理。

进入施工阶段,根据施工方案设计,使用适应的施工设备进行施工。

在收尾阶段,需要进行相关工程的收尾工作,确保施工工艺的完整性和施工质量。

六、劳动组织瓦斯隧道穿越煤层施工工法需要合理组织施工人员,按照工艺要求进行劳动分工。

组织人员包括工程师、技术人员、操作人员等,根据工艺要求分工合理,保证施工过程的顺利进行。

七、机具设备瓦斯隧道穿越煤层施工工法需要使用相关的机具设备进行施工,包括钻机、运输车辆、喷射设备等。

瓦斯突出隧道倾斜中厚煤层揭煤施工工法(2)

瓦斯突出隧道倾斜中厚煤层揭煤施工工法(2)

瓦斯突出隧道倾斜中厚煤层揭煤施工工法瓦斯突出隧道倾斜中厚煤层揭煤施工工法一、前言瓦斯突出是煤矿开采中常见的一种危险灾害,会对矿井的安全及工人的生命造成威胁。

针对这一问题,瓦斯突出隧道倾斜中厚煤层揭煤施工工法应运而生。

本文将介绍这一工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例,旨在为煤矿工程提供参考。

二、工法特点瓦斯突出隧道倾斜中厚煤层揭煤施工工法的主要特点包括:施工过程稳定可靠、操作简便易行、破碎煤层的能耗低、能有效预防瓦斯突出、提高工作面的采煤进度等。

三、适应范围该工法适用于瓦斯突出较大的中厚煤层,适用于倾斜煤层开采,可以有效预防瓦斯突出事故的发生。

四、工艺原理该工法通过对施工工法与实际工程之间的联系、采取的技术措施进行分析和解释,理论依据主要包括煤层裂缝结构、瓦斯渗流规律、煤岩体破碎特性等。

实际应用时,采取的技术措施包括注水增湿,调整采掘参数,喷射剂裂解,支护加固等。

五、施工工艺施工过程中的各个施工阶段需要进行详细描述,包括准备工作、导排煤层、揭煤凿眼、瓦斯抽放、支护加固等。

通过对每个细节的描述,读者可以了解施工过程中的具体操作步骤和注意事项。

六、劳动组织针对该工法,需要合理的劳动组织安排。

从工人数量、作业分工、劳动力配备等方面进行分析,并提出有效的劳动组织方案。

七、机具设备该工法所需的机具设备包括钻机、喷射机、液压支架等。

本文将详细介绍这些机具设备的特点、性能和使用方法,帮助读者全面了解这些设备的使用。

八、质量控制施工过程中需要对质量进行控制,以确保施工过程中的质量达到设计要求。

本文将介绍质量控制的方法和措施,包括现场监测、质量检测等。

九、安全措施施工中需要注意的安全事项进行介绍,特别是对施工工法的安全要求,包括瓦斯抽放、防火措施等。

让读者清楚地了解施工中的危险因素和相应的安全措施。

十、经济技术分析对此工法进行经济技术分析,包括施工周期、施工成本和使用寿命的分析。

高瓦斯隧道专项方案

高瓦斯隧道专项方案

一、工程概况本工程为某高速公路段,全长XX公里,隧道全长XX米,其中高瓦斯工区长度为XX米。

隧道围岩以砂岩、泥岩互层为主,断层发育,深层煤气有瓦斯溢出可能性。

为确保施工安全,特制定本专项施工方案。

二、施工难点及对策1. 施工难点(1)围岩稳定性差:隧道围岩以砂岩、泥岩互层为主,易发生坍塌,施工难度较大。

(2)瓦斯涌出:断层发育,深层煤气有瓦斯溢出可能性,存在瓦斯爆炸风险。

(3)施工环境恶劣:隧道内空气潮湿、通风不良,施工人员劳动强度大。

2. 对策(1)围岩稳定性处理:采用锚喷支护、预注浆、围岩加固等技术,提高围岩稳定性。

(2)瓦斯治理:加强瓦斯监测,采取通风、抽排、防爆等措施,确保瓦斯浓度在安全范围内。

(3)施工环境改善:加强通风,提高隧道内空气质量;合理调整施工班次,减轻施工人员劳动强度。

三、施工方法及工艺1. 施工方法(1)钻爆法:采用钻爆法进行隧道开挖,严格控制爆破参数,降低爆破振动。

(2)锚喷支护:根据围岩稳定性,合理选用锚杆、喷射混凝土等支护材料,确保支护效果。

(3)超前地质预报:采用物探、钻探等手段,对围岩、瓦斯、地下水等进行预报,为施工提供依据。

2. 施工工艺(1)隧道开挖:采用台阶法开挖,严格控制开挖断面尺寸,确保施工质量。

(2)支护施工:根据围岩稳定性,及时进行锚喷支护,确保支护效果。

(3)瓦斯监测:配备先进的瓦斯检测设备,实时监测瓦斯浓度,确保瓦斯浓度在安全范围内。

四、安全措施1. 瓦斯监测:配备瓦斯检测设备,实时监测瓦斯浓度,确保瓦斯浓度在安全范围内。

2. 通风:加强隧道通风,提高隧道内空气质量,降低瓦斯浓度。

3. 防爆:对施工人员进行防爆教育,提高安全意识;配备防爆器材,确保施工安全。

4. 应急预案:制定瓦斯事故应急预案,提高应对突发事故的能力。

五、施工进度安排1. 施工前期:完成施工组织设计、安全技术交底、设备调试等工作。

2. 施工阶段:按照施工进度计划,有序开展隧道开挖、支护、瓦斯监测等工作。

复杂地质条件下高瓦斯地段大型洞室开挖施工工法

复杂地质条件下高瓦斯地段大型洞室开挖施工工法

复杂地质条件下高瓦斯地段大型洞室开挖施工工法【摘要】公路、铁路都涉及到不良地质条件下的隧道工程施工,本文介绍了公路隧道穿越煤层、煤系地层等高瓦斯不良地质时,采用的新型洞室开挖施工工法,包括工法特点、施工工艺流程、操作要点、质量控制等内容。

【关键词】高瓦斯超前地质预报瓦斯监测隧道通风洞室开挖施工工法1 新型洞室开挖施工工法概况公路、铁路都涉及到隧道工程施工,在穿越煤层、煤系地层等高瓦斯不良地质时,采用新型洞室开挖施工工法,可以有效解决传统工艺超前地质预报方法单一、准确性低、瓦斯监控检测范围不能全时覆盖全隧道等问题。

与传统工法相比较,其具有超前地质预报准确性高、瓦斯监控检测范围广、优化传统施工工艺、安全可靠、节能减排等优点。

在高瓦斯隧道施工中采用复合式的超前地质预报方法和复合式的瓦斯监控检测方法,指导施工,进行安全管控,可使隧道不良地质得到准确预报、有效处治;使隧道内瓦斯浓度得到全范围实时监控检测,及时预警,避免了瓦斯爆炸事故;能提高工程质量、加快施工进度、节约施工成本,具有显著的社会经济效益。

1.1 工法特点(1)与传统的超前地质预报相比,采用复合式的超前地质预报能够准确的探知和预测隧道围岩状况和不良地质类型及其规模,为隧道施工提供基础参数,制定相应的施工措施,避免因对不良地质信息掌握不全面或不准确造成处治不到位、返工处治、反复处治等,节约施工成本、加快施工进度;(2)利用复合式的瓦斯监控监测措施实时监控、全范围检测隧道内的瓦斯浓度,发现异常情况及时预警,并采取相应的应急措施,避免发生瓦斯爆炸等安全事故,确保隧道施工安全;(3)隧道通风是降低瓦斯浓度最有效的方法,传统的通风方式为固频式通风。

本工法根据检测到的瓦斯浓度,采取不同的档位控制通风强度,既能确保施工安全,又能降低通风成本、实现节能减排。

1.2 适用范围本工法适用于隧址区有废弃老窑、采空区、老窑积水、有灰岩分布、岩溶水聚积、有瓦斯或高瓦斯等有害气体、穿越煤层和煤系地层的公路隧道。

特长高瓦斯高铁隧道智能通风施工工法(2)

特长高瓦斯高铁隧道智能通风施工工法(2)

特长高瓦斯高铁隧道智能通风施工工法特长高瓦斯高铁隧道智能通风施工工法一、前言在高铁隧道建设中,隧道通风是一个重要的环节,能够有效地保障隧道内空气的流通,减少高瓦斯隧道中的有害气体积聚。

特长高瓦斯高铁隧道智能通风施工工法是一种基于现代智能化技术的通风施工方法,该方法通过灵活的机动性和智能控制系统来提高施工效率,并确保施工过程的质量和安全。

二、工法特点该工法具有以下特点:1. 高效快速:采用智能化机具和材料运输系统,能够快速高效地进行隧道通风施工。

2. 自动化控制:通过智能化控制系统,能够自动控制通风设备的运行和调节,提高施工的稳定性和可控性。

3. 智能化监测:通过智能传感器和监测装置,能够实时监测隧道内的气体浓度和温度等参数,确保施工过程的安全性。

4. 灵活可调:根据实际施工需要,能够根据具体情况调整通风设备的位置和参数,提供最佳的通风效果。

三、适应范围该工法适用于特长高瓦斯高铁隧道的建设,尤其是对具有高瓦斯环境的隧道具有较好的适应性。

在实际工程中,该工法已经成功应用于多个隧道项目,并取得了显著的效果。

四、工艺原理特长高瓦斯高铁隧道智能通风施工工法主要采用以下技术措施:1. 通风设备布置:根据隧道结构和通风要求,合理布置通风设备,确保通风效果满足要求。

2. 智能控制系统:通过智能化控制系统,对通风设备进行精确控制,根据实际需要进行调节和优化,确保通风效果最佳。

3. 智能监测系统:通过智能传感器和监测装置,实时监测隧道内的气体浓度和温度等参数,提前发现并处理有害气体积聚问题。

4. 协调施工组织:在施工过程中,对各个施工环节进行协调,确保施工效率和施工质量。

五、施工工艺该工法的施工工艺包括以下几个阶段的详细描述:1. 施工筹备阶段:制定施工计划和组织形式,准备施工材料和设备。

2. 通风设备安装阶段:按照施工图纸和设计要求,进行通风设备的安装和调试。

3. 智能控制系统调试阶段:对智能控制系统进行调试和优化,确保施工过程的稳定性和可控性。

高速公路瓦斯突出隧道超厚煤层揭煤防突施工工法

高速公路瓦斯突出隧道超厚煤层揭煤防突施工工法

高速公路瓦斯突出隧道超厚煤层揭煤防突施工工法高速公路瓦斯突出隧道超厚煤层揭煤防突施工工法一、前言针对高速公路建设中遇到的瓦斯突出隧道超厚煤层揭煤问题,本文将介绍一种针对此类情况的防突施工工法。

该工法具有独特的特点,广泛适用于具有超厚煤层且存在瓦斯突出风险的隧道工程中。

二、工法特点该工法的特点有:1. 针对超厚煤层,通过揭煤工艺,将煤层逐层揭离,降低煤层厚度,减少瓦斯突出风险。

2. 采用防火与冷却措施,减少火灾事故发生概率。

3. 通过工艺优化,减少瓦斯的积聚和泄漏,提高工人的安全。

4.施工工艺合理,能够提高施工效率,缩短施工周期。

三、适应范围该工法适用于具有超厚煤层且存在瓦斯突出风险的高速公路隧道工程。

四、工艺原理该工法通过揭煤工艺与实际工程之间的联系,具体采取了以下技术措施:1. 利用爆破技术对煤层进行逐层揭离,减少煤层厚度,降低瓦斯突出风险。

2. 采用防火材料对施工区域进行覆盖,避免火灾事故发生。

3. 利用冷却技术对施工区域进行降温,减少煤层燃烧产生的瓦斯积聚和泄漏。

五、施工工艺施工过程包括以下几个阶段:1. 煤层勘探与分析2. 施工区域准备3. 揭煤工艺施工4. 瓦斯抽采与处理5. 完工与验收六、劳动组织根据施工工艺的要求,合理安排劳动组织和协作,确保施工工艺的顺利进行。

七、机具设备为了保证施工工艺的顺利进行,我们需要使用以下机具设备:1. 爆破设备2. 防火材料3. 冷却设备4. 瓦斯抽采设备八、质量控制为了保证施工过程中的质量达到设计要求,我们将采取以下质量控制措施:1. 严格遵循设计要求和施工规范进行施工2. 定期进行质量检查和监测3. 配备专业的质量控制人员,并进行培训九、安全措施在施工过程中,我们将采取以下安全措施:1. 设立安全警示标志2. 施工人员必须佩戴个人防护装备3. 对施工现场进行严格管理,防止火灾和瓦斯泄漏十、经济技术分析通过对施工工法的施工周期、施工成本和使用寿命进行分析,我们可以评估和比较该工法的经济技术效益,为实际工程提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复杂地质条件高瓦斯隧道施工工法1. 前言1.1 工程概况重庆市肖家坡隧道,左线起讫桩号为ZK51+386~ZK54+105,全长2719米,右线起讫桩号分别为YK51+400~YK54+130,全长2730米。

隧道最大埋深约460m。

隧道穿越地层主要为志留系上统罗惹坪群第二段、第一段和志留系上统龙马溪群第二段,以粉砂岩、页岩、砂质页岩互层、水云母页岩为主。

设计为无瓦斯隧道。

1.2 工法形成经过2006年12月,肖家坡隧道右线首次在YK53+690处测得瓦斯浓度为0.35%。

从12月8日到12月,在每次掘进放炮后,均对隧道右线内瓦斯进行测定,这期间测得掘进工作面附近瓦斯浓度维持在0.26~0.36%之间,肖家坡隧道右线YK53+622位臵的最大绝对瓦斯涌出量为4.69m3/min。

随后于2007年9月19日在肖家坡隧道出口左线ZK53+034处掘进工作面左侧离地3m处钻孔附近的出现不明气体,现场对瓦斯浓度进行了测定,孔口瓦斯浓度8.2%、拱顶0.16%、下部0.12~0.13%。

根据已开挖进隧道实际瓦斯涌出情况和对未开挖段隧道瓦斯涌出量的分析,将肖家坡隧道定为高瓦斯隧道。

在高瓦斯隧道施工中,如何有效的预防和采取必要的措施,防止瓦斯安全生产事故的发生,我们经过反复研究,从超前地质预报、钻爆、出渣及运输、支护、衬砌、防排水、风水电等各道工序上针对瓦斯的特性,经过对肖家坡高瓦斯隧道施工的工程实践,经总结形成了本工法。

2. 工法特点1、超前预报与地质工作相结合,提前探明瓦斯成因及规模,进行瓦斯突出性预测,采取防治瓦斯突出的措施,有效降低开挖爆破时瓦斯安全生产事故风险。

2、控制隧道内及工作面的瓦斯浓度是防止瓦斯爆炸的关键。

通过瓦斯检测预警系统与合理的通风设计,在施工中的每个环节都必须保证有强大的通风量与风速,将瓦斯浓度控制在0.5﹪以下,有效地降低隧道内的瓦斯浓度,确保施工安全。

3、采用新型防水板、气密性混凝土、水玻璃、水气分离装臵、防爆机械等新材料新设备保证施工和营运期间的安全。

4、隧道开挖后及早地对围岩(含掌子面)进行封闭支护,以及采取径向预注浆措施可以防止围岩中的释压节理、岩层层理或者构造结构面在开挖松驰后相互贯通,切断瓦斯的运移通道,避免了瓦斯灾害的突涌。

5、健全有效的安全管理制度是高瓦斯隧道施工的重要制度保障。

3. 适用范围适用于穿越地层中赋存有石油和油气共生地段以及浅层地表天然气贯通等外源性高瓦斯隧道施工。

4.工艺原理针对外源性高瓦斯隧道施工特点,采取超前预报与地质工作相结合,提前探明瓦斯成因及规模,进行瓦斯突出性预测,采用光干涉甲烷检定仪、便携式甲烷检测报警仪、瓦斯自动监控系统对瓦斯实时检测监控。

工前教育培训,每道工序全部采用防爆型,严禁火源进入隧道,采取径向注浆切断瓦斯的运移通道,开挖后及时采用气密性混凝土进行支护和衬砌,这些措施有效地规避了高瓦斯隧道突涌灾害的风险,避免了人员伤亡和财产损失,确保了施工和运营的安全。

5. 施工工艺流程及操作要点5.1 高瓦斯隧道施工工艺流程图5.1-1 高瓦斯隧道施工工艺流程图5.2 高瓦斯隧道施工工法操作要点5.2.1 超前地质钻孔为准确判断前方地质情况和瓦斯浓度,对隧道施行5个连续的超前探孔。

钻孔采用ZK-150地质钻机,配有φ75和φ89两种钻头,通过取芯可准确判断掌子面的地质情况。

通过测定钻孔内瓦斯浓度和瓦斯压力以及判定前方裂隙带的地质情况确定爆破方案。

5.2.1-1钻孔布臵图5.2.2 瓦斯测定及判断在掌子面设臵两个光干涉甲烷检定仪探头对隧道内的瓦斯进行24小时不间断监测。

1号探头距掌子面10m ,2号探头距掌子面20m ,每次进尺放炮后,对隧道内的瓦斯浓度进行测定,对检测数据进行整理分析。

检测方法和需要进行的气样分析如下表。

表5.2.2 -1瓦斯监控系统检测方法表5.2.2-2隧道钻孔气样分析根据所检测分析得出的瓦斯浓度数据,得出肖家坡隧道最大瓦斯浓度值C=0.18%。

根据孔口瓦斯浓度可以算出瓦斯涌出量。

其具体计算过程如下:现场实测隧道平均风速:v = 0.53m/s隧道风量:q=v×s×t= 0.53×82×60=2607.6m3/min。

S—隧道开挖断面积;t—通风时间;最大瓦斯涌出量:Q=q×C=2607.6×0.18﹪=4.69 m3/min。

Q—隧道瓦斯绝对涌出量,m3/min;q—隧道进风量,m3/min;C—隧道瓦斯浓度。

由于最大瓦斯涌出量Q=4.69m3/min>0.5 m3/min(《铁路瓦斯隧道技术规范》规范值),可以判定为高瓦斯隧道。

1、外源性高瓦斯形的基本规律详细勘察和研究瓦斯的特征、来源、形成以及赋存空间和运移通道,充分认识外源性高瓦斯形的基本规律如下:1)广泛分布的围岩一般为非煤层或者非含煤地层,完整性较好,各种贯通性结构面发育。

2)前期地质构造形成了一系列的隐伏含瓦斯构造,这些构造只是在围岩中形成张性裂隙,围岩破碎并不强烈,现在构造地应力场稳定,可以使瓦斯有一个相对稳定的赋存环境。

3)隧道所在地区地下水并不发育,在地质历史时期形成的瓦斯具备一定的储量和压力,而且瓦斯赋存区域有相互连通的隐伏含水构造形成的通畅的地下通道,可以为瓦斯的运移、赋存和突涌提供必要的条件。

瓦斯突涌灾害具有受地质构造控制明显,瓦斯突出量随着时间的推移逐渐减少的特征。

4) 在施工等外界环境的扰动下,具有一定压力和静储量的瓦斯通过一些列的释压节理、岩层层理或者构造结构面突涌而出,瓦斯突涌灾害事故就发生了。

地质模式如下图:5.2.3 瓦斯突出防治根据地质勘测资料分析表明,隧道掘进放炮时由震动产生的裂隙与构造破碎带5.2.2-1 隧道斯突涌事故工程地质模式示意相沟通,导致了深层油气(瓦斯)顺着裂隙向掘进工作面涌出,排除了瓦斯来自于煤层或碳质岩层的可能。

因此在高瓦斯隧道掘进过程中,为保证安全必须进行连续超前探孔,以探明施工前方的地质情况,防止出现瓦斯突出现象。

2、瓦斯突出性预测由于排除了存在煤层的可能性,为节约施工时间,可采用钻孔瓦斯涌出初速度法进行瓦斯突出性预测。

此过程在超前取芯探孔过程中同步实施,测定瓦斯涌出初速度时,应注意保证测定装臵的气密性,以减小测量误差。

钻孔瓦斯涌出初速度法预测瓦斯突出的具体过程如下:1)在钻机每钻进1米时,立即撤出钻杆,插入钻孔瓦斯涌出初速度检测装臵,测量2min 后的瓦斯涌出量q。

当瓦斯涌量q≥4L/min(指标临界值)时,则存在瓦斯突出危险。

2)当钻孔瓦斯涌出量q>6L/min时,在第5min后继续读取1min瓦斯涌出衰减量,当衰减系数α≤0.65时,则该工作面存在瓦斯突出危险。

3)在钻孔过程中出现喷孔、顶水、顶钻、夹钻等动力现象时,即该工作面存在瓦斯突出危险。

3、防治瓦斯突出的措施——瓦斯排放由于隧道开挖断面大,为防止掘进时瓦斯突出,采用了多排钻孔预排瓦斯的防治措施。

瓦斯排放钻孔的各项参数及布设如下:1)钻孔孔径:90mm;2)孔距与排距:1m;3)排放钻孔角度:水平角:0—90°仰角:0—45°倾角:0—20°;4)排放控制范围:上下、左右隧道轮廓线外5m;5)排放时间:大于20小时。

图5.2.2-2 排放钻孔布设图4、防突措施效果检验防突措施实施完成后,重新施作检验孔,按照瓦斯突出性预测方法对防突效果进行检验。

经检验无瓦斯突出危险时,表明措施是有效的。

否则认为措施无效,必须采取帷幕注浆封堵和超深探孔排放等补救措施,直至检验有效时,可进行开挖掘进。

5.2.3 高瓦斯隧道开挖1、施工准备每循环掘进前,应做好相应的施工准备。

在开挖前,必须对工作面附近20m风流中瓦斯浓度进行检测,当瓦斯浓度小于1.5%允许人员进入掌子面,台车用装载机吊装就位;风水管硬管接到离掌子面50m处,再用软管接到掌子面;ExdⅠ型矿用防爆照明灯接到掌子面为施工提供足够照明,掌子面地面大致整平,排水沟通畅。

做好常规测量放线工作。

2、爆破方法根据超前地质钻孔测定瓦斯浓度,如果瓦斯浓度和爆破断面较大需分批次爆破,如果瓦斯浓度和爆破断面较小时尽量采用全断面开挖。

施工考虑到煤矿许用电雷管段数只有5段,以及断面较大无法满足全断面开挖施工要求,故爆破采用三次爆破,仰拱以上采用上、下分部台阶法开挖,仰拱以下一次爆破。

裂隙带处围岩稳定较差,容易发生底鼓和底部瓦斯溢出,下部台阶开挖完以后,仰拱必须紧跟,尽量确保边墙与仰拱混凝土同时施工。

每一台阶爆破完及时封闭掌子面和开挖面。

同时采用光面爆破技术,短进尺、弱爆破避免对围岩扰动,防止瓦斯因在地应和瓦斯压力共同作用下产生瓦斯突出。

钻机采用重庆分院生产ZT-30型防爆专用钻机。

在开挖前,必须对工作面附近20m风流中瓦斯浓度进行检测,当瓦斯浓度小于1.5%允许开钻;采用湿式钻孔,严禁干式打钻,炮眼深度不应小于0.6m;炮眼最大抵抗线不得小于30cm。

移挪钻机时,必须切断电源进行,严禁带电作业;在钻孔过程中,出现顶钻、夹钻、喷孔等动力现象时,应立即停止钻进,撤出人员,加强通风。

3、爆破作业1)爆破作业开始时,对爆破点20m以内,风流中瓦斯浓度进行检测,当风流中瓦斯浓度小于1%才允许装药,连线起爆。

2)爆破点20m内,矿车、碎石、煤渣或其他物体阻塞开挖断面不得大于1/3;3)装药前,每孔炮眼内岩粉应清除干净;4)炮眼封泥不足或不严不得进行爆破。

4、钻孔装药、封孔1)采用电雷管起爆时严禁反向装药。

采用正向连续装药方式,雷管安放在最外一节炸药中,雷管以外不得装药卷。

2)在岩层内爆破,炮眼深度不足0.9m时,装药长度不得大于炮眼深度的1/2;炮眼深度为0.9m以上时,装药长度不得大于炮眼深度的2/3。

3)所有炮眼的剩余部分应用炮泥封堵。

4)炮泥应用水泡泥和黏土炮泥。

水泡泥外剩余部分应用黏土炮泥填满封实。

炮泥由专制炮泥机生产。

5)严禁用煤粉、块状材料或其它可燃性材料作炮泥。

5、爆破网路和连线1)必须采用串联联接方式。

线路所有连接接头应相互拧紧,明线部分应包覆绝缘层并悬空。

2)母线与电缆、电线、信号线应分别挂在巷道的两侧,若必须在同一侧时,母线必须挂在电缆下方,并应保持0.3m以上距离。

3)母线应采用具有良好绝缘性和柔软性的铜芯电缆,并随用随挂,严禁将其固定。

母线的长度必须大于规定的爆破安全距离。

4)严禁瞬发电雷管与毫秒电雷管在同一串联网路中使用。

6、爆破材料1)瓦斯隧道的爆破作业必须采用煤矿许用炸药,有瓦斯突出地段安全等级不低于三级的煤矿许用的含水炸药;2)使用煤矿许用电雷管,严禁使用秒及半秒级电雷管。

使用煤矿许用毫秒延期电雷管时,最后一段的延期时间不得大于130ms;7、起爆1)采用电力起爆,起爆器采用防爆型专用起爆器,在洞外远距离起爆,起爆器电缆长度不小于510m 。

相关文档
最新文档