常用气体探测用激光器的波长和常用激光器的主要参数
激光器的基本参数和基础知识

激光器的基本参数和基础知识世界上第一台激光器出现于1960年,如今在许多领域中离不开激光器的应用,特别是生产、科研、医疗等这些领域。
在不同的应用中所使用的激光器是不同的,所以我们需要了解激光器的参数,它直接决定了使用者对激光光源的选择。
本文章整理了常规激光器的一些参数定义并做简单说明,希望能帮助大家能够找到合适的激光产品。
一、输出功率(激光功率)激光器发出的光是以光能的形成出现,与电能一样,光能也是一种能源。
与发电机的输出功率类似,激光器的输出功率也是一个度量单位时间内输出激光能量的物理量,常见的单位毫瓦(mW)、瓦(W)、千瓦(kW)。
二、功率稳定性功率稳定性表征的是激光输出功率在一定时间内的不稳定度,一般分为RMS稳定性和峰峰值稳定性。
RMS稳定性:测试时间内所有采样功率值的均方根与功率平均值的比值,描述输出功率偏离功率平均值的分散程度。
峰峰值稳定性:输出功率的最大值和最小值之差与功率平均值的百分比,表示的是一定时间内的输出功率的变化范围。
三、光束质量因子(M²因子);光束参数积(BPP)光束质量因子定义是激光束腰半径和光束远场发散角的乘积与理想基模光束束腰半径和基模发散角乘积的比值,即M2=θw/θ理想w理想。
光束质量会影响到激光的聚焦效果以及远场的光斑分布情况,是用来表征激光光束质量的参数,实际激光光束质量因子越接近1,横模的定义是垂直于激光传播方向上某一横截面上的稳定场的分布,激光器的光斑表征就是横模分布,通过光斑分析仪或激光轮廓分析仪可以将横模分布模拟出来,得到激光器的一些光束特征。
常见的横模模式有基横模(TEM),TEM,TEM等,还有图1所示的其他模式,其中TEM模指的是在x方向的截面上有一点光强为0,TEM模指的是在x 和y方向截面均有一点光强为0。
刀口法:对于测量高功率激光器的激光光束直径是一种比较理想的方法。
取待测激光透过刀口边缘光功率占总功率10%的刀口位置坐标为x,取待测激光透过刀口边缘光功率占总功率90%的刀口位置坐标为x,可以测得激光光束直径=1.561×|x-x|(其中1.561是拟合值)。
co2激光器光谱

co2激光器光谱CO2激光器(二氧化碳激光器)是一种使用二氧化碳分子产生激光的气体激光器。
它具有广泛的应用领域,包括医疗、工业、科研等。
CO2激光器的工作原理是通过电子激发二氧化碳分子,使其跃迁到激发态并发射光子,从而产生激光。
CO2激光器的光谱特性是其特有的光子发射光谱。
该光谱主要由二氧化碳分子的谱线组成,具有几个特征峰。
在一般的CO2激光器中,常用的工作波长是10.6微米。
CO2激光器在这个波长范围内具有很高的功率输出和较好的光束质量,因此成为常用的工业激光器。
CO2激光器的光谱特性与二氧化碳分子的能级结构有关。
二氧化碳分子由一个碳原子和两个氧原子组成,其中碳原子与两个氧原子形成两个双键,其中一个是弱双键,另一个是强双键。
当CO2分子被电子激发时,激发态电子与CO2分子之间发生碰撞。
碰撞使激发态电子跃迁至高能级,产生激光辐射。
CO2激光器的光谱可以分为两个主要部分:热光和激射光。
热光是由CO2分子高能态自发跃迁到低能态时产生的,其波长分布在9.4至11.7微米之间,峰值波长为10.6微米。
热光通常具有较强的辐射强度,但光束质量较差。
激射光是通过反向性跃迁和产生受激辐射而产生的,并具有更窄的光谱线宽和更高的光束质量。
CO2激光器的光谱特性对其应用具有重要意义。
在医疗领域,CO2激光器可用于手术切割、切割和焊接,其波长与组织的吸收特性相匹配,因此具有较高的手术精度和效果。
在工业和制造领域,CO2激光器主要用于材料加工,如切割、打孔和焊接。
其高功率和较强的穿透力使其能够处理各种材料,并具有高效率和精确性。
在科学研究领域,CO2激光器可以用于大气研究、光谱分析等,其波长范围广泛,能够覆盖多种分子光谱。
总之,CO2激光器的光谱特性主要由二氧化碳分子的能级结构决定,其光谱包含热光和激射光。
这些光谱特性使CO2激光器在医疗、工业和科研等领域具有广泛的应用前景。
随着科技的发展,相信CO2激光器在未来将会有更多的应用和突破。
激光器的种类及性能参数总结

激光器的种类及性能参数总结半导体激光器——用半导体材料作为工作物质的一类激光器中文名称:半导体激光器英文名称:semiconductor laser定义1:用一定的半导体材料作为工作物质来产生激光的器件。
所属学科:测绘学(一级学科);测绘仪器(二级学科)定义2:以半导体材料为工作物质的激光器。
所属学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科)定义3:一种利用半导体材料PN结制造的激光器。
所属学科:通信科技(一级学科);光纤传输与接入(二级学科)半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。
(1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。
(2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。
(3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。
(4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15˚~40˚左右。
(5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6˚~ 10˚左右。
(6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。
工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。
一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。
准分子激光器——以准分子为工作物质的一类气体激光器件。
中文名称:准分子激光器英文名称:excimer laser定义:以准分子为工作物质的激光器。
所属学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科)在医学领域中使用的激光器种类非常多,常用于眼科治疗的主要有红宝石(rudy)激光、氩离子(Ar+)激光、氪离子(Kr+)、染料(dye)激光、掺钕钇铝石榴石(Nd:Y AG)激光和氟化氩(ArF)准分子激光等固体、气体和液体的激光器,用连续的、脉冲的和调Q的方式,治疗眼底部色素膜和屈光间质等部位的数十种有关眼部疾病。
激光波长的测量数据

激光波长的测量数据
对于激光波长的测量数据,通常以纳米(nm)为单位。
激光波长的测量数据可以通过一些仪器来测量,例如激光干涉仪、分光仪等。
以下是一些激光波长的测量数据示例:
1. 红光激光器的波长通常在600-700nm之间,常见的波长有630nm和650nm。
2. 绿光激光器的波长通常在500-570nm之间,常见的波长有532nm。
3. 蓝光激光器的波长通常在400-480nm之间,常见的波长有405nm和450nm。
需要注意的是,在实际测量中,激光波长可能会有一定的波动和偏移。
测量激光波长时,可以通过将激光束与参考光束进行干涉来获得较高的测量精度。
各功率激光的特点

常见激光技术总结目前常见的激光器按工作介质分气体激光器、固体激光器、半导体激光器、光纤激光器和染料激光器5大类,近来还发展了自由电子激光器。
大功率激光器通常都脉冲方式输出已获得较大的峰值功率。
单脉冲激光指的是几分钟才输出一个脉冲的激光,重频激光指的是每分钟输出几次到每秒输出数百次甚至更高的激光。
一、气体激光器1.He-Ne激光器:典型的惰性气体原子激光器,输出连续光,谱线有632.8nm(最常用),1015nm,3390nm,近来又向短波延伸。
这种激光器输出地功率最大能达到1W,但光束质量很好,主要用于精密测量,检测,准直,导向,水中照明,信息处理,医疗及光学研究等方面。
2.Ar离子激光器:典型的惰性气体离子激光器,是利用气体放电试管内氩原子电离并激发,在离子激发态能级间实现粒子数反转而产生激光。
它发射的激光谱线在可见光和紫外区域,在可见光区它是输出连续功率最高的器件,商品化的最高也达30-50W。
它的能量转换率最高可达0.6%,频率稳定度在3E-11,寿命超过1000h,光谱在蓝绿波段(488/514.5),功率大,主要用于拉曼光谱、泵浦染料激光、全息、非线性光学等研究领域以及医疗诊断、打印分色、计量测定材料加工及信息处理等方面。
3.CO2激光器:波长为9~12um(典型波长10.6um)的CO2激光器因其效率高,光束质量好,功率范围大(几瓦之几万瓦),既能连续又能脉冲等多优点成为气体激光器中最重要的,用途最广泛的一种激光器。
主要用于材料加工,科学研究,检测国防等方面。
常用形式有:封离型纵向电激励二氧化碳激光器、TEA二氧化碳激光器、轴快流高功率二氧化碳激光器、横流高功率二氧化碳激光器。
4.N2分子激光器:气体激光器,输出紫外光,峰值功率可达数十兆瓦,脉宽小于10ns,重复频率为数十至数千赫,作可调谐燃料激光器的泵浦源,也可用于荧光分析,检测污染等方面。
5.准分子激光器:以准分子为工作物质的一类气体激光器件。
气体激光器主要参数测试方法

气体激光器主要参数测试方法气体激光器是一种利用气体放电产生的激光器,广泛应用于科研、医疗、工业等领域。
为了保证气体激光器的稳定性和工作效果,需要对其主要参数进行测试。
本文将介绍气体激光器主要参数的测试方法。
1. 激光波长测试激光波长是气体激光器的重要参数之一,通常使用波长计进行测量。
首先需要将波长计与气体激光器连接,然后调节波长计的曝光时间和灵敏度,使其能够正确测量激光波长。
最后,通过读取波长计的显示值,可以得到气体激光器的激光波长。
2. 激光功率测试激光功率是气体激光器的输出能量,也是评估其工作效果的重要指标。
通常使用功率计进行测量。
首先需要将功率计与气体激光器连接,然后将激光束引导到功率计的接收端口。
最后,通过读取功率计的显示值,可以得到气体激光器的激光功率。
3. 激光束直径测试激光束直径是气体激光器输出光束的直径,也是评估其激光束质量的重要参数之一。
通常使用光束质量测试仪进行测量。
首先需要将测试仪与气体激光器连接,然后将激光束引导到测试仪的接收端口。
最后,通过读取测试仪的显示值,可以得到气体激光器的激光束直径。
4. 激光脉冲重复频率测试激光脉冲重复频率是气体激光器输出脉冲信号的频率,也是评估其工作效果的重要参数之一。
通常使用频率计进行测量。
首先需要将频率计与气体激光器连接,然后将激光脉冲信号引导到频率计的接收端口。
最后,通过读取频率计的显示值,可以得到气体激光器的脉冲重复频率。
总之,以上就是气体激光器主要参数测试的方法,通过对这些参数的准确测量,可以保证气体激光器的高效、稳定运行。
各种激光器的原理及应用
各种激光器的原理及应用1. 激光器的基本原理激光器(Laser)是一种利用受激辐射原理产生高度聚焦、单色、相干光的光源。
其基本原理主要包括:•受激辐射:当介质中的原子或分子处于激发态时,如果受到外界射入的同样频率的光子激发,将发生受激辐射现象。
此时,受激辐射的光子与外界注入的光子具有相同频率、相同相位和相同方向,形成相干光。
•光放大:经过受激辐射形成的相干光在光学谐振腔中反复多次反射,不断被吸收和放大,最终产生高度聚焦、高强度的光束。
•波长选择:激光器的工作波长是由谐振腔内的光学元件(如半导体、液体、气体等)的性质决定的。
2. 类别及应用2.1 气体激光器气体激光器是一种以气体为活性介质的激光器,主要包括:•氦氖激光器:工作波长为632.8纳米,常用于医学、测量、显示等领域。
•二氧化碳激光器:工作波长为10.6微米,主要应用于工业加工、医学手术、激光打印等领域。
2.2 固体激光器固体激光器是一种以固体为活性介质的激光器,主要包括:•Nd:YAG激光器:工作波长为1064纳米,被广泛应用于通信、材料加工、医学等领域。
•钛宝石激光器:工作波长为700至1100纳米,常用于生物医学、化学分析和科学研究等领域。
2.3 半导体激光器半导体激光器是一种以半导体材料为活性介质的激光器,主要包括:•二极管激光器:工作波长范围广泛,从不可见光到近红外光均可实现,广泛应用于通信、显示、雷达、光存储等领域。
•垂直尺寸结构激光器(VCSEL):具有低功耗、小尺寸、高速传输等特点,被广泛用于光通信、生物测量、光传感等领域。
2.4 光纤激光器光纤激光器是一种将活性介质置于光纤内部的激光器,主要包括:•光纤光栅激光器:利用光纤光栅将激光器束聚焦到光纤芯心处,广泛应用于光纤通信、光纤传感、激光雷达等领域。
•偏振保持光纤激光器:通过特殊设计的光纤结构使激光器输出光的偏振状态得到保持,用于光通信、光测量等领域。
3. 总结不同种类的激光器原理和应用不同,合理选择激光器种类对于进行特定的实验或工作具有重要意义。
激光大气传输相关参数
激光大气传输相关参数
激光大气传输是指在大气环境中利用激光进行信息传输,其传输距离可达几百公里。
在激光大气传输过程中,相关参数的选择和调整对传输质量和传输距离都有着至关重要的作用。
下面,我们将围绕“激光大气传输相关参数”展开阐述。
一、激光功率
激光功率是指激光通过单位面积所携带的能量。
在选择激光功率时,需要考虑传输的距离、传输介质的吸收特性以及接收器的敏感程度等因素。
一般而言,传输距离越远、介质的吸收特性越强、接收器的敏感程度越低,则需要选择更大的激光功率。
二、激光波长
激光波长是指激光在介质中波长的选择。
在大气传输领域中,选择适当的激光波长对于降低散射和吸收有着重要的作用。
一般而言,选择1-1.6微米的近红外激光波长效果最佳。
三、激光脉冲宽度
激光脉冲宽度是指激光脉冲信号的持续时间。
在激光大气传输中,需要选择适当的脉冲宽度,以达到最佳传输效果。
一般而言,选择10-15纳秒的脉冲宽度是比较合适的。
四、大气透过率
大气透过率是指大气对于激光传输的透过率。
在激光大气传输中,需要针对大气透过率进行一定的计算和分析,以提高传输质量和传输距离。
五、激光束发散角度
激光束发散角度是指激光束在传输过程中的扩散程度。
该角度对于激光传输距离的影响较大。
在设计激光大气传输系统时,需要考虑激光束的发散角度,以计算传输的最大距离。
以上是关于“激光大气传输相关参数”的一些阐述。
在实际应用中,需要对这些参数进行仔细的分析和优化,以达到最佳传输效果。
医学中常用的激光器
医学中常用的激光器自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。
目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。
人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。
激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。
由于激光的物理特性决定了其具有明显的生物学效应,。
各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。
一.气体激光器气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。
氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。
原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。
(2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。
分子激光器以二氧化碳(CO2)激光器为代表,其他还有氢分子(H2),氮分子(N2)和一氧化碳(CO)分子等激光器。
分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。
(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。
氦镉激光器(激活介质为Cd+)等。
离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。
气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。
其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。
1、氦氖激光器氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。
它的光束质量很好(发散角小,单色性好,单色亮度大)。
激光器结构简单,成本低,但输出功率较小。
二氧化碳激光治疗仪技术参数
二氧化碳激光治疗仪技术参数
二氧化碳激光治疗仪技术参数
激光工作物质:二氧化碳激光器;波长:10600nm。
*2输出功率:≥30W可调步长0.1W
*3、脉冲功率:≥8W,可调步长0.1W
*4、激光工作方式:脉冲和连续两种方式
*5、激光脉冲方式:100-400us
6、聚焦光斑直径:0.1-0.4mm
7、传输方式:七关节导光臂
8、聚焦手柄:50mm和100mm
9、光斑直径:0.1mm/0.4mm
10、点阵单脉冲能量:1.0-99mJ
11、最大尺寸:15×15mm
*12、剥脱深度:15-3000um,需具备气化剥脱深度显示
12、系统冷却方式:内置空气冷却系统。
13、清洁系统:循环水自净系统
14、激光器要求:玻璃管激光器,使用寿命大于3年,置换价格小于10000元
主要用途::去除皱纹,紧致肤质,改善凹陷性疤痕和毛孔粗大去除色斑解决光老化问题及表皮赘生物
第2页。