近世代数课后习题详细答案5

合集下载

近世代数(吴品三)习题解答第五章 群的进一步讨论

近世代数(吴品三)习题解答第五章  群的进一步讨论

(2) H1 ={ e , a , b , ab }是 G 的一个子群, C3 ={ e , c , c2 }是 G 的一个正规子
群.并有关系 ac = ca , bc = c2b .首先,我们减少生成元素的个数.命 x = ac ,因 a 的周
期为 2, c 的周期为 3,而 ac = ca ,故 x 的周期为 6.因为 a = a 3c3 = x 3 , c = a 4c4 = x 4 , 所 以 G 由 x 和 b 生 成 . 因 为 x b x= (ac)b(ac) = ac(ba)c = ac(ab)c = a(ac)bc
= a 2cbc = c(bc) = c(c2b) = b , 所 以 存 在 关 系 bx = x5b . 反 过 来 , 用
·143·
第五章 群的进一步讨论
x6 = e , b2 = e , bx = x5b , 命 x3 = a , x4 = c , 可 以 推 出 原 来 的 全 部 关 系 , 即
a 2 = e , b2 = e , c 3 = e , ab = ba , ac = ca , bc = c2b .因此,这两组关系等价.我们可以
得到乘法表如下(见表二): e x x2 x3 x4 x5 b xb x2b x3b x4b x5b
e e x x2 x3 x4 x5 b xb x2b x3b x4b x5b x x x2 x3 x4 x5 e xb x2b x3b x4b x5b b x2 x2 x3 x4 x5 e x x2b x3b x4b x5b b xb x3 x3 x4 x5 e x x2 x3b x4b x5b b xb x2b x4 x4 x5 e x x2 x3 x4b x5b b xb x2b x3b x5 x5 e x x2 x3 x4 x5b b xb x2b x3b x4b b b x5b x4b x3b x2b xb e x5 x4 x3 x2 x xb xb b x5b x4b x3b x2b x e x5 x4 x3 x2 x2b x2b xb b x5b x4b x3b x2 x e x5 x4 x3 x3b x3b x2b xb b x5b x4b x3 x2 x e x5 x4 x4b x4b x3b x2b xb b x5b x4 x3 x2 x e x5 x5b x5b x4b x3b x2b xb b x5 x4 x3 xa3 ca 3 c2a3 e c c2 a ca c2a

近世代数课后题答案修改版

近世代数课后题答案修改版
a1=56/8=7, b1=88/8=11, m1=96/8=12. 用辗转相除法求 p,q 满足 p a1+q m1=1,得 p=-5。 所 以 方 程 的 解 为 x ≡ pb1 (mod m1) ≡ -5 × 11(mod12) ≡ 5(mod12)。 或 x=5+12k(k 为任意整数)。 6. 解同余方程组: x≡3(mod5) x≡7(mod9) 解 按解同余方程组的三个步骤: 首先,计算 M=5×9=45, M1=9, M2=5. 其次,解两个一次同余式,由于这两个同余式有其特殊性:右端 都是 1,且(a,m)=1。因而 有时可用观察法得到 pa+qm=1,从而得到 p。 1) 9x≡1(mod5), 观察得到 -9+2×5=1, p=-1. 所以此一次同余式的一个特解为 c=-1≡4(mod5). 2)5x≡1(mod9), 观察得到 2×5-9=1, p=2. 所以此一次同余式的一个特解为 c=2(mod9). 最后,将得到的一次同余式的一个特解代入公式,得到同余方程 组的解: x=b1c1M1+b2c2M2=3×4×9+2×7×5(mod45)=43(mod45)。 7. 5 行多 1,6 行多 5,7 行多 4,11 行多 10,求兵数。
(2)在乘法表中任取一个 1,在同一列中必有一个 x,在同一行 中必有一个 y,设第四个顶点的元素为 z,见下图,
�
..........a-1.........................c...................
......
...........................................................
......

近世代数_杨子胥_第二版课后习题答案(最新发行版)

近世代数_杨子胥_第二版课后习题答案(最新发行版)

近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 2 2.3.近世代数题解§1. 31. 解 1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是M中n个元素可重复的全排列数n n.3. 解例如A B=E与A B=AB—A—B.4.5.近世代数题解§1. 41.2.3.解 1)略 2)例如规定4.5.略近世代数题解§1. 51. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解 3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证 1)略2)7.8.9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群⇔方程a x=b与y a=b在G中有解(∀a ,b∈G).4)有限半群作成群⇔两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(∀a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是简言之,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对G中任意元素a,在G中都存在元素1-a,对G中任意元素b都有1-a(ab)=(ba)1-a=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4.5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.周期群、无扭群与混合群的定义及例子.特别,有限群必为周期群,但反之不成立.2.在群中若a=n,则4.若G是交换群,又G中元素有最大阶m,则G中每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶a与b决定阶ab,这就是教材中朗定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数加群),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限周期群),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即周期群、无扭群与混合群.而在周期群中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的周期群)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3 子群一、主要内容1.子群的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的子群.4.群的中心元和中心的定义.二、释疑解难1.关于真子群的定义.教材把非平凡的子群叫做真子群.也有的书把非G的于群叫做群G的真子群.不同的定义在讨论子群时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且H⊆G,那么能不能说H就是G的子群?答:不能.因为子群必须是对原群的代数运算作成的群.例如,设G是有理数加群,而H 是正有理数乘群,二者都是群,且H⊆G但是不能说H是G的子群.答:不能这样认为.举例如下. 例2 设G 是四元数群.则显然 是G 的两个子群且易知反之亦然.三、习题2.3解答 1.证 赂.2.证 必要性显然,下证充分性.设子集H 对群G 的乘法封闭,则对H 中任意元素a 和任意正整数m 都有a m ∈H . 由于H 中每个元素的阶都有限,设a =n ,则3.对非交换群一放不成立.例如,有理数域Q 上全体2阶可逆方阵作成的乘群中,易知⎪⎪⎭⎫ ⎝⎛-=1021a , ⎪⎪⎭⎫⎝⎛-=1031b的阶有限,都是2,但易知其乘积⎪⎪⎭⎫ ⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成子群.4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证. 5.证 因为(m ,n )=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4 循 环 群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和生成元的状况.3.循环群在同构意义下只有两类:整数加群和n 次单位根乘群,其中n =1,2,3,…. 4.循环群的子群的状况.无限循环群有无限多个子群.n 阶循环群a 有T (n )(n 的正出数个数)个子群,且对n 的每个正因数k ,a 有且仅有一个k 阶子群kn a.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面: 1)循环群的元素表示形式和运算方法完全确定.其生成元的状况也完全清楚(无限循环群有两个生成元,n 阶循环群a 有)(n ϕ个生成元而且a k 是生成元⇔(k n )=1);2)循环群的子群的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数加群同构;另一类是n (n =1,2,…)阶循环群,都与n 次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具. 三、习题§2. 4解答 1.2.3.4.5.6.7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群⇔G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且连M的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M上的全体变换作成的集合T(M),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当M>1时T(M)只能作成半群,而不能作成群.三、习题§2. 5解答1. 解作成有单位元半群,τ是单位元.但不作成群,因为σ无逆元.2.3. 解G作成群:因为易知4.5.§2. 6 置 换 群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n 次置换中奇、偶置换个数相等,各为2!n 个(n >1).2.k —循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k —循环与A 有相反奇偶性.2)k —循环的阶为k .又(i 1,i 2…i k )-1=(i k ,…,i 2,i 1 ).3)若σ分解为不相连循环之积.则其分解中奇循环个数为奇时σ为奇置换,否则σ为偶置换.σ的阶为各因子的阶的最小公倍.其逆元可由k —循环的逆元来确定. 3.由置换σ,τ求置换στσ-1的方法.n 次对称群s n 的中心. 4.传递群的定义、例子和简单性质. 二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的子群也是一般抽象群所没有的.例如,交代群、传递群、稳定子群和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性. 首先,书写大为简化,便于运算。

【大学课程】近世代数教材习题答案

【大学课程】近世代数教材习题答案

§1.1 集合1、 设A B ⊆ ,证明:A B A = ,A B B = .证明:由A B ⊆,可知A 的所有元素都属于B ,既A 的所有元素,都是A 和B 的共同元, 则由交集定义可知 A A B ⊆ . 又A B A ⊆ ,所以A B A = .由并集定义知,A B 的所有元素,都属于A 或B ; 又A B ⊆,所以A B 的所有元素都属于B ,即A B B ⊆. 又B A B ⊆,故A B B =2、 设B ,()i A i I ∈ 均为集合Ω 的子集,试证:()1 ()i i i I i I B A B A ∈∈⎛⎫=⎪⎝⎭ ()2 ()i i i I i IBA B A ∈∈⎛⎫=⎪⎝⎭ 证明:()1 由定义i i Ix B A ∈⎛⎫∈⎪⎝⎭当且仅当x B ∈且x 属于某一i A ;当且仅当x 属于某一i B A ;当且仅当()i i Ix B A ∈∈.()2 由定义i i I x BA ∈⎛⎫∈⎪⎝⎭当且仅当x 属于B ,或x 属于任一i A ,i I ∈;当且仅当x 属于任一i B A ,i I ∈;当且仅当()i i Ix B A ∈∈.§1.2 等价关系1、设为整数集,问以下各关系是否为M 的等价关系?1)0aRb ab ⇔≥ 2)4aRb a b ⇔+ 3)aRb a b ⇔= 4)220aRb a b ⇔+≥ 解:1)不是,因为不满足传递性2)不是,不满足反身性和传递性 3)是 4)是2、试指出上题中等价关系所决定的分类.解:3)每个元素是一个类 4)整个整数集作成一个类 3、找出下列证明中的错误:若S 的关系R 有对称性和传递性,则必有反身性.这是因为,对任意的a S ∈ ,由对称性,如果aRb ,则bRa .再由传递性,得aRa ,所以R 有反身性.解:以上证明过程中只考虑了当aRb 成立的情况,但是当对于元素a ,不存在b 使aRb 成立时,aRa 就不能得到.4、在复数集中,规定关系"" :a b a b ⇔=. (1)证明:是的一个等价关系;(2)试确定相应的商集,并给出每个等价类的一个代表元素.(1)证明:设a ,b ,c ∈ ,则()a 因为aa =,所以a a ,于是 是有反身性;()b 若ab ,则a b =,于是b a =,从而b a ,说明是具有对称性;()c 若ab ,bc ,则a b =,b c =,于是a c =,从而a c ,从而具有传递性.所以是的一个等价关系.(2)解:相应的商集[]{}0r r R r =∈≥且,其中[]{}()[]{}cos sin 0,2r x x r r i θθθπ=∈==+∈对任意的c ∈ ,等价是[]c :代表元素可取作c .§1.31、{}1,2,,100S = ,找一个A A ⨯到A 的映射.解:设(),a b 表示A A ⨯的任意元素,,a b A ∈ ,则作映射:f A A A ⨯→ ,()(),f a b b = .f 是一个A A ⨯到A 的映射.2、设A ,B 是两个有限集合,则(1)A 到B 的不同映射共有多少?(2)A 到B 的单射共有多少个?解:(1)设A n = , B m =,则A 到B 的映射有n m 个 (2)设A n = , B m =,若n >m ,则A 到B 没有单射; 若n m ≤,则A 到B 有()!!m m n - 个单射. 3、设x 是数域F 上全体n (n >1)阶方阵作成的集合.问::A A ϕ→是否为x 到F 的一个映射?其中A 为A 的行列式,是否为满射或单射?解:ϕ 是映射,且是满射,但不是单射4、设:f A B →为双射,则f 的逆映射1:f B A -→也是一个双射且()11f f --=.证明:设()() ,f x y x A y B =∈∈ ,则1:f y x -→,即()1f y x -=, 因f 是A B →的双射, 所以1f -是B 到A 的双射, 且1f -的逆映射就是f ,即()11ff --=.5、设:f A B →,:g B C →为两个双射到:g f A C → 也是双射且()111g f f g ---= .证明:()()11111B C g f f g g g ---⋅⋅==,()()111111B A fg gf f f ----==,故g f 也是双射,且()111gf f g ---= .§1.41、设A 是一个有限集合,则A 上不同的二元运算共有多少个?解:设A n = ,则2A A n ⨯= ,故A A ⨯到A 有2n n 个不同的映射. 即A 上有2n n 个不同的二元运算.2、{},,A a b c = ,规定A 的两个不同的代数运算.解:()a 第一个代数运算() , ,R x y a xRy x y A →=∀∈ ()b 第二个代数运算() , ,R x y y xRy x y A →=∀∈3、设M 为整数集,问()22 ,a b a b a b M =+∀∈是否满足结合律和交换律.解:交换律满足,但结合律不满足.例如()1104=,()1102= 4、设M 为实数集,问:23a b a b =+ (),a b M ∀∈是否满足结合律和交换律.解:都不满足.例()1004=,()1002=,故()()100100≠,又102=,013=,故1001≠.5、数域F 上全体非零多项式的集合对于()()()()(),f x g x f x g x =是否满足结合律和交换律?其中()()(),f x g x 表示()f x 与()g x 的首项函数为1的最大公因式.解:显然是代数运算且满足交换律.又结合律也满足,因为根据最大公因式的性质知:())()(()()(),,,,f g h f g h f g h f g h ===§2.11、有限群中每个元素的阶都是有限的。

近世代数习题解答5

近世代数习题解答5

近世代数习题解答5近世代数习题解答第五章扩域1 扩域、素域1. 证明:)(S F 的⼀切添加S 的有限⼦集于F 所得的⼦域的并集是⼀个域.证⼀切添加S 的有限⼦集于F 所得的⼦域的并集为∑ 1)若 ∑∈b a , 则⼀定有),,(2,1n F a ααα∈),,(2,1m F b βββ∈易知m n F b a βββααα,,,,,,(2121 ∈-但∑?),,,,,,(2121m n F βββααα从⽽∑∈-a b2)若,,∑∈b a 且0≠b 则 ),,,(21m F b βββ∈-从⽽有∑?∈-),,,,,,(21211m n F ab βββααα2单扩域1.令E 是域F 的⼀个扩域,⽽F a ∈证明 a 是F 上的⼀个代数元,并且证因0=-a a 故a 是F 上的代数元.其次,因F a ∈,故F a F ?)(易见F a F ?)(,从⽽F a F =)(2.令F 是有理数域.复数i 和112-+i i 在F 上的极⼩多项式各是什么? )(i F 与)112(-+i i F 是否同构?证易知复数i 在F 上的极⼩多项式为11 2,12-++i i x在F 上的极⼩多项式为252+-x x 因)112()(-+=i i F i F 故这两个域是同构的.3.详细证明,定理3中a 在域F 上的极⼩多项式是)(x p证令?是)(x F 中的所有适合条件0)(=a f 的多项式作成)(x f 的集合.1) ?是)(x F 的⼀个理想(ⅰ)若 ?∈)(),(x g x f 则0)(,0)(==a g a f因⽽0)()(=-a g a f 故??-)()(x g x fⅱ)若)(,)(x h x f ?∈是)(x F 的任⼀元那么0)()(=a f a h 则?∈)()(x f x h2)是⼀个主理想设 )(1x p 是?中a !的极⼩多项式那么,对?中任⼀)(x f 有)()()()(1x r x q x p x f +=这⾥0)(=x r 或r(x)的次数但)()()()(1x R a q a p a f +=因 )(,0)(1a p a f =0= 所以0)(=a r若 0)(≠x r 则与x p 1是a 的极⼩多项式⽭盾.故有 )()()(1x q x p x f = 因⽽)((1x p =?(3)因 p(a)=0 故p(x)?∈)()(1x p x P 因⼆者均不可约,所以有)()(1x ap x p =⼜)(),(1x p x p 的最⾼系数皆为1那么1=a这样就是)()(1x P x p =4.证明:定理3中的K a F =)(证设,K f ∈,则在定理3的证明中,'K K ?之下有.a x a x a f n n nn +++→------ 11但 ,x a → -→11a a 故必011a a a f n n n n ++=--αα这就是说)(αF k ? 因⽽K a F =)(3代数扩域1.令E 是域F 的⼀个代数扩域,⽽α是E 上的⼀个代数元,证明α是E 上的⼀个代数元证因为α是F 上的代数元所以n n e e e αα+++ 10⼜因为E 是F 的代数扩域,从⽽),,(10n e e e F 是F 的代数扩域,再有α是),,(10n e e e F 上的代数元,故),,(10n e e e F ()(αn n e e e e F ,,,,(110- )的有限扩域,由本节定理1,知 ),,,,,(110αn n e e e e F -是F 的有限扩域,因⽽是F 的代数扩域,从⽽a 是F 上的⼀个代数元.2.令F ,E 和L 是三个域,并且,假定⽽E 的元α在F 上的次数表⽰E L F ??,并且1),(=n m证明α在I 上的次数也是1证设r I I =:)((α因为 F I I ??)(α由本节定理1 rm F a I =):)(( 另⼀⽅⾯,因为F I F F :)(():)((αα仍由本节定理!!即有rm n但由题设知 1),(=n m 故 r n⼜α在I 上的次数是r ,因⽽其在I 上的极⼩多项式的次数是1α在I 上的次数是n ,因⽽其在F 上的极⼩多项式的次数是n 由于α在上的极⼩多项式能整除α在F 上的极⼩多项式所以n r ≤因⽽n r =3.令域!的特征不是2,E 是F 的扩域,并且4):(=F E证明存在⼀个满⾜条件E I F ??的E 的⼆次扩域F 的充分与必要条是:4):(=F E ,⽽α在F 上的极⼩多项式是b ax x ++24证充分性:由于α在F 上的极⼩多项式为b ax x ++24故F a ?2及)(22αF a ?因⽽1):)((2≠F a F 由本节定理1知:所以 2):)((2=F a F 这就是说,)(a F 是⼀个满⾜条件的的⼆次扩域必要性:由于存在I 满⾜条件E I F ??且为F 的⼆次扩域即2):1(=F 因此可得(2)1:(=E我们容易证明,当F 的特征不是2时,且则⽽!在!上的极⼩多项式是!同样 )(a I E =⽽β在f x -2上的极⼩多项式是这样 ,,2F f f ∈=βI i i ∈=,2α那么ββ22212122f f f f i ++=所以24i =α22221212ββf f f f ++=222212122ββf f f f ++=令12f a -= f f f b 2221-=同时可知b a ,均属于F 024=++∴b a αα由此容易得到0(a F E =4.令E 是域F 的⼀个有限扩域,那么总存在E 的有限个元m ααα ,,21使),,(21m F E ααα =证因为E 是F 的⼀个有限扩域,那么把E 看成F 上是向量空间时,则有⼀个基n ααα ,,21显然这时),,(21m F E ααα =5.令F 是有理数域,看添加复数于F 所得扩域")2,2(31311i F E = )2,2(31312wi F E = 证明6):(,2)2((131==F E F证易知!在!上的极⼩多项式是!即(3:)2(32=F F 同样312上的极⼩多项式是322324222?+-x x 即4))2((31;2=F E由此可得(12):(,6):(21==F F F E4多项式的分裂域1.证明:有理数域F 上多项式14+x 的分裂域是⼀个单扩域)(a F 其中a 是14+x 的⼀个根证 14+x 的4个根为2222,2222,2222,22223210i a i a ia i a --=+-=-=+=⼜a a a a a a -=-==--31211,;所以)(),,,(321a F a a a a F =2.令F 是有理数域,a x -3是F 上⼀个不可约多项式,⽽a 是a x -3 的⼀个根,证明)(a F 不是a x -3在F 上的分裂域.证由于a 是a x -3的⼀个根,则另外两个根是2,εεa a ,这⾥ε,2ε是12++x x 的根若)(a F 是a x -3的在H 上的分裂域那么)(,2a F a a ∈εε这样,就是)()(a F F F ??ε由3。

近世代数习题解答

近世代数习题解答

近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 2 2.3.近世代数题解§1. 31. 解1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是M中n个元素可重复的全排列数n n.3. 解例如A B=E与A B=AB—A—B.4.5.近世代数题解§1. 41.2.3.解1)略2)例如规定4.5.略近世代数题解§1. 51. 解1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证1)略2)7.8.9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群⇔方程a x=b与y a=b在G中有解(∀a ,b∈G).4)有限半群作成群⇔两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(∀a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是简言之,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对G中任意元素a,在G中都存在元素1-a,对G中任意元素b都有1-a(ab)=(ba)1-a=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4.5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.周期群、无扭群与混合群的定义及例子.特别,有限群必为周期群,但反之不成立.2.在群中若a=n,则4.若G是交换群,又G中元素有最大阶m,则G中每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶a与b决定阶ab,这就是教材中朗定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数加群),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限周期群),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即周期群、无扭群与混合群.而在周期群中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的周期群)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3 子群一、主要内容1.子群的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的子群.4.群的中心元和中心的定义.二、释疑解难1.关于真子群的定义.教材把非平凡的子群叫做真子群.也有的书把非G的于群叫做群G的真子群.不同的定义在讨论子群时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且H⊆G,那么能不能说H就是G的子群?答:不能.因为子群必须是对原群的代数运算作成的群.例如,设G是有理数加群,而H 是正有理数乘群,二者都是群,且H⊆G但是不能说H是G的子群.答:不能这样认为.举例如下.例2设G是四元数群.则显然是G的两个子群且易知反之亦然.三、习题2.3解答1.证赂.2.证必要性显然,下证充分性.设子集H对群G的乘法封闭,则对H中任意元素a和任意正整数m都有a m∈H.由于H 中每个元素的阶都有限,设a =n ,则3.对非交换群一放不成立.例如,有理数域Q 上全体2阶可逆方阵作成的乘群中,易知⎪⎪⎭⎫ ⎝⎛-=1021a , ⎪⎪⎭⎫⎝⎛-=1031b的阶有限,都是2,但易知其乘积⎪⎪⎭⎫⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成子群.4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证. 5.证 因为(m ,n )=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4 循 环 群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和生成元的状况.3.循环群在同构意义下只有两类:整数加群和n 次单位根乘群,其中n =1,2,3,…. 4.循环群的子群的状况.无限循环群有无限多个子群.n 阶循环群a 有T (n )(n 的正出数个数)个子群,且对n 的每个正因数k ,a 有且仅有一个k 阶子群kn a.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面:1)循环群的元素表示形式和运算方法完全确定.其生成元的状况也完全清楚(无限循环群有ϕ个生成元而且a k是生成元⇔(k n)=1);两个生成元,n阶循环群a有)(n2)循环群的子群的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数加群同构;另一类是n(n =1,2,…)阶循环群,都与n次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具.三、习题§2. 4解答1.2.3.4.5.6.7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群 G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且连M的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M 上的全体变换作成的集合T (M ),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当M >1时T (M )只能作成半群,而不能作成群.三、习题§2. 5解答1. 解 作成有单位元半群,τ是单位元.但不作成群,因为σ无逆元.2.3. 解 G 作成群:因为易知4.5.§2. 6 置 换 群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n 次置换中奇、偶置换个数相等,各为2!n 个(n >1).2.k —循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k—循环与A有相反奇偶性.2)k—循环的阶为k.又(i1,i2…i k)-1=(i k,…,i2,i1 ).3)若σ分解为不相连循环之积.则其分解中奇循环个数为奇时σ为奇置换,否则σ为偶置换.σ的阶为各因子的阶的最小公倍.其逆元可由k—循环的逆元来确定.3.由置换σ,τ求置换στσ-1的方法.n次对称群s n的中心.4.传递群的定义、例子和简单性质.二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的子群也是一般抽象群所没有的.例如,交代群、传递群、稳定子群和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性.首先,书写大为简化,便于运算。

近世代数__第二版课后习题答案

近世代数__第二版课后习题答案

近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 22.3.近世代数题解§1. 31. 解 1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是Mxxn个元素可重复的全排列数nn.3. 解例如AB=E与AB=AB—A—B.4.5.近世代数题解§1. 41.2.3.解 1)略 2)例如规定4.5.略近世代数题解§1. 51. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解 3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证 1)略2)7.8. 9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群方程a x=b与y a=b在G中有解(a ,b∈G).4)有限半群作成群两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是xx,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对Gxx任意元素a,在Gxx 都存在元素,对Gxx任意元素b都有(ab)=(ba)=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4. 5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.xx、无扭群与混合群的定义及例子.特别,有限群必为xx,但反之不成立.2.在群中若=n,则4.若G是交换群,又Gxx元素有最大阶m,则Gxx每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶与决定阶,这就是教材xx定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数xx),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限xx),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即xx、无扭群与混合群.而在xx中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的xx)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3xx一、主要内容1.xx的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的xx.4.群的中心元和中心的定义.二、释疑解难1.关于真xx的定义.教材把非平凡的xx叫做真xx.也有的书把非G的于群叫做群G的真xx.不同的定义在讨论xx时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且HG,那么能不能说H就是G的xx?答:不能.因为xx必须是对原群的代数运算作成的群.例如,设G是有理数xx,而H是正有理数乘群,二者都是群,且HG但是不能说H是G的xx.答:不能这样认为.举例如下.例2设G是四元数群.则显然是G的两个xx且易知反之亦然.三、习题2.3解答1.证赂.2.证必要性显然,下证充分性.设子集H对群G的乘法封闭,则对Hxx任意元素a和任意正整数m都有am∈H.由于Hxx 每个元素的阶都有限,设=n ,则3.对非交换群一放不成立.例如,有理数域Qxx 全体2阶可逆方阵作成的乘群中,xx,的阶有限,都是2,但易知其乘积⎪⎪⎭⎫ ⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成xx .4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证.5.证 因为(m ,n)=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4循环群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和xx的状况.3.循环群在同构意义下只有两类:整数xx和n次单位根乘群,其中n=1,2,3,….4.循环群的xx的状况.无限循环群有无限多个xx.n阶循环群有T(n)(n的正出数个数)个xx,且对n 的每个正因数k,有且仅有一个k阶xx.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面:1)循环群的元素表示形式和运算方法完全确定.其xx的状况也完全清楚(无限循环群有两个xx,n阶循环群有个xx而且ak是xx(kn)=1);2)循环群的xx的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数xx同构;另一类是n(n=1,2,…)阶循环群,都与n次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具.三、习题§2. 4解答1.2.3.4. 5.6. 7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G 包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且xxM的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M上的全体变换作成的集合T(M),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当>1时T(M)只能作成半群,而不能作成群.三、习题§2. 5解答1. 解作成有单位元半群,是单位元.但不作成群,因为无逆元.2.3. 解 G作成群:因为xx4.5.§2. 6 置换群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n次置换xx、偶置换个数相等,各为个(n>1).2.k—循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k—循环与A有相反奇偶性.2)k—循环的阶为k.又(i1,i2…ik)-1=(ik,…,i2,i1 ).3)若分解为不相连循环之积.则其分解xx循环个数为奇时为奇置换,否则为偶置换.的阶为各因子的阶的最小公倍.其逆元可由k—循环的逆元来确定.3.由置换,求置换-1的方法.n次对称群sn的中心.4.传递群的定义、例子和简单性质.二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的xx也是一般抽象群所没有的.例如,交代群、传递群、稳定xx和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性.首先,书写大为简化,便于运算。

韩士安 近世代数 课后习题解答

韩士安 近世代数 课后习题解答

习题1-1(参考解答)1. (1)姊妹关系(2)()(),P S ⊆(3) (),{1},1a b Z a b ∈−≠,.例如(2 ,6 )2,(3 ,6 )3,==但()2,31=.2. 若b 不存在,则上述推理有误.例如{}{~~~~}S a b c R b c c b b b c c =,,,:,,,.3. (1)自反性:,(),,n A M E GL R A EAE ∀∈∃∈=~A A ∴ 对称性:1111,,~,,(),,,,().~.n n A B M A B P Q GL R A PBQ B P AQ P Q GL R B A −−−−∀∈∃∈==∈∴ 传递性:12211221212,,~,~,,,,(),,,,n A BC M A B B C P Q P Q GL R A PBQ B P CQ A PP CQ Q ∀∈∃∈===1212,(),~.n PP Q Q GL R A C ∈∴(2) 自反性:1,(),,~.n A M E GL R A E AE A A −∀∈∃∈=∴ 对称性:()11,,~,(),,,(),~.TT n n A B M ifA B T GL R A T BT B T BT T GL R B A −−∀∈∃∈=∴=∈∴传递性: 121122,,,~,~,,(),,,T T n A B C M ifA B B C T T GL R A T BT B T CT ∀∈∃∈==()12211221,TT T A T T CT T TT CT T ∴==12(),~.n TT GL R A C ∈∴ (3) 自反性:()1,,,~.n n A GL E GL R A E AE A A −∀∈∃∈=∴ 对称性:1,(),~,(),,n n A B GL R ifA B T GL R A T BT −∀∈∃∈= ()11111,(),~n B TAT TAT T GL R B A −−−−−∴==∈∴.传递性:11121122,,(),~,~,,(),,,n n A B C GL R A B B C T T GL R A T BT B T CT −−∀∈∃∈== ()()11112212121,A T T CT T T T C T T −−−∴==21(),~.n T T GL R A C ∈∴ 4. 证明: (1) 反身性:,()(),~a A a a a a φφ∀∈=∴Q(2)对称性: ,,~,()(),()(),.a b A ifa b a b b a b a φφφφ∈=∴==(3) 传递性: ,,,~,~,()(),()(),()(),~.a b c a a b b c a b b c a c a c φφφφφφ∀∈==∴=∴{}[]|()().a x A x a φφ=∈=5. (1)()S P A ∀∈,则S =S~S S ∴,~∴具有反身性(2)设12,()S S P A ∈,若12~S S ,则12S S =,21S S ∴=21~S S ,~∴具有对称性(3)设123,,()S S S P A ∈若12~S S ,23~S S ,则12S S =,23S S =13S S =,13~S S ,~∴具有传递性 ~∴是()P A 上的一个等价关系. []{}{}{}{}{}(),1,1,2,1,2,3,1,2,3,4~P A φ=⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦[]{}φφ={}{}{}{}{}{}11,2,3,4=⎡⎤⎣⎦{}{}{}{}{}{}{}{}1,21,2,1,3,1,4,2,3,2,4,3,4=⎡⎤⎣⎦ {}{}{}{}{}{}1,2,31,2,3,1,2,4,1,3,4,2,3,4=⎡⎤⎣⎦ {}{}{}1,2,3,41,2,3,4=⎡⎤⎣⎦6. 证明:(1)反身性: ,0,~.a Q a a Z a a ∀∈−=∈∴(2) 对称性: 设,,a b Q ∈若~a b , 即,a b Z −∈则(),b a a b Z −=−−∈ ~b a ∴ (3) 传递性: 设,,,a b c Q ∈若~,~a b b c 即,a b Z b c Z −∈−∈那么()(),a c a b b c Z −=−+−∈~a c ∴∴~是Q 上的一个等价关系. 所有的等价类为: []{}|[0,1).~Qa a Q a =∈∈且7. 证明: (1) 反身性: ~a C a a a a ∀∈=∴Q ,,(2) 对称性: a b C ∀∈,,若~a b ,则由a b =,得~b a b a =∴,.(3) 传递性: a b c C ∀∈,,,若~~a b b c ,,则a b b c a c ==∴=,,,即~.a c 所以~是一个等价关系. 商集为[]{}{0}~Ca a R +=∈U8. 设集合(){},/,,0S a b a b Z b =∈≠,在集合S 中,规定关系“~”:()(),~,a b c d ad bc ⇔=证明:~是一个等价关系.证明: 自反性: (),a b S ∀∈,则ab ba =,所以()(),~,.a b a b 对称性: 若()(),,,a b S c d S ∈∈,且()(),~,a b c d 则ad bc =所以cb da =,即()(),~,c d a b 传递性: 若()(),~,a b c d 且()(),~,c d e f由()(),~,a b c d 有ad bc =,所以adc b= 由()(),~,c d e f 有cf de =,所以adf de b⋅= 所以adf bde =,所以 af be =,即()(),~,a b e f . 所以~是一个等价关系9. 设{},,,A a b c d =试写出集合A 的所有不同的等价关系.解: {}{}{}{}{}{}{}{}{}{}1,,,,2,,,,3,,,,4,,,,P a b c d P a b c d P a c b d P a d b c ===={}{}{}{}{}{}{}{}{}{}{}{}5,,,,6,,,,7,,,,8,,,,P a b c d P a c d b P a b d c P b c d a ==== {}{}{}{}{}{}{}{}{}{}{}{}9,,,,,10,,,11,,,,P a b c d P a c b d P a b c d === {}{}{}{}{}{}{}{}12,,,,13,,,,P c d a b P a b c d == {}{}{}{}{}{}{}{}{}14,,,,15,,,P a c b d P a b c d ==10. 不用公式(1 .1),直接算出集合{}1,2,3,4A =的不同的分类数.解: 1212211211135554254254331()((/)(/))(/)152C C C C P C C P C C C P ++++++=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数课后习题参考答案第五章扩域1扩域、素域1. 证明:F(S)的一切添加S 的有限子集于F 所得的子域的并集是一个域.证一切添加S 的有限子集于F 所得的子域的并集为 a 1) 若a,b ^送则一定有a ^…^n)b FCh’ z —m)易 知 a-b FC'1^'2^ - n, -l/:2^' , -m 但 F(「1,〉2,n, L 2…,F) V从而 b-a ,、2) 若 a,b V ,且 b = 0 则 —b ・ FCJ :2,…,'-m)从而有 abdFC-1^-2^ : n, -1, -2/' , F) 72单扩域1.令E 是域F 的一个扩域,而 a • F 证明a 是F 上的一个代数元,并且F(a) =F证 因a-a=0故a 是F 上的代数元.其次,因a ,F ,故F(a) F 易见 F(a)二 F ,从而 F (a)二 F2i +1 2 •令F 是有理数域•复数i 和2—1在F 上的极小多项式各是什么?3 .详细证明,定理3中 a 在域F 上的极小多项式是 p(x)证 令山是F(x)中的所有适合条件 f(a)=0的多项式作成f (x)的集合.1)-k 是F(x)的一个理想(i )若 f(x),g(x):h 则 f (a) =0, g(a) =0因而 f (a) -g(a) = 0 故 f (x) -g(x)山 ii )若f (x) •山,h(x)是F(x)的任一元 那么 h(a)f(a) =0 则 h(x)f (x)山2) 是一个主理想设 p (x)是山中a !的极小多项式2i +1 i 一1F(i)与F( )是否同构?i — 1 1,在F 上的极小多项式为x 2 - x • 52i +1 2因F(i) =F( ) 故这两个域是同构的.i T 2i 1i -1那么,对山中任一f(X)有f (x) =P i(x)q(x) r(x)这里r(x) =0或r(x)的次数但f(a)二P i(a)q(a) R(x)因f(a) = 0, p i(a) =0 所以r(a) = 0若r(x)=0 则与p1x是a的极小多项式矛盾.故有f(x) = p1 (x)q(x)因而=(p1(x)(3)因p(a)=0 故p(x) ■-R(x)| p(x) 因二者均不可约,所以有p(x)=a»(x)又p(x), p i(x)的最高系数皆为1那么a =1 这样就是p(x) = R (x)4.证明:定理3中的F(a) = K证设f • K,,则在定理3的证明中,K = K'之下有.n nf a n x - a n」x 川…川-a但 a—;x, a i Q 故必f ^a n:n ' a n/n」a。

这就是说k FG ) 因而F(a)二K3代数扩域1•令E是域F的一个代数扩域,而「是E上的一个代数元,证明圧是E上的一个代数元证因为:•是F上的代数元所以Q + …+e n a n又因为E是F的代数扩域,从而FGc,…編) 是F的代数扩域,再有a是F(e°,e,…e n)上的代数元,故FCeneJeOua)FG,e,…,e n」,e n )的有限扩域,由本节定理1 ,知FG,q, ,e n4,e n/)是F的有限扩域,因而是F的代数扩域,从而a是F上的一个代数元.2•令F ,E和L是三个域,并且F二二E,假定(I : F)而E的元「在F上的次数是n,并且(m,n) =1证明:.在I 上的次数也是1 证设(I (〉): I =r 因为 I (:•)二丨二F 由本节定理1 (I (a): F) =rm另一方面,因为(F(cc) :F)|(I (a) :F 仍由本节定理! ! 即有nrm 但由题设知(m,n)=1 故nr又:•在I 上的次数是r ,因而其在I 上的极小多项式的次数是1 :-在I 上的次数是n ,因而其在F 上的极小多项式的次数是 n由于〉在上的极小多项式能整除 :-在F 上的极小多项式所以r 岂n 因而r = n3 •令域!的特征不是2,E 是F 的扩域,并且(E :F)=4证明存在一个满足条件F I E 的E 的二次扩域 F 的充分与必要条是:(E:F)=4,而〉在F 上的极小多项式是x 4- ax 2b证充分性:件的的二次扩域必要性: 由于存在I 满足条件F I E 且为F 的二次扩域即(1: F) =2因此可得((E :1) =2 我们容易证明,当 F 的特征不是2时,且 则而!在!上的极小多项式是! 同样 E = I (a)而[在x2- f 上的极小多项式是 这样 12二 f , f • F,:2 =i,i I那么 i 2二 f ,22f ,f^ f 22所以〉4=i2由于:•在F 上的极小多项式为 x 4 ax 2b故a 2F F 及 a F F2(:2)因而(F(a2):F)=1 所以(F(a 2):F)=2 由本节定理1知:这就是说,F(a)是一个满足条2^2 : f; '-2= 2fj 2 f1 f^ f2^-2 令-2 f1 b = fj 一f22 f同时可知a,b均属于F •.工4- a^2• b = 0 由此容易得到E=F(a04.令E是域F的一个有限扩域,那么总存在E的有限个元:‘,―,…:m 使E 二F(〉I,〉2,…:m)证因为E是F的一个有限扩域,那么把E看成F上是向量空间时,则有一个基宀二辽厂一二订显然这时E =F(:1,: 2;:m)5 •令F是有理数域,,看添加复数于F所得扩域"E^F(23,2^i) E2二F(23,23wi)证明(F(23) =2,(巳:F) =6证易知上的极小多项式是!即(F(23):F -3同样23上的极小多项式是即乍疔(23)) =42 2X4— 23X2 2 ・2?由此可得((E i : F) =6,伍:F) =124多项式的分裂域1•证明:有理数域F上多项式x4 1其中a是x41的一个根的分裂域是一个单扩域F(a)4 丄证X 1的4个根为『2丄i』2 J2 n/2 寸‘2丄iU‘2』2 血a^T V,a^T-T,a^-y T,a^_W又印=a';a2 - -aJ,a3 _ -a所以F(&,印£2£3) = F(a)2 •令F是有理数域,x3- a是F上一个不可约多项式,而a是x3- a的一个根,证明F(a)不是x3- a在F上的分裂域.证由于a是x3-a的一个根,则另外两个根是a;,a;2,这里;,;2是x2x 1的根若F (a)是X’ - a的在H上的分裂域那么a :, a F (a)这样,就是F二F(;)二F(a)由3。

3定理!有但(F(;):F)|(F (a)F) 此为不可能.3.令P i(x), P2 (x),…,P m(x)是域F上m个最高系数为1的不可约多项式,证明存在F的一个有限扩域F(ai,a2,…,a m),其中色在F上的极小多项式是p(x)证令f (x) = p i(x),P2 (x),…,P m(x)由本节定理2 f (a)在F上的分裂域E存在,根据4.3定理3, 知E是F上的有限扩域,取p i(x)的根a i则有F F(a i, a?, a m) E因E 是F的有限扩域,故F(a1,a2/ a m也是F的有限扩域,显然P i(x) !是a i在F上的极小多项式.4•令p是一个特征为素数p的域,F二p(a)是p的一个单扩域,而a是p[x]的多项式x p—a的一个根,p(a)是不是x p-a在F上的分裂域?证因:•是x p- a的根故a p-a=O 即a「p由于P的特征为素数!所以x p-a = x p因此pC )是x p- a在P上的分裂域5有限域1.令F是一个含p n个元的有限域,证明,对于n是每一个因数m 0 ,存在并且只存在F的一个有p m个元的子域L证因为m是n的因数,所以(p n-1) = (p m-1)m n那么x p -1是x p「X的因式,p m p m但x p-x在F中完全分裂,所以x p-x在F中也完全分裂,那么FP m中含有x p-x的p m个根,由这p m个根作成F —个子域L .m又因为x p-x在F中的分裂域只有一个,所以F中有p m个元的子L 只有一个.2 •—个有限域一定有比它大的代数扩域.证设F是有q个元的有限域.看F上的f (x) =x q - X・1因为对F的任一元a, f (a) =1因此,f(x)在F上没有一次因式.这样,f(x)在F上有一个一次数1的不可约因式p(x).作p(x)分裂域E则E二F 而E=F且E是F的代数扩域.3•令F是一个有限域,丄是它所含素域,且:是否必须F是的非零元所作成的乘群的一个生成元?证我们的回答是未必.令厶是3元素域f(x)=x°-x在厶上的分裂域为F,若令f (x)的因式!的根为i ,则F 由0,1,—1,i,1 i,—1 • i,—1 —i,所组成,i4 =1 !故i不是F非零元所作成的乘群的生成元.但F = . :(x)。

4.令厶是特征为2的素域..:(x)!找出的一切三次不可约多项式.证容易证明3 2 3x x ,1及x x 1是(x)的一切三次不可约多项式.6可离扩域1.令域F的特征是p, f (x)是F上一个不可约多项式,并且 f (x)可以写成F上x p,但不能写成x p的多项式(e—1),证明,f (x)的每一个根的重复度都是p ee+证由于f (x)可以写成F上x p的多项式,而不是x p的多项式,e我们以f(x) =g(x p ) =g(y)表示因为f(x)在F上不可约,所以g(y)也不可约.假定g(y)的次数是m,首系数是1,在它的分裂域中,分裂为1次因m式y「人的乘积,即g( y) (y「m e i 3因此f(x)訓(x p- ■)i =1e “ e若r是x p- 1的根,则p八e e p e那么x p「齐=x p-■二,=(x-<-)P所以f(x)有m个互异个根^,- «m,并且它们都是p e重根.2 •设域F没有不可离扩域,证明F的任一代数扩域都没有不可离扩域.证设E是F的一个代数扩域,:是E的一个不可离元,那么〉便是E上一个有重根是不可约多项式p(x)的根.根据题设:-是F上是可离元,令口匕)是起极小多项式,则P i(x)无重根•那么p(x) p i(x),因》(x)无重根,故p(x)亦无重根,这与〉是E的不可离元的假设矛盾.3.令域F的特征是p而E = F (爲,:),这里a是F上次可离元而1:' 是F上P 次非可离元,(E : F)二?证由本节引理4,[是F上的非可离元,否则可以推出一:是F上的可离元,这与:是F上非可离元矛盾,由于[是F上P次非可离元,由本节引理1, !在p在F上的极小多项式是f (x) = x p -a我们易知p是使[P在F上为可离元的最小正整数,那么一:!在F(a)上也— -定是p次非可离元.这样f(x) =x p -aFG , -):F(a) 故有(F(:「):F(a))二F(: ,J:F(a)=pn4.找一个域F,使F有一个有限域E而不是E的单扩域.证取域F o其特征是P并设x,y是F o的无关无关未定元.令F 二F o(x,y)E 二F(x p,y p1)易知都是f -上不可约的单位元所以E是F的一个有限扩域,并且(E:F)二p2我们说,E不是F的单扩域i若E = F(r),则v为x p, y q的有理式,从而二为x, y的有理式,故二的次数,因此在E上次数乞p与(E:F)=p2矛盾.。

相关文档
最新文档