运筹学II第3单元案例分析报告使用案例
运筹学课程案例分析报告

《运筹学》课程案例分析报告课程编号:任课教师:讲课时间:完成人(学号):提交日期:作业成绩:(1)以小组形式完成案例分析报告(小组成员不超过5人),并准备10分钟的ppt进行展示;(2)书面表达要求:准确:内容准确,遣词、语法准确;简明:叙述简明扼要,避免空话、废话、赘语、重复;易懂:遣词用语直截了当,避免用冷僻字和过长句子;严谨:所有数据、资料应注明出处;有可能引起误会的词语应加以定义;图文并茂:除文字外,应多采用表、图等方式表达,若色彩对内容表达有帮助,可加入色彩。
(3)格式要求:使用A4 幅面白色纸,电脑打印;正文页:字体与段落:正文标题采用四号(英文10号)宋体;正文采用小四号(英文12号)宋体,倍行距,段前段后间距行磅,段首缩进0.9厘米,标准字距;页码:在页脚右侧注明当前页码/总页数。
一、问题回顾在政府监控的条件下,考虑企业和核查中介是不是存在合谋行为,以下是本案例的条件和假设:(一)对政府而言政府的策略空间为A1=(a11,a12),其中a11表示政府核查,a12表示政府不核查。
政府核查的本钱为c1,企业若与核查中介机构合谋,惩罚企业的罚金为n倍的碳价(p),与隐瞒的排放量有关。
惩罚核查中介机构的罚金为c2。
假设政府核查的概论为P1,不核查的概论为P2。
(二)对企业而言企业的策略空间为A2=(a21,a22),其中a21表示企业与中介合谋,a22表示企业与中介不合谋。
企业实际排放量为E1,申报的排放量为E2,政府给企业的配额为Q,企业支付给中介的核查费用为c3,企业若与中介合谋,支付的合谋费用为c4。
(三)对中介而言中介的策略空间为A3=(a31,a32),其中a31表示中介与企业合谋,a32表示中介与企业不合谋。
(四)需要解决的问题一、是不是存在混合策略下的Nash均衡?二、存在的条件是什么?3、Nash均衡与各决策变量的关系?二、对案例的分析①合谋不合谋(a1 , a2)(a3 , a4)②查不查(a5 , a6)(a7 , a8)上图中a1、a3、a5、a7别离表示企业在不同条件下博弈的得益,a2、a4、a6、a8别离表示核查中介机构在不同条件下的得益。
运筹学在实际问题中的应用案例分析

运筹学在实际问题中的应用案例分析运筹学作为一门研究如何最优化地解决决策问题的学科,在实际问题中得到了广泛的应用。
本文将通过分析两个实际案例来探讨运筹学在解决复杂问题和优化资源利用方面的应用。
案例一:物流配送优化物流配送是一个典型的运筹学应用领域。
在现代社会,物流配送环节对于企业的运营效率和成本控制至关重要。
如何合理安排车辆路线、调度和配送是一项复杂且具有挑战性的任务。
运筹学可以通过数学建模和优化算法来解决这个问题。
首先,我们可以将物流配送问题建模为一个旅行商问题(Traveling Salesman Problem,TSP)。
TSP是一个经典的组合优化问题,目标是寻找一条最短路径,使得从一个地点出发经过所有其他地点后回到起点,且路径的总长度最小。
通过运筹学方法,可以利用算法来求解最佳路径并优化物流配送效率。
其次,为了进一步优化物流配送的效率,我们可以引入车辆调度问题。
例如,考虑到不同城市的交通堵塞情况,我们可以使用调度算法将不同城市的订单分配给不同的车辆,以减少整体行程时间和成本。
通过运筹学的应用,一家物流公司可以最大限度地减少行程时间、减少燃料消耗,提高物流配送的效率。
因此,运筹学在物流配送问题中的应用具有重要的意义。
案例二:生产排产优化生产排产是制造业中的一个重要环节,它关系到企业的生产效率、生产能力和订单交付时间。
运筹学在生产排产中的应用可以帮助企业提高生产效率,降低成本并及时交付产品。
在生产排产中,我们通常需要考虑到多个因素,如机器的利用率、工人的工作时间和任务的优先级等。
通过运筹学的方法,可以构建一个数学模型,通过数学规划算法来优化生产排产方案。
例如,假设一个工厂有多个机器和多个订单需要排产,每个订单有不同的完成时间和优先级。
我们可以通过运筹学的方法,将这个问题建模为一个调度问题。
然后,利用调度算法来确定每个订单的完成时间和最优的生产顺序,从而实现生产排产的优化。
通过运筹学的应用,企业可以有效地优化生产排产计划,提高生产效率,减少资源浪费,并保证订单能够及时交付。
运筹学应用案例

运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。
运筹学的应用范围非常广泛,涉及到各个领域。
以下是一个关于运筹学应用的实际案例。
某公司是一家制造业企业,主要生产产品A和产品B。
这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。
公司的目标是最大化利润。
产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。
产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。
物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。
同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。
另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。
为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。
首先,公司需要确定目标函数。
由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。
假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。
那么公司的目标函数可以定义为:Z=10A+8B。
然后,公司需要确定约束条件。
根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。
由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。
最后,公司需要使用线性规划算法来求解最优解。
线性规划算法可以通过求解目标函数的最大值来找到最优解。
在这个案例中,可以使用单纯形法来求解最优解。
通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。
对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。
运筹学案例分析报告

运筹学案例分析报告武城万事达酒水批发案例分析导言:每个企业都是为了赚取利润,想要赚取更多的利润就要想办法节约自己的成本,那怎么节约自己的成本呢?运筹学是一门用纯数学的方法来解决最优方法的选择安排的学科。
运输是配送的必需条件,但是怎么才能让武城万事达酒水批发厂在运输问题是节约运输成本呢?我们就运用运筹学的方法来进行分析。
我们对他原来的运输路线进行调查,计算原来需要的运输成本,对它的运输方式我们进行研究然后确定新的运输路线为他节约运输成本。
一、案例描述武城万事达酒水批发有四个仓库存储啤酒分别为1、2、3、4,有五个销地A、B、C、D、E,各仓库的库存与各销售点的销售量(单位均为t),以及各仓库到各销售地的单位运价(元/t)。
半年中,1、2、3、4仓库中分别有300、400、500、300吨的存量,半年内A、B、C、D、E五个销售地的销量分别为170、370、500、340、120吨。
且从1仓库分别运往A、B、C、D、E五个销售地的单位运价分别为300、350、280、380、310元,从2仓库分别运往A、B、C、D、E五个销售地的单位运价分别310、270、390、320、340元,从3仓库分别运往A、B、C、D、E五个销售地的单位运价分别290、320、330、360、300元,从4仓库分别运往A、B、C、D、E五个销售地的单位运价分别310、340、320、350、320元。
具体情况于下表所示。
求产品如何调运才能使总运费最小?仓库销地A B C D E 存量1 3002 4003 5004 300 销量170 370 500 340 120 1500 武城万事达酒水批发原来的运输方案:E销售地的产品从1仓库供给,D销售地的产品全由2仓库供给,C销售地全由3仓库供给,A、B销售地产品全由4仓库供给。
即:产生的运输费用为Z1=310*120+320*340+330*500+340*370+310*170=489500Z1二、模型构建1、决策变量的设置设所有方案中所需销售量为决策变量X ij(i=1、2、3、4,j=A、B、C、D、E),即:方案1:是由仓库1到销售地A的运输量X1A方案2:是由仓库1到销售地B的运输量X1B方案3:是由仓库1到销售地C的运输量X1C方案4:是由仓库1到销售地D的运输量X1D方案5:是由仓库1到销售地E的运输量X1E方案6:是由仓库2到销售地A的运输量X2A方案7:是由仓库2到销售地B的运输量X2B方案8:是由仓库2到销售地C的运输量X2C方案9:是由仓库2到销售地D的运输量X2D方案10:是由仓库2到销售地E的运输量X2E方案11:是由仓库3到销售地A的运输量X3A方案12:是由仓库3到销售地B的运输量X3B方案13:是由仓库3到销售地C的运输量X3C方案14:是由仓库3到销售地D的运输量X3D方案15:是由仓库3到销售地E的运输量X3E方案16:是由仓库4到销售地A的运输量X4A方案17:是由仓库4到销售地B的运输量X4B方案18:是由仓库4到销售地C的运输量X4C方案19:是由仓库4到销售地D的运输量X4D方案20:是由仓库4到销售地E的运输量X4E2、目标函数的确定问题是求在运输过程中使总运费最小目标函数为:Min:Z=300X1A+350X1B+280X1C+380X1D+310X1E+310X2A+270X2B+390X2C+320X2D+340 X2E+290X3A+320X3B+330X3C+360X3D+300X3E+310X4A+340X4B+320X4C+350X4D+320X3A3、约束条件:X1A+X1B+X1C+X1D+X1E=300X2A+X2B+X2C+X2D+X2E=400X3A+X2B+X3C+X3D+X3E=500X4A+X4B+X4C+X4D+X4E=300X1A+X2A+X3A+X4A=170X1B+X2B+X3B+X4B=370X1C+X2C+X3C+X4C=500X1D+X2D+X3D+X4D=340X+X2E+X3E+X4E=1201EX ij(i=1、2、3、4,j=A、B、C、D)≥ 04、运用表上作业法对模型求解:仓库销地ABC D E存量行罚数1 2 3 4 51300300 20 20 10 10 10 237030400 40 10 10 10 10 317020010120500 10 10 10 10 10 4300300 10 10 10 10 10 销量170 370 500 340 120150列罚数1 10 【50】40 30 102 10 【40】30 103 10 【30】104 10 【10】5 【10】检验是否为最优解:X1A=X1A-X3A+X3C-X1C=300-290+360-280=90X2A=X2A-X3A+X4D-X2D=310-290+360-320=60X4A=X4A-X4D+X3D-X3A=310-350+360-290=30X3B=X3B-X3D+X2D-X2B=320-360+320-270=10X4B=X4B-X4D+X2D-X2B=340-350+320-270=40X2C=X2C-X3C+X3D-X2D=390-330+360-320=100X4C=X4C-X4D+X3D-X2C=320-350+360-330=0X1D=X1D-X3D+X3C-X1C=380-360+330-280=703035X1E=X1E-X3E+X3C-X1C=310-300+330-280=60X2E=X2E-X3E+X3D-X2D=340-300+360-320=80X4E=X4E-X4D+X3D-X3E=320-350+360-300=30我们运用表上作业发对模型求得的一个解我们用闭合回路发进行检验,因为检验数全部是非负的,所以我们找出的解是最优解,最优解为:由1仓库运往C销地300吨,2仓库运往B地370吨,2仓库运往D地30吨,3仓库运往A销地170吨,3仓库运往C销地200吨,3仓库运往D销地10吨,3仓库运往E销地120吨,4仓库运往D销地300吨.三、效益分析通过上述计算可知:原武城万事达酒水批发运输方案为:E销售地的产品全部由仓库1供给,D销售地的产品全部由仓库2供给,C销售地的产品全部由仓库3供给,A、B销售地的产品全部由仓库4供给。
运筹学案例分析报告

运筹学案例分析报告推荐文章2017成功的营销案例分析_2017市场营销案例分析报告范文热度:会计案例分析报告_会计案例分析报告范文热度:企业案例分析报告_企业案例分析范文热度:心理案例分析报告_心理案例分析范文热度:成功的谈判案例分析报告热度:运筹学是高等院校工业工程专业的专业基础课,目的是通过运筹学教学,使学生熟悉和掌握运筹学分析问题、解决问题的思想和方法,培养和提高学生根据实际问题建立模型、求解模型及进行分析和评价的能力,树立起系统效益观,达到提高教学质量的目标。
以下是店铺为大家整理的关于运筹学案例分析报告,给大家作为参考,欢迎阅读!运筹学案例分析报告篇1:一、研究目的及问题表述(一)研究目的:公司、企业或项目单位为了达到招商融资和其它发展目标之目的,在经过前期对项目科学地调研、分析、搜集与整理有关资料的基础上,向读者全面展示公司和项目目前状况、未来发展潜力的书面材料。
这是投资公司在进行投资前非常必要的一个过程。
所以比较有实用性和研究性。
(二)问题表述:红杉资本于1972年在美国硅谷成立。
从2005年9月成立至今,在科技,消费服务业,医疗健康和新能源/清洁技术等投资了众多具有代表意义的高成长公司。
在2011年红杉资本投资的几家企业项目的基础上,规划了未来五年在上述基础上扩大投资金额,以获得更多的利润与合作效应。
已知:项目1(受资方:海纳医信):从第一年到第四年每年年初需要投资,并于次年末收回本利115%项目2(受资方:今世良缘):第三年年初需要投资,到第五年末能收回本利125%,但规定最大投资额不超过40万元。
项目3(受资方:看书网):第二年年初需要投资,到第五年末能收回本利140%,但规定最大投资额不超过30万元。
项目4(受资方:瑞卡租车):五年内每年年初可购买公债,于当年末归还,并加息6%。
该企业5年内可用于投资的资金总额为100万元,问他应如何确定给这些项目的每年投资使得到第五年末获得的投资本例总额为最大?(三)数据来源:以下的公司于受资方等都是在投资网中找到的,其中一些数据为机密部分,所以根据资料中红杉资本所投资的金额的基础上,去编织了部分的数据,以完成此报告研究。
运筹学分析方法及应用案例

运筹学分析方法及应用案例运筹学是一门研究如何通过使用数学、统计学和计算机科学等工具来解决决策问题的学科。
其应用领域广泛,包括生产、物流、供应链管理、交通网络优化、人员调度等。
运筹学分析方法可以通过建立数学模型,优化决策方案,并通过模拟和数据分析来评估方案的效果。
下面将介绍运筹学分析方法及其应用案例。
一种常见的运筹学分析方法是线性规划。
线性规划可以用于在给定约束条件下优化目标函数的值。
一个典型的应用是生产计划问题。
假设一个公司有多个产品和多个生产资源,线性规划可以帮助确定如何安排生产以最大化利润或最小化成本。
举个例子,一个公司生产产品A和产品B,有两个生产线和一定数量的原材料。
每生产一个单位的A需要2个单位的原材料和2个单位的生产时间,每生产一个单位的B需要1个单位的原材料和4个单位的生产时间。
每个生产线每天的工作时间为8个小时,而每天的原材料供应量为10个单位。
公司希望确定每个产品在每个生产线上的产量以最大化总利润。
我们可以建立一个线性规划模型来解决这个问题。
假设x1和x2分别代表在两个生产线上生产产品A的产量,y1和y2分别代表在两个生产线上生产产品B的产量。
目标函数为最大化总利润,可以表示为:Maximize 3x1 + 4x2 + 2y1 + 3y2约束条件包括每个生产线的工作时间和原材料供应量:2x1 + x2 ≤82x1 + 4x2 ≤82y1 + 3y2 ≤10并且x1、x2、y1、y2都不能小于零。
通过求解这个线性规划模型,我们可以得到最优解,即在每个生产线上生产产品A和产品B的最佳产量,从而实现最大利润。
除了线性规划,运筹学还有其他分析方法,如整数规划、动态规划、网络优化等。
这些方法可以应用于不同的决策问题,解决实际的运营和管理挑战。
另一个应用案例是供应链网络优化。
供应链管理面临的一个关键问题是如何确定最优的物流网络来实现成本最小化和服务水平最大化。
运筹学可以帮助优化供应链网络的设计和运作。
运筹学应用实例分析word精品

运筹学课程设计实践报告第一部分小型案例分析建模与求解 (2)案例1.杂粮销售问题 (2)案例2.生产计划问题 (3)案例3. 报刊征订、推广费用的节省问题 (6)案例4.供电部门职工交通安排问题 (7)案例5.篮球队员选拔问题 (9)案例6. 工程项目选择问题 (10)案例7.高校教职工聘任问题(建摸) (12)案例8.电缆工程投资资金优化问题 (14)案例9.零件加工安排问题 (15)案例10.房屋施工网络计划问题 (16)第二部分:案例设计 (18)问题背景: (18)关键词: (18)一、问题的提出 (18)二、具体问题分析和建模求解 (19)三、模型的建立对于N个应聘人员M个用人单位的指派是可行的。
(24)第一部分小型案例分析建模与求解案例1.杂粮销售问题一贸易公司专门经营某种杂粮的批发业务,公司现有库容5011担的仓库。
一月一日,公司拥有库存1000担杂粮,并有资金20000元。
估计第一季度杂粮价格如下所示:一月份,进货价 2.85元,出货价3.10元;二月份,进货价 3.05元,出货价3.25元;三月份,进货价2.90元,出货价2.95元;如买进的杂粮当月到货,需到下月才能卖出,且规定“货到付款”。
公司希望本季度末库存为2000担,问应采取什么样的买进与卖岀的策略使三个月总的获利最大,每个月考虑先卖后买?解:设第i月出货X i0担,进货X i1担,i=1,2,3;可建立数学模型如下:目标函数:Max z=3.1O*X1o 3.25* X20 2.95* X30 -2.85* X11 - 3.05* X21 - 2.90* X31约束条件:\10乞1000x20乞1000 - X10 Xu乞1000 _ X10_ X20 X211000 —x10+ 兰5011』1000 _ x10+ _ x20+ x21兰5011x31= 20002.85x1^2000^3.10x103.05x21兰20000+3.10x10+3.25x20—2.85x“2.90X31兰20000+3.10x10+3.25X20 -2.85x“ —3.05X21x i1,x i^0且都为整数利用WinSQB 求解(x1,x2,x3,x4,x5,x6 分别表示x10,x11,x21,x21,x30,x31):案例1杂粮销售问题Variable —>XI X2X3X斗X5X6Direction R. 1 [. S.Maximi/je二⑴285 3.25-3.052,95-2.90Cl1<=1000 C21-11c=IOOO' C31J1-I1<=1000 C4-11<=4011C5■ 11-11<=4011 C6-3,10 2.85<=20000 C7-340 2.85-3.25 3.05<= 2 mod C8P 2.85-3 25「 3 05「-2.95 2.9020000 LowerBoiind000002000UpperBound100050115011501150112000Variable Jtiteger Integer Integer Imcgcr Integer IntegerCombined Report for案例1杂粮销售问题1月份卖出1000担,进货5011担;2月份卖出5011担,不进货;3月份不出货,进货2000担。
运筹学论文-运筹学案例分析报告

运筹学论文-运筹学案例分析报告一、背景运筹学是一门研究解决实际问题的科学,它专注于提高组织、企业和政府的生产效率,优化执行过程,使其能够有效地获得最大价值。
本案例旨在探讨一个具体的现实例子,概述如何使用运筹学进行解释以及识别和解决可能存在的潜在问题。
二、案例概述本案例涉及解决一个具体的实际问题,即如何利用有限的资源,有效的改变一个公司的业务流程,以降低其成本。
该方案涉及一家名为“关爱社会”的非营利组织,致力于为社会弱势群体提供支持和帮助。
该机构的活动主要集中在受支持者的社区中,提供技能培训、帮扶活动、营养指导和教育补助等服务。
该机构最近发现,其资金有限,从而导致社会服务无法有效现实受助者的需求。
通过运筹学方法分析,可以辨别机构拥有资源的可用性,从而重新安排和调整该机构对社会服务的投入,以优化执行过程。
三、运筹学原理运筹学方法可以帮助分析和解决实际问题。
运用运筹学,可以避免直接决策而遭受不必要的损失,改善组织的绩效,使其能够有效的改善锁定的资源,同时有效地改变业务流程,以获得最大价值。
四、案例分析针对本案例,我们首先对“关爱社会”机构的资源进行评估和分析,这包括人力资源、金融资源、工作经验和机构的实力等。
这样,我们可以更好的识别和分配公司的资源,以实现最优的结果。
在进而分析资源可用性的基础上,另一项重要的工作是对“关爱社会”机构所提供的服务的全面审查和审查。
由于公司的资源有限,因此必须仔细考虑每一项服务的重要性,并以此来决定机构把资源投入在哪里。
调整业务流程,将投入重点放到最需要的领域上是提高服务质量的最佳选择。
五、结论通过本次运筹学案例分析,我们有了更清晰的认识,即如何使用运筹学方法有效的改善现有的业务流程,使其能够更好的服务于受支持者的社区。
只有有效的资源安排和有效调整,“关爱社会”才能真正实现自身的价值,而运筹学正能够提供这样的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》案例配矿戕J编制
一、问题的提出
某大型冶金矿山公司共有14个出矿点,年产量及各矿点矿石的平均品位(含铁量的百分比)均为已知(见表1)。
表1 矿点出矿石量及矿石平均品位表
按照冶金生产,具体说这里指炼铁生产的要求,在矿石采岀后,需按要求指立的品位值丁尺进行不同品位矿石的混合配料,然后进入烧结工序,最后,将小球状的烧结球团矿送入高炉进行髙温冶炼,生产出生铁。
该企业要求:将这14个矿点的矿石进行混合配矿。
依据现有生产设备及生产工艺的要求,混合矿石的平均品位T Fe规定为45%0
问:如何配矿才能获得最佳的效益?
二、分析与建立模型
负责此项目研究的运筹学工作者,很快判左此项目属于运筹学中最成熟的分支之一一线性规划的范畴。
而且是一个小规模问题。
1•设计变量:记Xj (j=l, 2, *, 14)分别表示出矿点1~14所产矿石中参与配矿的数量(单位: 万吨)。
2.约束条件:包括三部分:
(1)供给(资源)约朿:由表1,有X:£70 ,決 W 7 ,…,X lt W 7.2
(2)品位约朿: 0. 3716X t+0. 5125E+…+0. 5020X^=0. 4500£Xj
(3)非负约朿: Xj>0 j二1, 2,…,14
3.目标函数:
此项目所要求的“效益最佳”。
作为决策准则有一上的模糊性。
由于配矿后混合矿石将作为后而工序的原料而产生利润,故在初始阶段,可将目标函数选作配矿总量,并追求其极大化。
于是,可得出基本(LP)模型如下:
(LP)
Max 厂Z二
s. t. OW X: W70
0£ X= W 7
OW X lt W 7. 2
< 0. 3716V0. 5125X=+...+0. 5020^,=0. 4500£Xj
三、计算结果及分析
(-)计算结果使用单纯形算法,极易求出此模型的最优解:
X•二(X\, X;,…,X\,)T,它们是:
X: =31.121 X;二 7 r3=i7
X; =23 X\= 3 X\ 二 9・ 5
X;二 1 X;二 15.4 = 2. 7
X\o= 7. 6 X\F13. 5 2. 7
X;5=l. 2 X\i= 7. 2 (单位:万
吨)
目标函数的最优值为:Z= EX: =141.921 (万吨)
(二)分析与讨论
按照运筹学教材中所讲述的方法及过程,此项目到此似乎应该结朿了。
但是,这是企业管理中的一个真实的问题。
因此,对这个优化计算结果需要得到多方而的检验。
这个结果是否能立即为公司所接受呢?回答是否左的!
注意!任最优解X•中,除第1个矿点有富余外,其余13个矿点的出矿量全部参与了配矿。
而矿点1在配矿后尚有富余量:70-31.121=38. 879 (万吨),但矿点1的矿石平均品位仅为37.16%,属贫矿。
作为该公司的负责人或决策层绝难接受这个事实:花费大量的人力、物力、财力后,在矿点1 生产的贫矿中却有近39万吨被闲置,而且在大量积压的同时,会产生环境的破坏,也是难以容忍的。
原因何在?出路何在?
经过分析后可知:在矿石品位及出矿量都不可变更的情况下,只能把注意力集中在混合矿的品位要求T“上。
不难看出,降低的心值。
可以使更多的低品位矿石参与配矿。
Tre有可能降低吗?在因的降低而使更多贫矿石入选的同时,会产生什么样的影响?必须加以考虑。
就线性规划模型建立、求解等方而来说,降低T"及其相关影响已不属于运筹学的范用,它已涉及该公司的技术与管理。
但是,从事此项目研究的运筹学工作者却打破了这个界限,深入到现场操作人员、工程技术人员及管理人员中去,请教、学习、调查,然后按照T”的三个新值:44%. 43%、42%,重新计算(三)变动参数值及再计算
将参数Tre的三个变动值0.44、0.43、0.42分别代入基本模型(LP),重新计算,相应的最优
解分别记作X* (0.44〉、X* (0.43)及X* (0. 42)。
下表给出详细的数据比较:
表2 不同T H•值的配矿数据
对表2所列结果,请公司有关技术人员、管理人员(包括财务人员)进行综合评判,评判意见是:
1.险取45%及44%的两个方案,均不能解决贫矿石大量积压的问题,且造成环境的破坏,故不能考虑。
2.取43%及42%的两个方案,可使贫矿石全部入选;配矿总量在150万吨以上:1L富余的矿石皆为品位超过50%的富矿,可以用于生产高附加值的产品:精矿粉,大大提高经济效益:因而,这两个方案对资源利用应属合理。
3.经测算,按T“取彳2%的方案配矿,其混合矿石经选矿烧结后,混合铁精矿晶位仅达51%, 不能满足冶炼要求,即从技术上看缺乏可行性,故也不能采用。
4.T P C=43%的方案,在工艺操作上只需作不人的改进即可正常生产,即技术上可行。
5.经会汁师测算,按T/43%的方案得岀的配矿总量最多,高达175万吨,且可生产数量可观的精矿粉,两项合计,按当时的价格计算,比T/45%的方案同比增加产值931.86万元。
结论:U=43%时的方案为最佳方案。
四、一点思考
由基本模型(LP)的目标函数及决策准则来看,它具有单一性,即追求总量最大。
而从企业的要求来看,还需考虎资金周转、环境保护、资源合理利用以及企业生存等多方面的因素,因此,企业所指的“效益最佳”具有系统性。
这两者之间的差异,甚至冲突,应属运筹学工作者在应用研究中经常遇到的问题,也是需要介理解决的问题。
而解决这个问题的关键之一是:运筹学工作者在理念与工作方式只具有开放性,也就是说,不能只拘泥于运筹学书本及文献资料,而应进入实际,与相关人员、相关学科相结合、交叉、渗透、互补,从而达到技术可行、经济合理以及系统优化的目的。
经验表明:在运筹学实际应用的项目中,很少遇到运筹学“独步夭下”的惜况。
如在此案例中,它属于线性规划的一个典型应用领域,即使如此,运筹学在其中也不能包揽一切,它可以起着Tf架及核心作用,但若无其他方而的配合,也不能达到圆满成功。