数字干涉测量方法及试验

合集下载

大物实验4——激光实验

大物实验4——激光实验

激光专业实验(四) 精密位移量的激光干涉测量方法一、实验目的:1、了解激光干涉测量的原理2、掌握微米及亚微米量级位移量的激光干涉测量方法3、了解激光干涉测量方法的优点和应用场合 二、实验原理本实验采用泰曼-格林(Twyman-Green )干涉系统,T -G 干涉系统是著名的迈克尔逊白光干涉仪的简化。

用激光为光源,可获得清晰、明亮的干涉条纹,其原理如图1所示。

图1 T -G 干涉系统激光通过扩束准直系统L 1提供入射的平面波(平行光束)。

设光轴方向为Z 轴,则此平面波可用下式表示: i k z Ae Z U =)( (1)式中A −−平面波的振幅,λπ2=k 为波数,λ−−激光波长此平面波经半反射镜BS 分为二束,一束经参考镜M 1,反射后成为参考光束,其复振幅U R 用下式表示)(R R z R R e A U φ⋅=(2)式中A R −−参考光束的振幅,φR (z R )−−参考光束的位相,它由参考光程z R 决定。

另一束为透射光,经测量镜M 2反射,其复振幅U t ,用下式表示: )(t t z i t t e A U φ⋅=(3)式中A t −−测量光束的振幅,φt (z t )−−测量光束的位相,它由测量光程Z t 决定。

此二束光在BS 上相遇,由于激光的相干性,因而产生干涉条纹。

干涉条纹的光强I(x,y)由下式决定*⋅=U U y x I ),( (4)式中***+=+=t Rt R U U U U U U ,,而U*,U R *,U t *为U ,U R ,U t 的共轭波。

当反射镜M 1与M 2彼此间有一交角2θ,并将式(2),式(3)代入式(4),且当θ较小,即sin θ≅θ时,经简化可求得干涉条纹的光强为:)2c o s1(2),(0θkl I y x I += (5) 式中I 0−−激光光强,l −−光程差,t R z z l -=。

式(5)说明干涉条纹由光程差l 及θ来调制。

第4章 光学干涉测量技术

第4章 光学干涉测量技术

武汉大学 电子信息学院
25
§4.1 干涉测量基础
(二)干涉条纹的处理方法 1、数字波面的获取 干涉仪检测光学元件面形,对获得的干涉图进行数字化转换,并 由计算机替代人眼进行判读,即为数字干涉法。在对模拟干涉图像进 行数字化转换后,需要提取干涉图上的条纹信息,即确定干涉条纹的 中心点坐标及干涉级次。一般处理过程需要如下几个步骤: (1)背景滤除:对原始图像进行预处理; (2)二值化:使干涉图变为二值化图像; (3)细化:保留条纹中心曲线,从而提取出条纹上点的坐标; (4)修像:去除细化图像中的干扰信息,修改间断点; (5)标记:对干涉条纹进行跟踪、标记不同条纹的干涉级次; (6)采样:用等间距采样现贯穿干涉图像区间,均匀设置采样点。 采样结束后即完成了对数字化干涉图像的图像处理过程,获得了 离散的、采样点基本均布的波面数据集合(x,y,p)。在经过后续的波 面拟合计算等可以得到波面数字分布。
光学测试技术
第四章 光学干涉测量技术
2013年5月26日
干涉技术和干涉仪在光学测量中占有重要地位。近年来,随 着数字图像处理技术的不断发展,使干涉测量这种以光波长作为 测量尺度和测量基准的技术得到更为广泛的应用。 在光学材料特性参数测试方面,用干涉法测量材料折射率精度 可达10-6;对材料光学均匀性的测量精度则可达10-7; 用干涉法可测量光学元件特征参数,用球面干涉仪测量球面曲 率半径精度达1μm,测量球面面形精度为1/100λ;用干涉法测量 平面面形精度为1/1000λ;用干涉法测量角度时测量精度可达 0.05″以上; 在光学薄膜厚度测试方面,用干涉法测厚的精度可达0.1nm; 在光学系统成像质量检验方面,利用干涉法可测定光学系统的 波像差,精度可达1/20λ,并可利用干涉图的数字化及后续处理 解算出成像系统的点扩散函数、中心点亮度、光学传递函数以 及各种单色像差。

数字散斑干涉(DSPI)研究的文献综述

数字散斑干涉(DSPI)研究的文献综述

数字散斑干涉振动测量技术研究进展摘要:数字散斑干涉技术(DSPI)是一种光学测试方法,具有非接触、高灵敏度、全场、实时、无损检测的特点,在振动测量方面有着较大的优势。

本文从图像处理、相移技术等方面阐述了数字散斑干涉振动测量的发展现状,并对其中的关键技术进行了比较和分析。

关键词:数字散斑干涉,振动测量,数字图像处理,相移技术Research Progress on V ibration Measurement Using Digital SpecklePattern InterferometryAbstract:Digital speckle pattern interferometry (DSPI) is an optical testing and measuring method,a non-contact, high-sensitivity, full-field, real-time, non-destructive one, which has an advantage in vibration analysis. This paper introduces the recent progress on DSPI vibration measurement from aspects of digital image processing and phase shifting, also compares and analyzes their key technologies.Keywords:Digital speckle pattern interferometry; Vibration measurement; Digital image processing; Phase shifting0 引言散斑计量技术是现代光测力学技术中的一种。

它具有非接触、无损、全场、高精度、实时测量的特点,在轮廓、应变、位移和振动测量方面有着广泛的应用前景[1]。

实验五、精密位移量的激光干涉测量方法及实验

实验五、精密位移量的激光干涉测量方法及实验

实验五、精密位移量的激光干涉测量方法及实验一、实验目的:1.了解激光干涉测量的原理2.掌握微米及亚微米量级位移量的激光干涉测量方法 3.了解激光干涉测量方法的优点和应用场合 二、实验原理本实验采用泰曼-格林(Twyman-Green )干涉系统,T -G 干涉系统是著名的迈克尔逊白光干涉仪的简化。

用激光为光源,可获得清晰、明亮的干涉条纹,其原理如图1所示。

图1 T -G 干涉系统激光通过扩束准直系统L 1提供入射的平面波(平行光束)。

设光轴方向为Z轴,则此平面波可用下式表示:ikz Ae Z U =)((1)式中A −−平面波的振幅,λπ2=k 为波数,λ−−激光波长此平面波经半反射镜BS 分为二束,一束经参考镜M 1,反射后成为参考光束,其复振幅U R 用下式表示)(R R z R R e A U φ⋅=(2)式中A R −−参考光束的振幅,φR (z R )−−参考光束的位相,它由参考光程z R 决定。

另一束为透射光,经测量镜M 2反射,其复振幅U t ,用下式表示:)(t t z i t t e A U φ⋅=(3)式中A t −−测量光束的振幅,φt (z t )−−测量光束的位相,它由测量光程Z t 决定。

此二束光在BS 上相遇,由于激光的相干性,因而产生干涉条纹。

干涉条纹的光强I(x,y)由下式决定*⋅=U U y x I ),((4)式中***+=+=t R t R U U U U U U ,,而U*,U R *,U t *为U ,U R ,U t 的共轭波。

当反射镜M 1与M 2彼此间有一交角2θ,并将式(2),式(3)代入式(4),且当θ较小,即sin θ≅θ时,经简化可求得干涉条纹的光强为:)2cos 1(2),(0θkl I y x I +=(5)式中I 0−−激光光强,l −−光程差,t R z z l -=。

式(5)说明干涉条纹由光程差l 及θ来调制。

当θ为一常数时,干涉条纹的光强如图22λ⋅=N l (6) 式中N −−干涉条纹数因此,记录干涉条纹移动数,已知激光波长,由式(6)即可测量反射镜的位移量,或反射镜的轴向变动量∆L 。

迈克尔逊干涉仪测量光波的波长实验报告

迈克尔逊干涉仪测量光波的波长实验报告

迈克尔逊干涉仪测量光波的波长实验报告
实验目的,通过使用迈克尔逊干涉仪测量光波的波长,掌握干
涉仪的基本原理和测量方法,加深对光学干涉现象的理解。

实验仪器,迈克尔逊干涉仪、激光光源、平面镜、半透镜、光
电探测器、数字示波器等。

实验原理,迈克尔逊干涉仪是一种利用干涉现象测量光波波长
的仪器。

当一束光线经过半透镜后,被分成两束光线,分别经过两
个镜面反射后再次相遇,产生干涉现象。

通过测量干涉条纹的位移,可以计算出光波的波长。

实验步骤:
1. 调整迈克尔逊干涉仪,使得两束光线在光电探测器上形成清
晰的干涉条纹。

2. 使用数字示波器记录干涉条纹的变化情况,包括干涉条纹的
位移和周期数。

3. 根据干涉条纹的变化情况,计算出光波的波长。

实验结果,通过实验测得光波的波长为λ=632.8nm。

实验结论,通过迈克尔逊干涉仪测量光波的波长,成功掌握了干涉仪的基本原理和测量方法,加深了对光学干涉现象的理解。

同时,通过实验结果验证了光波的波长为632.8nm。

存在问题,在实验过程中,由于仪器调整不够精准,导致测量结果可能存在一定的误差。

在今后的实验中,需要更加精确地调整仪器,以提高测量结果的准确性。

改进方案,在今后的实验中,可以加强对仪器调整的训练,提高操作技能,从而减小误差,获得更加准确的实验结果。

总结,通过本次实验,对迈克尔逊干涉仪测量光波的波长有了更深入的了解,同时也意识到了实验操作的重要性。

在今后的实验中,将更加注重仪器调整和操作技能的训练,以提高实验结果的准确性和可靠性。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告
自查报告。

实验名称,迈克尔逊干涉仪实验。

实验日期,2022年10月10日。

实验地点,XXX大学实验室。

实验目的,通过迈克尔逊干涉仪实验,掌握干涉仪的基本原理和操作方法,观察干涉条纹的形成,并测量出光的波长。

实验过程,在实验中,我们首先搭建了迈克尔逊干涉仪,调整好光源和镜片的位置,使得两束光相互干涉。

然后我们观察了干涉条纹的形成,并通过调整干涉仪的参数,如改变镜片的位置和倾斜角度,来改变干涉条纹的间距和形状。

最后,我们使用干涉条纹的间距来计算出光的波长。

实验结果,通过实验,我们成功观察到了干涉条纹的形成,并且根据干涉条纹的间距测量出了光的波长,结果与理论值相符合。

实验总结,通过本次实验,我们深入了解了迈克尔逊干涉仪的
原理和操作方法,掌握了干涉条纹的观察和测量技巧。

同时,也加
深了对光的波动性质的理解。

在实验中,我们也遇到了一些问题,
例如调整干涉仪的参数需要耐心和细心,需要不断尝试和调整才能
得到清晰的干涉条纹。

通过这次实验,我们不仅学到了知识,也提
高了实验操作的技能。

存在问题,在实验中,我们发现在调整干涉仪参数时,需要更
加耐心和细心,以确保获得准确的实验结果。

同时,在实验报告中,需要更加详细地描述实验步骤和结果,以便他人能够清晰理解。

改进计划,在今后的实验中,我们将更加细心地调整实验仪器,提高实验操作的技能。

同时,在撰写实验报告时,我们将更加详细
地描述实验步骤和结果,以提高报告的质量。

签名,XXX 日期,2022年10月12日。

干涉法技术在量块长度测量中的应用

干涉法技术在量块长度测量中的应用

丝塑,墨凰干涉法技术在量块长度测量中的应用张剑字(广东省计量科学研究院东莞分院,广东东莞523120)脯要】量块是重要的长度实物标准,它将长度单位传i董到工业生产的各个环节.在产品质量保证体系中发挥着重大作用。

本文基于光干涉原理,介绍了干涉法测量量块长度的基本原理,研究了量决长度测量的数字化千涉技术方法。

并在比基础上,详细分析介铝条纹法处理干涉图方法及技术分析。

鹾j套司量块;光于涉测量;条纹法1引言量块是一种高精度的端面量具,它以最简单的几何形状设计,最有利于加工出精确的尺寸。

其中一对相互平行的测量面之间的距离即为其工作长度。

我国与世界上其他国家一样,绝大多数都采用矩形横截面的长方体形量块。

在计量部门和工业校准实验室,它和其测量设备组成的检定系统为溯源国际米标准提供了一种重要手段,其作用在科学研究、工业生产中至关重要。

量块的长度常被用作计量器具的标准,通过它对长度计量仪器、量具和董规等示值误差的检定、对精密机械零件尺寸的测量和对精密机床、夹具在加工中定位尺寸的调整等方式,把机械制造中各种制成品的尺寸,与国家的以至国际的实现米定义所推荐的基准光谱辐射线的波长联系起来,以达到长度董值在全国和国际间的统一,使零件、配件都具有良好的互换性。

长度计量在国防科研和武器生产的质量保证体系中起着重要作用,因此世界各个国家十分关注这一研究领域的技7R进展。

本文介绍对基于干涉法的高等级量燃的测量方法及测量过程中的关键技术进行研究。

2干涉法测量■块长度的基本原理干涉仪输出的是一幅干涉图,借助于数学物理模型,可以将干涉图与多种被测参数相联系,从而实现测量相关的物理参数。

以干涉条纹小数部分重合方式,用光谱辐射线的波长直接测量被测量块的长度,是基于光波干涉理论。

21干涉条纹的小数部分重舍法小数重合法是用于量块高精度测量的主要方法。

1977年,蒂福德对小数重合法做了进—步发展,提出了一套完整的利用多波长尾数确定被测长度的分析方法.其中最重要的两个思想为无导孰绝对距离干涉测量技术发展提供了理论基础,这两个基本思想是合成波长链及利用其进行逐级精化测量结果。

物理实验的基本测量方法

物理实验的基本测量方法

光学放大法
光学放大法分为视角放大和微小变化量(微小长度、微 小角度)放大两种。放大镜、显微镜和望远镜等都属于视 角放大的仪器。这类仪器只是在观察中放大视角,并不 是实际尺寸的变化,所以并不增加误差。因而许多精密 仪器都是在最后的读数装置上加一个视角放大装置以提 高测量精度。
微小变化量的放大原理常用于检流计、光杠杆等装置中 。如测量微小长度变化的光杠杆镜尺法则是通过测量放 大的物理量来获得微小的长度变化。
机械放大法
机械放大是利用力学量之间的几何关系进行转换放 大的一种最直观的放大方法。 螺旋测微原理是一种机械放 大。将螺距(螺旋进一圈的推 进距离)通过螺母上的圆周来 进行放大。放大率= D/d, 其中d是螺距,D是微分筒直 径。由于放大作用提高了测 量仪器的分辨率,从而提高 了测量精度。
电学放大法
二、误差的分类

系统误差 随机误差
过失误差
1. 系统误差
仪器误差
天平不等臂所造成的 系统误差
a
A
b
B
O
a A
不偏心时,由于 aa bb,所以 可用弧长反映角度的 大小。

b
B
由于偏心,使之用 弧长反映角度 时产 生的系统误差。如: AABB 这是由偏心 造成的。
理论
● 直接比较测量法 把待测物理量X与已知其值的同类物理 量或标准量S相比较而直接获取量值的 方法。这种比较通常要借助仪器或标 准量具。 ● 间接比较测量法
由于某些物理量无法进行直接比较测量,故需设法将待测物理量 转变为另一种能与已知标准量直接比较的物理量,当然这种转变 必须服从一定的单值函数关系。
如用水银的热膨胀去测量温度、用弹簧的形变去测力等均为这类 测量,此种测量称间接比较测量法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y,li ) cos 2kli

b1

2 n
n i 1
I (x,
y,li ) sin 2kli
2
从而求得被测波面,由下式给出:
2 n I (x, y,li) sin 2kli
w(x,
y)

1 2k
tg 1
b1 a1

1 2k
tg 1
n 2
i 1 n
I (x,
y,li) cos 2kli li
四、实验记录
被测工件:平面镜
序号
PV
RMS
EM
等高图(凹 或凸)
1
2
3
4
5
五、思考题
1. 采用下列方法可以提高测量精度吗? a. 增加一个周期内的台阶数(n); b. 增加扫描的周期数(p)
2. 测量精度一般由测量正确性和测量重复性组成,试分析增加n或p的 作用以及利弊关系
3. 试分析决定数字干涉仪测量准确性的因素和提高测量准确性的主要 方法
上式说明孔径内任意一点的位相可由该点上的n×p个光强 的采样值计算出来,因此,可获得整个孔径上的位相。除 实现自动检测外,还可以测定被测件的三维形貌。
3
采用数字干涉测量原理进行面形的三维测量,与前面所不
同的是测量中采用了扫描技术,因而可以实现面形的三维
测量。高精度光学平面零件的面形精度可用下列二个评价
近代方法。
4
光源
L1
L2 1
2
3
驱动器
计算机
软件
数字干涉系统
L1准直物镜,L2成像物镜,1被测件,2参考镜, 3压电器件(PZT),4成像光电器件(CMOS)
1
参考镜2由压电陶瓷PZT驱动,产生位移。此位移的频率与 移动量由计算机控制。设参考镜的瞬时位移为li,被测表面 的形貌(面形)为w(x,y),则参考光路和测试光路可分别 用下式表示:
6
二、实验原理
随着电子技术与计算机技术的发展,并与传统的干涉检测方法结合, 产生了一种新的位相检测技术数字干涉技术,这是一种位相的实 时检测技术。这种方法不仅能实现干涉条纹的实时提取,而且可以利 用波面数据的存储功能消除干涉仪系统误差,消除或降低大气扰动及 随机噪声,使干涉技术实现/100的精度,这是目前干涉仪精度最高的
U R a exp[ i2k(s li )]
I (x, y,li ) a2 b2 2ab cos 2k[w(x, y) li ]
a2 b2 2ab cos 2kwcos 2kli sin 2kwsin 2kli
Ut b exp{i2k[s w(x, y)]}
干涉场中任意一点的光强都是li的余弦函数。由于li随时间变 化,因此光强是一个时间周期函数,可用傅里叶级数展开。


a0


2 n
n i 1
I (x,
y,li )
I (x, y, li ) a0 a1 cos 2kli b1 sin 2kli

a1

2 n
n i 1
I (x,
4. 你知道测量表面三维形貌有什么意义和作用吗?试比较本方法与你 了解的其它方法(例如轮廓探针法,三坐标测量机法,共焦法等) 的优缺点。
5. 为什么说本方法可以消除干涉仪自身的系统误差,而普通干涉仪则 不可能,只能靠加工水平来保证。
6. 光圈数N,局部光圈数ΔN,EM的物理意义以及与PV,RMS的大致 关系。
指标,如下图所示。
表面形貌
PV
RMS
面形精度的评价
1.PV值:是表面形貌的最大峰谷值 2.RMS值:是表面形貌的均方根值,RMS的定义是:
RMS v2
N 1
v 复测定次数
4
三、实验光路
同实验——精密位移量的激光干涉测量方法及实验(加PZT)

2n
i,
n i1
i 0,1, 2,3

为进一步降低噪声,提高测量精度,可用P个周期进行驱动 扫描,测量数据作累加平均,即
w(x,
y)

1 2k
tg 1
2 n 2 n
n p
i 1 n p
i 1
I (x, y,li ) sin 2kli I (x, y,li ) cos2kli
相关文档
最新文档