重庆市渝西九校2020届高三下学期联考理科综合试题及答案

合集下载

【精准解析】重庆市2020届高三下学期三模考试理综物理试题

【精准解析】重庆市2020届高三下学期三模考试理综物理试题

2020年普通高等学校招生全国统一考试6月调研测试卷理科综合能力测试—物理一、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得分。

1.运动员在跳高比赛中,下列说法正确的是( ) A. 运动员起跳时,地面对运动员做正功B. 运动员离地后,在空中上升过程中,其重力瞬时功率增大C. 运动员起跳时,地面对运动员做负功D. 运动员离地后,在空中下落过程中,其重力瞬时功率增大 【答案】D 【解析】【详解】AC .运动员起跳时,地面和运动员之间没有发生位移;地面对运动员不做功,故AC 错误;B .运动员离地后,在空中上升过程中,速度减小,根据P =Gv可知重力瞬时功率减小,故B 错误; D .在空中下落过程中,速度增大,根据P =Gv可知重力瞬时功率增大,故D 正确。

故选D 。

2.1885年,巴耳末对当时已知的氢气放电管获得的四条可见光谱进行研究,发现这些谱线满足221112R n λ⎛⎫=- ⎪⎝⎭,n =3、4、5、6,这个公式称为巴耳末公式.如图所示,氢原子能级图可以很好的解释巴耳末公式。

已知可见光能量在1.64~3.19V 之间,巴耳末研究的四条可见光诮中波长最长的是在哪两个能级之间跃迁辐射的( )A. 3到2B. 4到2C. 5到2D. 6到2【答案】A 【解析】【详解】巴耳末系是指氢原子由高能级向n =2能级跃迁时释放的光子,巴耳末研究的四条可见光谱中波长最长的,对应的是两个能级之间能量差值最小的能级,为3到2,故A 正确,BCD 错误。

故选A 。

3.如图所示,一质量为m 的物体以动能k E 从底端滑上粗糙程度均匀的固定斜面,物体再次回到底端时动能为k 2E ,取地面为重力势能零点,重力加速度为g ,则在上升过程中动能为k 2E的位置距地面的高度为( )A. 34E mgkB. k2E mgC. 38E mg kD. 4E mgk【答案】C 【解析】【详解】设斜面倾角为θ,物体与斜面间动摩擦力大小为f ,物体能上升的最大高度为H ,则物体从底端上升到最大高度过程,由能量守恒得sin HmgH f E θ=+⋅k 物体从底端上升到返回底端过程,有22sin H f E θ=⋅k 设上升过程中动能为k2E 的位置距地面的高度为h ,则有2sin h mgh f E θ=+⋅k 联立解得38h m E g=k,故C 正确,ABD 错误。

重庆市2020年2020届高中毕业班理综第二次统一检测试卷(物理部分)(II)卷

重庆市2020年2020届高中毕业班理综第二次统一检测试卷(物理部分)(II)卷

重庆市2020年2020届高中毕业班理综第二次统一检测试卷(物理部分)(II)卷姓名:________ 班级:________ 成绩:________一、多选题 (共6题;共18分)1. (3分) (2017高二下·北京期末) 目前,在居室装修中经常用到花岗岩、大理石等材料,这些岩石都不同程度地含有放射性元素.如有些含有铀、钍的花岗岩会释放出放射性气体氡,氡会发生放射性衰变,放出α、β、γ射线.则下列说法正确的是()A . γ射线一般伴随着α或β射线产生,其中γ射线穿透能力最强,电离能力也最强B . 氡的半衰期为3.8天,若取4个氡原子核,经7.6天后就一定剩下一个原子核了C . 由核反应方程可知核反应前后质量数守恒、核电荷数守恒D . β衰变所释放的电子是原子核内的中子转化成质子和电子所产生的2. (3分) (2016高二上·潮阳期中) 如图所示,平行板电容器的两极板A,B接于电池两极,一带正电的小球悬挂在电容器内部,闭合S,电容器充电,这时悬线偏离竖直方向的夹角为θ()A . 保持S闭合,将A板向B板靠近,则θ增大B . 保持S闭合;将A板向B板靠近,则θ不变C . 断开S,将A板向B板靠近,则θ增大D . 断开S,将A板向B板靠近,则θ不变3. (3分) (2017高二上·泰州期末) 如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气影响,则下列反映线框下落过程中速度v随时间t变化的规律图象中,可能正确的是()A .B .C .D .4. (3分) (2017高一下·浦北期末) 2008年9月25日至28日我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正确的是()A . 飞船在轨道1的运行周期大于在轨道2的运行周期B . 飞船在圆轨道上时航天员出舱前后都处于失重状态C . 飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度D . 飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度5. (3分)(2018·温州模拟) 近几年有轨电车在我国多个城市开通试运营。

2020届重庆市直属校高三下学期3月联考理科综合物理试卷及解析

2020届重庆市直属校高三下学期3月联考理科综合物理试卷及解析

2020届重庆市直属校高三下学期3月联考理科综合物理试卷★祝考试顺利★(解析版)二、选择题:本大题共 8 小题,每小题 6 分,共 48 分。

第 14—17 题为单选题,第 18—21题为多选题。

1.氢原子能级示意图如图所示.光子能量在1.63 eV~3.10 eV 的光为可见光.要使处于基态(n =1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为A. 12.09 eVB. 10.20 eVC. 1.89 eVD. 1.5l eV【答案】A 【详解】由题意可知,基态(n=1)氢原子被激发后,至少被激发到n=3能级后,跃迁才可能产生能量在1.63eV~3.10eV 的可见光.故 1.51(13.60)eV 12.09eV E ∆=---=.故本题选A .2.“嫦娥四号”探月飞船实现了月球背面软着陆,按计划我国还要发射“嫦娥五号”,执行月面采样返回任务。

已知月球表面的重力加速度约为地球表面重力加速度的16,地球和月球的质量分别为M 1和M 2,月球半径为R ,月球绕地球公转的轨道半径为r ,引力常量为G,下列说法正确的是( )A. 6B. 使飞船从地球飞向月球,地球上飞船的发射速度是地球的第一宇宙速度C. 采样返回时,使飞船从月球飞向地球,1GM rD. 采样返回时,使飞船从月球飞向地球,月球上飞船的发射速度应大于1GM R【答案】D【详解】A .月球的第一宇宙速度22GM v g R R ==月 地球第一宇宙速度11GM v g R R ==地地地已知月球表面的重力加速度约为地球表面重力加速度的16,月球第一宇宙速度与地球第一宇宙速度之比6R R 地,故A 错误; BCD .地球到月球飞船速度要大于地球的第一宇宙速度2GM R 地,月球到地球飞船速度要大于月球的第一宇宙速度1GM R ,故BC 错误,D 正确。

故选D 。

3.如图,半径为0.1m 的半球形陶罐随水平转台一起绕过球心的竖直轴水平旋转,当旋转角速度为10rad/s 时,一质量为m 的小物块恰好能随陶罐一起与陶罐保持相对静止做匀速圆周运动,已知小物块与陶罐的球心O 的连线跟竖直方向的夹角θ为37°,最大静摩擦力等于滑动摩擦力。

重庆市渝中区、九龙坡区等主城区2020届高三学业质量调研抽测(第二次)数学(理科)试题 (解析版)

重庆市渝中区、九龙坡区等主城区2020届高三学业质量调研抽测(第二次)数学(理科)试题 (解析版)

2020年高考数学二诊试卷(理科)(5月份)一、选择题(共12个小题)1.已知集合A ={x |x 2﹣2x ﹣3≤0},B ={x |log 2x >1},则A ∪B =( ) A .(2,+∞)B .(2,3]C .[﹣1,3]D .[﹣1,+∞)2.已知复数z 在复平面内对应点的坐标是(﹣3,4),i 为虚数单位,则z1−i =( )A .−12+12i B .−12+72i C .−72+12i D .72+12i3.某公司生产了一批新产品,这种产品的综合质量指标值x 服从正态分布N (100,σ2)且P (x <80)=0.2.现从中随机抽取该产品1000件,估计其综合质量指标值在[100,120]内的产品件数为( ) A .200B .300C .400D .6004.已知sin(α2−π4)=√33,则cos2α=( )A .79B .−79C .2√23D .−2√235.已知p :﹣2≤x ﹣y ≤2且﹣2≤x +y ≤2,q :x 2+y 2≤2,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.已知函数f (x )的定义域为R 且满足f (﹣x )=﹣f (x ),f (x )=f (2﹣x ),若f (1)=4,则f (6)+f (7)=( ) A .﹣8B .﹣4C .0D .47.已知函数f(x)=√3sinωx −cosωx(ω>0),f (x 1)=2,f (x 2)=﹣2,且|x 1﹣x 2|最小值为π2,若将y =f (x )的图象沿x 轴向左平移φ(φ>0)个单位,所得图象关于原点对称,则实数φ的最小值为( )A .π12B .π6C .π3D .7π128.2020年2月,在新型冠状病毒感染的肺炎疫情防控工作期间,某单位有4名党员报名参加该地四个社区的疫情防控服务工作,假设每名党员均从这四个社区中任意选取一个社区参加疫情防控服务工作,则恰有一个社区未被这4名党员选取的概率为( )A .81256B .2764C .964D .9169.已知f(x)={(3a −4)x −2a ,x <1log a x ,x ≥1对任意x 1,x 2∈(﹣∞,+∞)且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,那么实数a 的取值范围是( )A .(1,+∞)B .(0,1)C .(43,2] D .(43,4]10.在三棱锥P ﹣ABC 中,∠BAC =60°,∠PBA =∠PCA =90°,PB =PC =√6,点P 到底面ABC 的距离为2,则三棱锥P ﹣ABC 的外接球的体积为( ) A .4πB .3√3πC .4√3πD .36π11.已知双曲线C :x 2a −y 2b =1(a >0,b >0)的左、右焦点分别为F 1,F 2,一条渐近线为l ,过点F 2且与l 平行的直线交双曲线C 于点M ,若|MF 1|=2|MF 2|,则双曲线C 的离心率为( ) A .√2B .√3C .√5D .√612.已知函数f (x )=(lnx +1﹣ax )(e x ﹣2m ﹣ax ),若存在实数a 使得f (x )<0恒成立,则实数m 的取值范围是( )A .(12,+∞) B .(−∞,12)C .(12,1)D .(−1,12)二、填空题:本题共4个小题,每小题5分,共20分.把答案填写在答题卡相应的位置上.13.设非零向量a →,b →满足a →⊥(a →−b →),且|b →|=2|a →|,则向量a →与b →的夹角为 .14.过抛物线y 2=8x 焦点的直线PC 与该抛物线相交于A ,B 两点,点P (4,y 0)是AB 的中点,则|AB |的值为 .15.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的外接圆面积为16π,且cos 2C ﹣cos 2B =sin 2A +sin A sin C ,则a +c 的最大值为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AC ∩BD =O ,E 是B 1C (不含端点)上一动点,则下列正确结论的序号是 . ①D 1O ⊥平面A 1C 1D ; ②OE ∥平面A 1C 1D ;③三棱锥A 1﹣BDE 体积为定值; ④二面角B 1﹣AC ﹣B 的平面角的正弦值为√66.三、解答题:共70分.解答时应写出必要的文字说明、演算步骤或推理过程.并答在答题卡相应的位置上.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分 17.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =log 3(a n •a n +1),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+⋯+1T n<2.18.某工厂通过改进生产工艺来提高产品的合格率,现从改进工艺前和改进工艺后所生产的产品中用随机抽样的方法各抽取了容量为100的样本,得到如表的2×2列联表:改进工艺前改进工艺后合计合格品8595180次品15520合计100100200(Ⅰ)是否有99%的把握认为“提高产品的合格率与改进生产工艺有关”?(Ⅱ)该工厂有甲、乙两名工人均使用改进工艺后的新技术进行生产,每天各生产50件产品,如果每生产1件合格品可获利30元,生产1件次品损失50元.甲、乙两名工人30天中每天出现次品的件数和对应的天数统计如表:甲一天生产的次品数(件)01234对应的天数(天)281073乙一天生产的次品数(件)01234对应的天数(天)369102将统计的30天中产生不同次品数的天数的频率作为概率,记X表示甲、乙两名工人一天中各自日利润不少于1340元的人数之和,求随机变量X的分布列和数学期望.附:P(K2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.19.如图,在正三棱柱ABC﹣A1B1C1中,点M,N分别是AB,CC1的中点,D为AB1与A1B的交点.(Ⅰ)求证:CM∥平面AB1N;(Ⅱ)已知AB=2,AA1=4,求A1B1与平面AB1N所成角的正弦值.20.已知圆C:(x+2)2+y2=24与定点M(2,0),动圆I过M点且与圆C相切,记动圆圆心I的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)斜率为k的直线l过点M,且与曲线E交于A,B两点,P为直线x=3上的一点,若△ABP为等边三角形,求直线l的方程.21.设函数f(x)=e xx,g(x)=lnx+1x.(Ⅰ)若直线x=m(m>0)与曲线f(x)和g(x)分别交于点P和Q,求|PQ|的最小值;(Ⅱ)设函数F(x)=xf(x)[a+g(x)],当a∈(0,ln2)时,证明:F(x)存在极小值点x0,且e x0(a+lnx0)<0.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为{x=2+√22ty=√22t(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=8cosθ.(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点M的直角坐标为(2,0),直线l和曲线C交于A、B两点,求1|MA|+1 |MB|的值.[选修4-5:不等式选讲]23.已知f(x)=|2x+a2|.(Ⅰ)当a=2时,求不等式f(x)+|x﹣1|≥5的解集;(Ⅱ)若对于任意实数x,不等式|2x+3|﹣f(x)<2a成立,求实数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的代号填涂在答题卡上.1.已知集合A={x|x2﹣2x﹣3≤0},B={x|log2x>1},则A∪B=()A.(2,+∞)B.(2,3]C.[﹣1,3]D.[﹣1,+∞)【分析】求出A,B中不等式的解集确定出A,B,找出A与B的并集即可.解:由A中不等式变形得:(x﹣3)(x+1)≤0,解得:﹣1≤x≤3,即A=[﹣1,3],∵B={x|log2x>1}=[2,+∞),∴A∪B=[﹣1,+∞),故选:D.【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.已知复数z在复平面内对应点的坐标是(﹣3,4),i为虚数单位,则z1−i=()A.−12+12i B.−12+72i C.−72+12i D.72+12i【分析】复数z在复平面内对应点的坐标是(﹣3,4),可得z=﹣3+4i,代入再利用复数运算法则即可得出.解:复数z在复平面内对应点的坐标是(﹣3,4),∴z=﹣3+4i,则z1−i =−3+4i1−i=(−3+4i)(1+i)(1−i)(1+i)=−72+12i,故选:C.【点评】本题考查了复数运算法则、几何意义,考查了推理能力与计算能力,属于基础题.3.某公司生产了一批新产品,这种产品的综合质量指标值x服从正态分布N(100,σ2)且P(x<80)=0.2.现从中随机抽取该产品1000件,估计其综合质量指标值在[100,120]内的产品件数为()A.200B.300C.400D.600【分析】先根据正态曲线的对称性性质,算出P(100≤x≤120),然后用该值乘以1000即可.解:因为综合质量指标值x服从正态分布N(100,σ2)且P(x<80)=0.2.∴P(x<80)=P(x>120)=0.2,P(x≤100)=P(x≥100)=0.5.∴P(100≤x≤120)=P(x≥100)﹣P(x>120)=0.3.故综合质量指标值在[100,120]内的产品件数为1000×0.3=300.故选:B.【点评】本题考查正态分布密度函数的性质及应用,要注意利用正态曲线的对称性求解概率,同时考查学生利用转化思想解决问题的能力,属于中档题.4.已知sin(α2−π4)=√33,则cos2α=()A.79B.−79C.2√23D.−2√23【分析】由已知利用二倍角的余弦函数公式可求cos(α−π2),利用诱导公式可求sinα,再根据二倍角的余弦函数公式即可计算得解.解:∵sin(α2−π4)=√33,∴cos(α−π2)=1﹣2sin2(α2−π4)=1﹣2×(√33)2=13,即sinα=13,∴cos2α=1﹣2sin2α=1﹣2×(13)2=79.故选:A.【点评】本题主要考查了二倍角的余弦函数公式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.5.已知p:﹣2≤x﹣y≤2且﹣2≤x+y≤2,q:x2+y2≤2,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】p:﹣2≤x﹣y≤2且﹣2≤x+y≤2,可得:﹣2≤x≤2,﹣2≤y≤2.q:x2+y2≤2,可得:−√2≤x≤√2,−√2≤y≤√2.即可判断出关系.解:p:﹣2≤x﹣y≤2且﹣2≤x+y≤2,可得:﹣2≤x≤2,﹣2≤y≤2.q:x2+y2≤2,可得:−√2≤x≤√2,−√2≤y≤√2.∴由q⇒p,由p无法得出q.∴p是q的必要不充分条件.故选:B.【点评】本题考查了不等式的应用、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.已知函数f(x)的定义域为R且满足f(﹣x)=﹣f(x),f(x)=f(2﹣x),若f(1)=4,则f(6)+f(7)=()A.﹣8B.﹣4C.0D.4【分析】推导出f(x+4)=f(2﹣x﹣4)=﹣f(x+2)=﹣f(2﹣x﹣2)=f(x),f(0)=0,由此根据f(1)=4,能求出f(6)+f(7)的值.解:∵函数f(x)的定义域为R且满足f(﹣x)=﹣f(x),f(x)=f(2﹣x),∴f(x+4)=f(2﹣x﹣4)=﹣f(x+2)=﹣f(2﹣x﹣2)=f(x),f(0)=0,∵f (1)=4,∴f (6)=f (2)=f (0)=0,f (7)=f (3)=f (﹣1)=﹣f (1)=﹣4, 则f (6)+f (7)=0﹣4=﹣4. 故选:B .【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.7.已知函数f(x)=√3sinωx −cosωx(ω>0),f (x 1)=2,f (x 2)=﹣2,且|x 1﹣x 2|最小值为π2,若将y =f (x )的图象沿x 轴向左平移φ(φ>0)个单位,所得图象关于原点对称,则实数φ的最小值为( )A .π12B .π6C .π3D .7π12【分析】直接利用三角函数关系式的恒等变换把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.解:函数f(x)=√3sinωx −cosωx(ω>0)=2sin (ωx −π6),由于函数满足f (x 1)=2,f (x 2)=﹣2,且|x 1﹣x 2|最小值为π2,所以T =π,解得ω=2.故f (x )=2sin (2x −π6).将y =f (x )的图象沿x 轴向左平移φ(φ>0)个单位,所得函数g (x )=2sin (2x +2φ−π6)图象,由于函数g (x )关于原点对称,所以2φ−π6=k π(k ∈Z ),解得φ=kπ2+π12(k ∈Z ),当k =0时,φ=π12, 即实数φ的最小值为π12.故选:A .【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,函数的图象的平移变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.8.2020年2月,在新型冠状病毒感染的肺炎疫情防控工作期间,某单位有4名党员报名参加该地四个社区的疫情防控服务工作,假设每名党员均从这四个社区中任意选取一个社区参加疫情防控服务工作,则恰有一个社区未被这4名党员选取的概率为( )A .81256B .2764C .964D .916【分析】基本事件总数n =44,恰有一个社区未被这4名党员选取包含的基本事件个数m =C 41C 42A 33,由此能求出恰有一个社区未被这4名党员选取的概率.解:某单位有4名党员报名参加该地四个社区的疫情防控服务工作, 假设每名党员均从这四个社区中任意选取一个社区参加疫情防控服务工作, 基本事件总数n =44,恰有一个社区未被这4名党员选取包含的基本事件个数m =C 41C 42A 33,则恰有一个社区未被这4名党员选取的概率为P =m n =C 41C 42A 3344=916.故选:D .【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.9.已知f(x)={(3a −4)x −2a ,x <1log a x ,x ≥1对任意x 1,x 2∈(﹣∞,+∞)且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,那么实数a 的取值范围是( )A .(1,+∞)B .(0,1)C .(43,2] D .(43,4]【分析】根据题意,由函数单调性的定义分析可得函数f (x )在R 上是增函数,结合函数的解析式可得{3a −4>0a >1(3a −4)−2a ≤log a 1,解可得a 的取值范围,即可得答案.解:根据题意,f (x )满足对任意x 1,x 2∈(﹣∞,+∞)且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,则函数f (x )在R 上是增函数,又由f(x)={(3a −4)x −2a ,x <1log a x ,x ≥1,则有{3a −4>0a >1(3a −4)−2a ≤log a 1,解可得:43<a <4,即a 的取值范围为(43,4).故选:D .【点评】本题考查分段函数的单调性,注意函数单调性的定义,属于基础题. 10.在三棱锥P ﹣ABC 中,∠BAC =60°,∠PBA =∠PCA =90°,PB =PC =√6,点P 到底面ABC 的距离为2,则三棱锥P ﹣ABC 的外接球的体积为( ) A .4πB .3√3πC .4√3πD .36π【分析】先由题设条件找到球心的位置,再利用∠BAC =60°,∠PBA =∠PCA =90°,PB =PC =√6⇒△ABC 为等边三角形,进一步找出球的半径,计算出体积. 解:如图,记PA 的中点为O ,连OB ,OC .∵∠PBA =∠PCA =90°, ∴OA =OP =OB =OC ,因此O 为三棱锥P ﹣ABC 的外接球的球心. 又∵PB =PC =√6,∴△PAB ≌△PAC ,∴AB =AC .又∠BAC =60°, ∴△ABC 为等边三角形.记点O 在底面ABC 内的射影为O 1,则O 1为△ABC 的中心.连接OO 1,O 1A ,点P 到底面ABC 的距离为2,∴OO 1=1.设AB =a ,则O 1A =√33a .在直角三角形PBA 中,PA =√6+a 2.在直角三角形OO 1A 中,OA 2=1+(√3a 3)2=1+a 23=|PA|24=6+a 24,解得:a =√6, ∴三棱锥P ﹣ABC 的外接球的半径R =OA =√3.所以三棱锥P ﹣ABC 的外接球的体积V =43π(√3)3=4√3π. 故选:C .【点评】本题主要考查多面体的外接球问题,属于基础题.11.已知双曲线C :x 2a −y 2b =1(a >0,b >0)的左、右焦点分别为F 1,F 2,一条渐近线为l ,过点F 2且与l 平行的直线交双曲线C 于点M ,若|MF 1|=2|MF 2|,则双曲线C 的离心率为( ) A .√2B .√3C .√5D .√6【分析】利用已知条件,结合双曲线定义,通过余弦定理以及渐近线的斜率,列出关系式求解双曲线的离心率即可. 解:由题意可知|MF 1|﹣|MF 2|=2a ,所以|MF 2|=2a ,|MF 1|=4a ,所以16a 2=4a 2+4c 2﹣2×2a ×2c cos ∠MF 2F 1,tan∠MF2F1=ba,所以cos∠MF2F1=ac,所以:16a2=4a2+4c2﹣2×2a×2c×ac,可得5a2=4c2.所以双曲线的离心率为:e=√5.故选:C.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,是中档题.12.已知函数f(x)=(lnx+1﹣ax)(e x﹣2m﹣ax),若存在实数a使得f(x)<0恒成立,则实数m的取值范围是()A.(12,+∞)B.(−∞,12)C.(12,1)D.(−1,12)【分析】分析题意可知,存在实数a,使得直线y=ax始终在函数g(x)=lnx+1与函数h(x)=e x﹣2m之间,作出函数g(x)与函数h(x)的图象,只需分析出极限情况即可得解.解:依题意,存在实数a,使得直线y=ax始终在函数g(x)=lnx+1与函数h(x)=e x﹣2m之间,考虑直线y=ax与函数g(x),函数h(x)均相切于同一点的情况,设切点为(x0,y0),由g′(x)=1x,h′(x)=ex−2m可知,{1x0=e x0−2my0=e x0−2my0=lnx0+1,解得{x0=1y0=1m=12,作出图象如下,由图象观察可知,当m <12时,函数h (x )越偏离函数g (x ),符合题意,即实数m 的取值范围为(−∞,12). 故选:B .【点评】本题考查利用导数研究不等式的恒成立问题,涉及了导数的几何意义的运用,考查等价转化思想,推理能力与计算能力,理解题意是关键,属于较难难题.二、填空题:本题共4个小题,每小题5分,共20分.把答案填写在答题卡相应的位置上.13.设非零向量a →,b →满足a →⊥(a →−b →),且|b →|=2|a →|,则向量a →与b →的夹角为 π3 .【分析】根据题意,设向量a →与b →的夹角为θ,设|a →|=t ,则|b →|=2t ,由向量垂直与数量积的关系可得a →•(a →−b →)=a →2−a →•b →=t 2﹣2t 2cos θ=0,变形可得cos θ的值,结合θ的范围分析可得答案.解:根据题意,设向量a →与b →的夹角为θ,又由|b →|=2|a →|,设|a →|=t ≠0,则|b →|=2t ,又由a →⊥(a →−b →),则a →•(a →−b →)=a →2−a →•b →=t 2﹣2t 2cos θ=0,变形可得:cos θ=12;又由0≤θ≤π,则θ=π3; 故答案为:π3.【点评】本题考查向量数量积的计算,涉及向量垂直的性质以及应用,属于基础题. 14.过抛物线y 2=8x 焦点的直线PC 与该抛物线相交于A ,B 两点,点P (4,y 0)是AB 的中点,则|AB |的值为 12 .【分析】通过抛物线的方程可知p =4,利用中点坐标公式可知x A +x B =2×4=8,最后结合抛物线的定义即可求得焦点弦|AB|的长度.解:∵抛物线y2=8x,∴p=4,又点P(4,y0)是AB的中点,∴x A+x B=2×4=8,由抛物线的定义可知,|AB|=x A+x B+p=x A+x B+4=8+4=12.故答案为:12.【点评】本题考查抛物线的定义及其焦点弦的应用,考查学生的分析能力和运算能力,属于基础题.15.设△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的外接圆面积为16π,且cos2C﹣cos2B=sin2A+sin A sin C,则a+c的最大值为8.【分析】设△ABC的外接圆的半径为R.根据△ABC的外接圆面积为16π,利用正弦定理可得R.由cos2C﹣cos2B=sin2A+sin A sin C,化为:1﹣sin2C﹣(1﹣sin2B)=sin2A+sin A sin C,利用正弦定理及其余弦定理可得B,进而得出b.利用基本不等式的性质即可得出.解:设△ABC的外接圆的半径为R.∵△ABC的外接圆面积为16π,∴16π=πR2,解得R=4.∵cos2C﹣cos2B=sin2A+sin A sin C,∴1﹣sin2C﹣(1﹣sin2B)=sin2A+sin A sin C,∴b2﹣c2=a2+ac,即c2+a2﹣b2=﹣ac,∴cos B=a2+c2−b 22ac =−ac2ac=−12,B∈(0,π),解得B=2π3.∴b=2R sin B=8×√32=4√3.∴(c+a)2=ac+(4√3)2≤(a+c)24+48,∴c+a≤8.当且仅当a=c=4时取等号.故答案为:8.【点评】本题考查了正弦定理余弦定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.16.如图,在正方体ABCD﹣A1B1C1D1中,AC∩BD=O,E是B1C(不含端点)上一动点,则下列正确结论的序号是②③.①D1O⊥平面A1C1D;②OE∥平面A1C1D;③三棱锥A1﹣BDE体积为定值;④二面角B1﹣AC﹣B的平面角的正弦值为√6.6【分析】根据正方体的几何特征,即可判断各命题的真假.解:如图所示,取AD中点F,连接OF,D1F,因为OF⊥平面ADD1A1,所以D1F为OD1在平面ADD1A1的射影,显然,D1F不垂直于A1D,故OD1不垂直于A1D,D1O不垂直于平面A1C1D,①错误;因为AC∥A1C1,B1C∥A1D,所以平面ACB1∥平面A1C1D,而OE⊂平面ACB1,根据线面平行的定义可知,OE∥平面A1C1D,所以②正确;因为B1C∥A1D,所以B1C∥平面A1BD,故点E到平面A1BD等于点C到平面A1BD的距离,所以三棱锥A1﹣BDE体积为定值,③正确;因为B 1B ⊥平面ABC ,AC ⊥BD ,所以∠B 1OB 为二面角B 1﹣AC ﹣B 的平面角的平面角,在△B 1BO 中,tan ∠B 1OB =22=√2,sin ∠B 1OB =√23=√63,④错误.故答案为:②③.【点评】本题主要考查利用面面平行的判定定理,线面平行的定义,线面垂直的判定定理判断命题真假,以及三棱锥体积的求法,二面角的求法的应用, 考查学生的直观想象能力和逻辑推理能力,属于中档题.三、解答题:共70分.解答时应写出必要的文字说明、演算步骤或推理过程.并答在答题卡相应的位置上.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分 17.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =log 3(a n •a n +1),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+⋯+1T n<2.【分析】本题第(Ⅰ)题根据题干a n +1=2S n +1,可得当n ≥2时有a n =2S n ﹣1+1成立,两式相减后再运用公式a n =S n ﹣S n ﹣1(n ≥2),进一步转化计算可判断出数列{a n }是以1为首项,以3为公比的等比数列,即可得到数列{a n }的通项公式;第(Ⅱ)题先由第(Ⅰ)题的结果计算出数列{b n }的通项公式并判别出数列{b n }是以1为首项,2为公差的等差数列,再通过等差数列的求和公式可计算出T n的表达式,再代入1 T1+1T2+⋯+1T n进行计算时运用1n2<1n−1−1n(n≥2)进行放缩即可证明不等式成立.【解答】(Ⅰ)解:依题意,由a n+1=2S n+1,可得当n≥2时,a n=2S n﹣1+1,两式相减,得a n+1﹣a n=2S n+1﹣2S n﹣1﹣1=3a n(n≥2),又∵a1=1,a2=2S1+1=2×1+1=3,∴a2=3a1符合上式,∴数列{a n}是以1为首项,以3为公比的等比数列,故a n=3n−1,n∈N*.(Ⅱ)证明:由(Ⅰ)知,b n=log3(a n•a n+1)=log3(3n﹣1•3n)=log332n﹣1=2n﹣1,则b n=2n﹣1=1+(n﹣1)•2,故数列{b n}是以1为首项,2为公差的等差数列,∴T n=n(1+2n−1)2=n2,∴1T1+1T2+⋯+1T n=1 12+122+⋯+1n2<1+11⋅2+12⋅3+⋯+1(n−1)n=1+1−12+12−13+⋯+1n−1−1n=2−1 n<2,∴不等式1T1+1T2+⋯+1T n<2成立.【点评】本题主要考查数列求通项公式,数列求和与不等式的综合问题.考查了转化与化归思想,放缩法,定义法,指、对数的运算,以及逻辑思维能力和数学运算能力.本题属中档题.18.某工厂通过改进生产工艺来提高产品的合格率,现从改进工艺前和改进工艺后所生产的产品中用随机抽样的方法各抽取了容量为100的样本,得到如表的2×2列联表:改进工艺前改进工艺后合计合格品8595180次品15520合计100100200(Ⅰ)是否有99%的把握认为“提高产品的合格率与改进生产工艺有关”?(Ⅱ)该工厂有甲、乙两名工人均使用改进工艺后的新技术进行生产,每天各生产50件产品,如果每生产1件合格品可获利30元,生产1件次品损失50元.甲、乙两名工人30天中每天出现次品的件数和对应的天数统计如表:甲一天生产的次品数(件)01234对应的天数(天)281073乙一天生产的次品数(件)01234对应的天数(天)369102将统计的30天中产生不同次品数的天数的频率作为概率,记X表示甲、乙两名工人一天中各自日利润不少于1340元的人数之和,求随机变量X的分布列和数学期望.附:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.841 5.0246.6357.87910.828K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n =a +b +c +d .【分析】(Ⅰ)求出K 2,即可判断是否有99%的把握认为“提高产品的合格率与改进生产工艺有关”.(Ⅱ)每天生产的次品数为x ,X 的可能值为0,1,2,求出概率,得到分布列,然后求解期望即可.解:(Ⅰ)K 2=200×(85×5−95×15)2100×100×20×180=509≈5.556<6.635.∴没有99%的把握认为“提高产品的合格率与改进生产工艺有关”. (Ⅱ)∵每天生产的次品数为x ,日利润y =30(50﹣x )﹣50x =1500﹣80x ,其中0≤x ≤4,x ∈N . 由1500﹣80x ≥1340得0≤x ≤2.∵X 是甲、乙1天中生产的次品数不超过2件的人数之和, ∴X 的可能值为0,1,2,又甲1天中生产的次品数不超过2件的概率为2+8+1030=23,乙1天中生产的次品数不超过2件的概率为3+6+930=35,∴P(X =0)=13×25=215,P(X =1)=23×25+13×35=715,P(X =2)=23×35=615, ∴随机变量X 的分布列为:X12P215715615∴E(X)=0×215+1×715+2×615=1915.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查转化思想以及计算能力,是中档题.19.如图,在正三棱柱ABC﹣A1B1C1中,点M,N分别是AB,CC1的中点,D为AB1与A1B的交点.(Ⅰ)求证:CM∥平面AB1N;(Ⅱ)已知AB=2,AA1=4,求A1B1与平面AB1N所成角的正弦值.【分析】(Ⅰ)连接DM,DN.由已知可得BB1∥CC1,BB1=CC1,且四边形AA1B1B 是矩形,结合D为AB1的中点.即可证明四边形CMDN是平行四边形,得CM∥DN,再由直线与平面平行的判定可得CM∥平面AB1N;(Ⅱ)取BC的中点为O,B1C1的中点为E,连接AO,OE,证得AO⊥平面BB1C1C.以OB,OE,OA所在直线为x,y,z轴建立空间直角坐标系,求出A1B1→的坐标与平面AB1N 的一个法向量,由两法向量所成角的余弦值可得A1B1与平面AB1N所成角的正弦值.【解答】(Ⅰ)证明:连接DM,DN.在正三棱柱ABC﹣A1B1C1中,BB1∥CC1,BB1=CC1,且四边形AA1B1B是矩形,∴D为AB1的中点.又∵M为AB的中点,∴DM∥BB1,且DM=12BB1.∵N 为CC 1 的中点,∴CN =12CC 1, ∴DM =CN ,且DM ∥CN ,∴四边形CMDN 是平行四边形,得CM ∥DN , 又DN ⊂平面AB 1N ,CM ⊄平面AB 1N , ∴CM ∥平面AB 1N ;(Ⅱ)解:取BC 的中点为O ,B 1C 1 的中点为E ,连接AO ,OE , ∵△ABC 为正三角形,∴AO ⊥BC ,又平面BB 1C 1C ⊥平面ABC ,∴AO ⊥平面BB 1C 1C .以OB ,OE ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系,如图所示. 则A (0,0,√3),A 1(0,4,√3),B 1(1,4,0),N (﹣1,2,0), A 1B 1→=(1,0,−√3),AB 1→=(1,4,−√3),B 1N →=(−2,−2,0). 设平面AB 1N 的法向量为n →=(x ,y ,z),则{n →⋅AB 1→=x +4y −√3z =0n →⋅B 1N →=−2x −2y =0,令x =1,得n →=(1,−1,−√3). 设A 1B 1与平面AB 1N 所成角为θ,则sin θ=|cos <A 1B 1→,n →>|=|A 1B 1→⋅n→|A 1B 1→|⋅|n →||=25=2√55. ∴A 1B 1与平面AB 1N 所成角的正弦值为2√55.【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.20.已知圆C :(x +2)2+y 2=24与定点M (2,0),动圆I 过M 点且与圆C 相切, 记动圆圆心I 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)斜率为k 的直线l 过点M ,且与曲线E 交于A ,B 两点,P 为直线x =3上的一点,若△ABP 为等边三角形,求直线l 的方程.【分析】(Ⅰ)设圆I 的半径为r ,由题意可得|IC |+|IM |=2√6>4为定值,由椭圆的定义可得E 的轨迹为椭圆,且可知a ,c 的值,再由a ,b ,c 之间的关系求出椭圆的方程; (Ⅱ)设直线l 的方程,与椭圆联立求出两根之和及两根之积,求出AB 的中点D 的坐标,进而求出弦长|AB |,可得直线PQ 的斜率,再由P 在直线x =3上,可得|PQ |的长,由△ABP 为等边三角形时,|PQ |=√32|AB |,进而求出k 的值.解:(Ⅰ)设圆I 的半径为r ,题意可知,点I 满足: |IC |=2√6−r ,|IM |=r , 所以,|IC |+|IM |=2√6,由椭圆定义知点I 的轨迹是以C ,M 为焦点的椭圆, 所以a =√6,c =2,b =√2, 故轨迹E 方程为:x 26+y 22=1;(Ⅱ)直线l 的方程为y =k (x ﹣2),联{x 26+y 22=1y =k(x −2)消去y 得(1+3k 2)x 2﹣12k 2x +12k 2﹣6=0.直线y =k (x ﹣2)恒过定点(2,0),在椭圆内部,所以△>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则有x 1+x 2=12k21+3k2,x 1x 2=12k 2−61+3k2,所以|AB |=√1+k 2|x 1﹣x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2=2√6(1+k 2)1+3k2,设AB 的中点为Q (x 0,y 0),则x 0=6k21+3k2,y 0=−2k 1+3k2,直线PQ 的斜率为−1k(由题意知k ≠0),又P 为直线x =3上的一点,所以x P =3,|PQ |=√1+1k2|x 0﹣x P |=√1+k2k2−3(1+k 2)1+3k2, 当△ABP 为等边三角形时,|PQ |=√32|AB |,即√1+k 2k 2−3(1+k 2)1+3k2=√32−2√6(1+k 2)1+3k2,解得k =±1,即直线l 的方程为x ﹣y ﹣2=0,或x +y ﹣2=0.【点评】本题考查求轨迹方程和直线与椭圆的综合,及等边三角形的性质,属于中档题.21.设函数f (x )=e xx,g (x )=lnx +1x .(Ⅰ)若直线x =m (m >0)与曲线f (x )和g (x )分别交于点P 和Q ,求|PQ |的最小值;(Ⅱ)设函数F (x )=xf (x )[a +g (x )],当a ∈(0,ln 2)时,证明:F (x )存在极小值点x 0,且e x 0(a +lnx 0)<0.【分析】(Ⅰ)设函数h(x)=f(x)−g(x)=e xx−lnx−1x(x>0),利用导数求出函数h(x)在定义域上的最小值,即为|PQ|的最小值;(Ⅱ)对函数F(x)=e x(a+1x+lnx)求导得F′(x)=e x(a+2x−1x2+lnx),分析可知当x∈(12,x0),F(x)单调递减;当x∈(x0,1),F(x)单调递增,进而得证x0是F(x)的极小值点,且x0∈(12,1),a+lnx0=1x02−2x=1−2x0x02,由此可证ex0(a+lnx0)<0.解:(Ⅰ)设函数h(x)=f(x)−g(x)=e xx−lnx−1x(x>0),则h′(x)=xex−e xx2−1x+1x2=(x−1)(e x−1)x2,当x∈(0,+∞)时,e x﹣1>0,故当x∈(0,1)时,h′(x)<0,h(x)单调递减,当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,∴h(x)在(0,+∞)上有最小值h(1)=e﹣1,∴当m=1时,|PQ|的最小值为e﹣1;(Ⅱ)证明:F(x)=e x(a+1x+lnx),则F′(x)=e x(a+2x−1x2+lnx),因为e x>0,所以F′(x)与a+2x−1x2+lnx同号.设t(x)=a+2x−1x2+lnx,则t′(x)=x2−2x+2x3=(x−1)2+1x3>0,故t(x)在(0,+∞)单调递增,因a∈(0,ln2),t(1)=a+1>0,t(12)=a+ln12<0,所以存在x0∈(12,1),使得t(x0)=0,当x∈(12,x0),F′(x)<0,F(x)单调递减;当x ∈(x 0,1),F ′(x )>0,F (x )单调递增;所以若a ∈(0,ln 2),存在x 0∈(12,1),使得x 0是F (x )的极小值点,由t (x 0)=0得a +2x 0−1x 02+lnx 0=0,即a +lnx 0=1x 02−2x 0=1−2xx 02, 所以e x 0(a +lnx 0)=e x 0⋅1−2x 0x 02<0. 【点评】本题主要考查利用导数研究函数的单调性,极值及最值,考查转化思想及推理论证能力,属于中档题. 一、选择题22.在平面直角坐标系xOy 中,直线l 的参数方程为{x =2+√22ty =√22t(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=8cos θ. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)已知点M 的直角坐标为(2,0),直线l 和曲线C 交于A 、B 两点,求1|MA|+1|MB|的值.【分析】(Ⅰ)直接将直线的参数方程中的参数t 消去,可得直线的普通方程,利用极坐标方程与直角坐标方程的互化公式可得曲线C 的直角坐标方程;(Ⅱ)将直线的参数方程代入曲线C 的直角坐标方程,化为关于t 的一元二次方程,由根与系数的关系结合此时t 的几何意义求解.解:(Ⅰ)将{x =2+√22ty =√22t 中参数t 消去得x ﹣y ﹣2=0, 将{x =ρcosθy =ρsinθ代入ρsin 2θ=8cos θ,得y 2=8x , ∴直线l 和曲线C 的直角坐标方程分别为x ﹣y ﹣2=0和y 2=8x ;(Ⅱ)将直线l 的参数方程代入曲线C 的普通方程,得t 2−8√2t −32=0,设A 、B 两点对应的参数为t 1,t 2,则|MA |=|t 1|,|MB |=|t 2|,且t 1+t 2=8√2,t 1t 2=﹣32,∴|t 1|+|t 2|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=16, ∴1|MA|+1|MB|=1|t 1|+1|t 2|=|t 1|+|t 2||t 1t 2|=|t 1−t 2||t 1t 2|=12.【点评】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,关键是直线参数方程中此时t 的几何意义的应用,是中档题. [选修4-5:不等式选讲] 23.已知f (x )=|2x +a 2|.(Ⅰ)当a =2时,求不等式f (x )+|x ﹣1|≥5的解集;(Ⅱ)若对于任意实数x ,不等式|2x +3|﹣f (x )<2a 成立,求实数a 的取值范围. 【分析】(Ⅰ)由题意可得|2x +4|+|x ﹣1|≥5,由零点分区间法,绝对值的定义,去绝对值,解不等式,求并集,即可得到所求解集;(Ⅱ)由题意可得|2x +3|﹣|2x +a 2|<2a 恒成立,运用绝对值不等式的性质可得该不等式左边的最大值,再由绝对值的解法和二次不等式的解法可得所求范围. 解:(Ⅰ)当a =2时,f (x )+|x ﹣1|=|2x +4|+|x ﹣1|≥5,则{x <−2−2x −4−x +1≥5或{−2≤x ≤12x +4−x +1≥5或{x >12x +4+x −1≥5, 解得x ≤−83或0≤x ≤1或x >1,所以原不等式的解集为(﹣∞,−83]∪[0,+∞); (Ⅱ)对于任意实数x ,不等式|2x +3|﹣f (x )<2a 成立, 即|2x +3|﹣|2x +a 2|<2a 恒成立,又因为|2x +3|﹣|2x +a 2|≤|2x +3﹣2x ﹣a 2|=|a 2﹣3|,要使原不等式恒成立,则只需|a 2﹣3|<2a , 由﹣2a <a 2﹣3<2a ,即{a 2+2a −3>0a 2−2a −3<0,即为{a >1或a <−3−1<a <3, 可得1<a <3,所以实数a 的取值范围是(1,3).【点评】本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用绝对值不等式的性质,考查化简运算能力和推理能力,属于中档题.。

2020年高三下学期理科综合联考试卷(物理部分)

2020年高三下学期理科综合联考试卷(物理部分)

2020年高三下学期理科综合联考试卷(物理部分)姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共6分)1. (1分)以下说法中正确的是()A . 原子的核式结构学说,是卢瑟福根据天然放射实验提出来的B . 核反应方程: Be+He―→ C+X中的X为质子C . C的半衰期为5730年,若测得一古生物遗骸中的 C含量只有活体中的,则此遗骸距今约有17 190年D . 一群氢原子处在n=4的能级,跃迁到较低能级时,辐射的光谱线条数为4条2. (1分) (2019高二上·张家口月考) 如图甲所示,在光滑水平面上,MN左侧有一垂直纸面向里的匀强磁场.现将一质量为m,电阻为R,边长为l的正方形金属线框置于该磁场中,使线框平面与磁场方向垂直,且bc边与磁场边界MN重合.对线框施加一按图乙所示随时间规律变化的水平拉力F,使线框由静止开始向右做匀加速直线运动;当t=0时,拉力大小为F0;线框的ad边与磁场边界MN重合时,拉力大小为3F0 .则下列判断错误的是()A . 线框的加速度为B . 线框的ad边出磁场时的速度为C . 线框在磁场中运动的时间为D . 磁场的磁感应强度为3. (1分)甲、乙两个质点同时从同地向同一方向做直线运动,它们的v—t图象如图所示,则下列说法正确的是()A . 乙一直比甲运动得快B . 在第2s末乙追上甲C . 前4s内甲、乙的平均速度相等D . 乙追上甲时距出发点80 m远4. (1分) (2019高三上·北京月考) 有一回旋加速器,两个D形盒的半径为R,两D形盒之间的高频电压为U,偏转磁场的磁感应强度为B.如果一个α粒子和一个氖核().都从加速器的中心开始被加速,则它们从D形盒飞出的速度之比为()A .B .C .D .5. (1分)(2017·临川模拟) 甲、乙两个完全相同的变压器如图接在交流电路中,两负载电阻的阻值之比R 甲:R乙=3:1,甲变压器原线圈上电压为U甲,副线圈上电流为I甲;乙变压器原线圈上电压为U乙,副线圈上电流为I乙,则有()A . U甲=U乙 I甲=I乙B . U甲=3U乙 I甲=I乙C . U甲=U乙 I甲=3I乙D . U甲=3U乙 I甲=3I乙6. (1分) (2017高一下·南宁期末) 2007年11月5日,“嫦娥一号”探月卫星沿地月转移轨道到达月球,在距月球表面200km的P点进行第一次“刹车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,如图所示.卫星在P点经过几次“刹车制动”,最终在距月球表面200km的圆形轨道Ⅲ上绕月球做匀速圆周运动.用T1、T2、T3分别表示卫星在椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ的周期,用a1、a2、a3分别表示卫星沿三个轨道运动到P点的加速度,则下面说法正确的是()A . T1>T2>T3B . T1<T2<T3C . a1>a2>a3D . a1<a2<a3二、多选题 (共3题;共3分)7. (1分)(2019·南宁模拟) 如图所示,一质量为m、带电荷量为q的小球,用绝缘细线悬挂在水平向右的匀强电场中,假设电场区域足够大,静止时悬线向左与竖直方向成60°角。

2020届高三联考理科综合试题及答案

2020届高三联考理科综合试题及答案

绝密★启用前2020届高三联考理科综合试题本试卷分选择题和非选择题两部分,共12页,满分300分,考试用时150分钟。

注意事项:1.答卷前,考生务必用2B铅笔在“准考证号”处填涂准考证号。

用黑色字迹的钢笔或签字笔将自己姓名、班级、考场号、座位号、准考证号填写在答题卷指定区域内。

2.选择题每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其它答案:不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液:必须保持答题卷的整洁。

不按以上要求作答的答案无效。

可能用到的原子量:H 1 C 12 N 14 O 16 Cu 64第一部分选择题(共126分)1.下列关于细胞结构与成分的叙述,正确的是( )A.线粒体膜上有葡萄糖的载体,没有氧气的载体B.细胞中的色素不是分布在叶绿体中,就是分布在液泡中C.含有蛋白质的细胞器不一定含有核酸,含核酸的细胞器一定含有蛋白质D.微量元素可参与某些复杂化合物的组成,如下Fe、Mg分别参与蛋白质和叶绿素的组成2.SGLT2是肾小管细胞膜上重吸收葡萄糖的一种载体蛋白,SGLT2可以与肾小管腔中葡萄糖和结合,形成-载体-葡萄糖复合物,将顺浓度梯度运入细胞,同时将葡萄糖逆浓度梯度运入细胞,下列叙述错误的是( )A.氧气的含量变化会直接影响SGLT2参与的葡萄糖的运输速率B.SGLT2将肾小管腔中的葡萄糖运入细胞属于主动运输C.细胞通过SGLT2运输葡萄糖的动力来自的浓度差D.肾小管细胞中SGLT2合成不足可能导致人尿液中含有葡萄糖3.蝗虫的决定为XO型,正常雄虫的体细胞中有23条染色体,仅有一条性染色体(X染色体)。

如图表示某雄虫精巢中某一细胞染色体的行为,染色体A和B为一对同源染色体。

以下叙述正确的是( )A.图示细胞处于减数第二次分裂后期B.若对该种蝗虫进行基因组测序,则应该测定I2条染色体的DNA序列C.该细胞所处的时期染色体高度螺旋化难以解旋,细胞内不能合成新的蛋白质D.萨顿通过观察雄蝗虫体细胞和精子细胞的染色体数,提出了基因在染色体上的假说4.2017年诺贝尔生理学或医学奖颁给了美国的三位科学家,他们发现果蝇的昼夜节律与PER 蛋白浓度的变化有关,如图表示PER蛋白作用部分过程,有关叙述错误的是( )A.PER蛋白可反馈抑制per基因的转录B.permRNA的合成过程发生在细胞核内C.图中核糖体移动的方向是从a→bD.PER蛋白与TIM蛋白结合后穿过核膜进入细胞核5.下列关于生物变异、育种和进化的叙述,正确的是A.B基因可突变成、基因反映了基因突变的随机性B.单倍体育种中常用一定浓度的秋水仙素处理萌发的种子或幼苗C.生物产生的变异个体都属于可遗传的变异,都可以作为生物进化的原材料D.地理隔离可阻止种群间的基因交流,种群基因库的明显差异导致种群间产生生殖隔离6.如图为人体体液物质交换示意图,下列叙述正确的是A.体液①含有尿素、氨基酸、糖原、等物质B.体液①和②之间进行物质交换,可以等量地相互转化C.④能回流血浆,是淋巴细胞和吞噬细胞的直接生活环境D.③若产生乳酸会引起①②④内pH剧烈变化7.下列说法中错误的是()A. 采煤工业爆破时把干冰和炸药放在一起,既能增强爆炸威力,又能预防火灾B. 国产大型飞机C919使用的碳纤维是一种新型的无机非金属材料C. 《肘后急备方》“青蒿一握,以水二升渍,取绞汁”,该过程属于物理变化D. 高级脂肪酸乙酯是生物柴油的一种成分,它属于油脂8.国际计量大会第26次会议新修订了阿伏加德罗常数(N A=6.02214076×1023mol-1),并于2019年5月20日正式生效。

2021届重庆市渝西九校高三下学期联考理综生物试题

2021届重庆市渝西九校高三下学期联考理综生物试题
C.植物细胞中只有叶肉细胞才能合成多糖
D.病毒合成自身核酸和蛋白质时都需要宿主细胞提供原料和能量
2.5-氟尿嘧啶能抑制脱氧核苷酸合成酶的活性,从而抑制DNA的合成,其结构与尿嘧啶非常相似,也能干扰基因的表达;环磷酰胺也可以抑制DNA的合成,而且大剂量的环磷酰胺会抑制B细胞活性和相关抗体的形成。据此判断,下列叙述错误的是()
A.5-氟尿嘧啶和环磷酰胺都能够抑制肿瘤细胞的增殖
B.5-氟尿嘧啶可能使mRNA的结构异常,从而干扰基因的表达
C.环磷酰胺作用于肿瘤细胞后,可以把肿瘤细胞的分裂阻断在前期
D.注射大剂量环磷酰胺可导致人体被病原体感染的概率增大
3.地衣由真菌菌丝包裹着绿藻或蓝藻细胞构成,藻细胞进行光合作用为地衣制造有机养分,而菌丝则可以吸收水分和无机盐,为藻细胞进行光合作用等提供原料,并使其保持一定的湿度。下列叙述错误的是()
A.该病毒的各种成分都可以作为抗原刺激机体产生免疫反应
B.患者体温持续在39℃的过程中,机体的产热量大于散热量
C.该病毒在增殖过程中更容易发生基因突变或基因重组
D.可通过分析该病毒的核酸中五碳糖或碱基的类型,来确定其核酸是DNA还是RNA
5.某二倍体的基因A可编码一条含63个氨基酸的肽链,在紫外线照射下,该基因内部插入了3个连续的碱基对,突变成基因a。下列相关叙述错误的是()
A.大力植树造林既可以改善生态环境,也可以从根本上解决温室效应问题
B.温室效应是生物圈碳循环的平衡状态被破坏导致的,这是个全球性问题
C.岛国受温室效应的影响相对较大,因为岛国的CO2排放量更大
D.为了尽快降低温室效应对气候的影响,应立即实现CO2的净零排放
二、综合题
7.图1表示植物叶肉细胞中光合作用和有氧呼吸的部分过程,其中C3和C5在不同代谢过程中表示不同的化合物;图2表示该细胞中的某种生物膜和其上所发生的部分生化反应,其中e-表示电子;图3表示25℃时叶片的光合速率。请据图回答下列问题:

重庆渝西中学2020届高三下学期第三次月考物理试卷

重庆渝西中学2020届高三下学期第三次月考物理试卷

高2020级高三下期第三次段考理科综合能力测试考生注意:1.本试卷分第I卷和第II卷两部分。

满分300分,考试时间150分钟。

2.考生作答时,请将★★答案★★答在答题卡上。

必须在题号所指示的答题区域作答,超.出答题区域书写的★....★无效,在试题卷、草稿纸上答题无效.................。

.........★答案★3.做选考题时,考试须按照题目要求作答,并用2B铅笔在答题卡上把所选题目的题号涂黑。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Al 27 Cu 64第I卷(共126分)一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.研究表明,长期大量施用铵态氮肥,会引发一系列的土壤环境问题。

如一些植物的根系在吸收无机盐时,吸收的NH4+多于吸收的阴离子,为维持体内的电荷平衡,植物会通过根系释放H+到土壤中,土壤pH下降,导致土壤酸化。

下列相关叙述不正确的是()A.在酸化土壤中,无机盐多以离子形式存在,该土壤条件有利于农作物的生长和发育B.农作物吸收的含氮物质可用于合成蛋白质、叶绿素、磷脂等物质C.农田中农副产品被大量输出,因此需要长期施加氮肥D.在减少铵态氮肥施用的同时,合理的轮作可能对土壤酸化有一定的改善作用2.受精作用时,精子头部的顶体会释放出顶体酶使卵细胞周围形成一条通道,便于受精。

下列说法不正确的是()A.卵细胞继承了初级卵母细胞1/4的核DNAB.卵细胞与精细胞相比较,卵细胞的相对表面积比较小,细胞代谢慢C.精子游动的能量来自于葡萄糖在线粒体内的氧化分解D.精子释放顶体酶的过程体现了细胞膜的结构特点3.下列关于变异和进化的说法,正确的是()A.用秋水仙素处理单倍体植株后得到的一定是纯合子B.变异都能为生物进化提供原材料,如基因突变、染色体变异等C.两个种群间的隔离一旦形成,这两个不同种群的个体之间就不能进行交配,或者即使能交配,也不能产生可育后代D.在三倍体无子西瓜的育种过程中,得到的无籽西瓜可能有种子4.某研究性学习小组设计如图1所示实验装置来测量H2O2酶催化H2O2反应放出的O2含量,在最适条件下将反应室旋转180°,使滤纸片与H 2O 2溶液混合,每隔30s 读取并记录注射器刻度,共进行2min ,得到如图2所示曲线①,下列说法正确的是( )A .若仅将肝脏研磨液替换成FeCl 3溶液,可证明酶具有催化作用B .若将相同的多个该装置浸没在不同温度的水中保温一段时间再将其旋转,可用于探究该酶的最适温度C .若酶充足时,仅将H 2O 2浓度由3%提高到5%,实验结果如曲线②所示D .只有提高H 2O 2溶液的pH ,实验结果才能如曲线③所示5.图为探究2,4-D(生长素类似物)浓度对洋葱生根影响的实验及结果,以下叙述正确的是( )A .适宜浓度生长素主要促进细胞分裂从而促进根伸长B .调节洋葱生根的激素全部来自施加的2.4-D 溶液C .培养6天的实验结果未体现生长素作用的两重性D .促进洋葱芽生长的最适2,4-D 溶液浓度也是10-8mol/L6.下列有关科学史的叙述正确的是( )A .欧文顿提出:生物膜是由脂质和蛋白质组成的B .斯他林和贝利斯通过实验证明小肠黏膜产生促胰液素并进入血液,随血液到达胰腺,引起胰液的分泌C .卡尔文等用蓝藻做实验,探明了CO 2中碳在光合作用中转换成有机物中碳的途径D .英国科学家威尔金斯发现腺嘌呤的量总是等于胸腺嘧啶的量,鸟嘌呤的量总等于胞嘧啶的量7.面对突如其来的新冠病毒,越来越多的人意识到学习化学的重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档