整除的性质和特征

合集下载

整除的性质和特征

整除的性质和特征

整除的性质和特征整除是数论中的一个重要概念,它描述了一个整数能够被另一个整数整除,也就是除法运算的结果是整数。

整除有着许多重要的性质和特征,下面将详细介绍。

1.定义:整数a能够被整数b整除,即b是a的因数,记作b,a,当且仅当存在一个整数c,使得a=b·c。

其中,c称为a除以b的商,b称为a的约数,a称为b的倍数。

2.可加性:如果c是a的一个约数,那么c也是a的倍数。

换句话说,如果一个整数能够整除a,那么它也能够整除a的倍数。

3.可乘性:如果b,a且c,a,那么b·c也,a。

换句话说,如果一个整数能够整除a和b,那么它也能够整除a与b的乘积。

4.整除的传递性:如果b,a且c,b,那么c,a。

换句话说,如果一个整数能够整除a和b,那么它也能够整除a。

5.算术基本定理:任意一个大于1的整数,都可以表达为多个质数的积。

这意味着,如果一个整数可以整除另一个整数,那么它必然可以整除这个整数的所有质因数。

6. 两个非零整数的最大公约数和最小公倍数:两个非零整数a和b的最大公约数(记作gcd(a,b))是能够同时整除a和b的最大正整数。

两个非零整数a和b的最小公倍数(记作lcm(a,b))是能够同时被a和b整除的最小正整数。

于是有gcd(a,b)·lcm(a,b)=a·b。

7.唯一分解定理:任何一个整数都能够唯一地分解为几个质数的乘积。

这个定理也说明了一个数的因数有限,不会无限增多。

8. 整除与除法的关系:一个整数a能够被b整除,相当于a除以b 的余数为0。

对于任意的整数a和b,总能够找到唯一的两个整数商q和余数r,使得a=bq+r,其中r满足0≤r<,b。

9. 整除与模运算的关系:一个整数a能够被b整除,等价于a除以b的余数为0,即a mod b = 0。

在模运算中,a mod b表示a除以b的余数。

10. 除法的消去律:如果一个整数a能够被b整除,那么对于任意的整数c,ac也能够被bc整除。

数的整除

数的整除

数的整除性质、特征【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。

(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:1、能被2整除的数:个位数能被2整除,则这个数就能被2整除。

如个位上是2、4、6、8、0的数都能被2整除。

2、每一位上数字之和能被3整除,那么这个数就能被3整除。

3、最后两位能被4整除的数,这个数就能被4整除。

4、个位上是0或5的数都能被5整除。

5、一个数只要能同时被2和3整除,那么这个数就能被6整除。

6、把个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

另外,把末三位数字截去,再从余下的数中减去截去的末三位数,如果差是7的倍数,则原数能被7整除。

7、最后三位能被8整除的数,这个数就能被8整除。

8、每一位上数字之和能被9整除,那么这个数就能被9整除。

9、若一个整数的末位是0,则这个数能被10整除。

10、若一个整数的奇位数字之和与偶位数字之和的差值能被11整除,则这个数能被11整除。

另外1,把个位数字截去,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。

另外2,把末三位数字截去,再从余下的数中减去截去的末三位数,如果差是11的倍数,则原数能被11整除.12、若一个整数能被3和4整除,则这个数能被12整除。

13、若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

另外,把末三位数字截去,再从余下的数中减去截去的末三位数,如果差是13的倍数,则原数能被13整除.14、若一个整数能被2和7整除,则这个数能被14整除。

整除

整除

整除整除(一)基础知识:1.整除的定义、性质.定义:如果a、b、c 是整数并且,a÷b=c。

则称a能被b整除或者b能整除a ,记做,否则称为a不能被b整除或者b不能整除a,记做.性质1:如果a、b都能被c整除,那么他们的和与差也能被c整除.性质2:如果b与c的乘积能够整除a,那么b、c都能整除a.性质3:如果b、c都能整除a,并且b、c互质,那么b、c的乘积也能够整除a.性质4:如果c能整除b,b能整除a,那么c能整除a.性质5:如果b和c的乘积能够被a整除,并且a,b互质,那么c能够被a整除.2.被2(5)整除特征:以2,4,6,8,0(5,0)结尾.3.被3,9整除特征:数字和被3,9整除.4.被4(25)整除的特征:后2位能被4(25)整除;被8(125)整除的特征:后3位能被8(125)整除.5.被11整除特征:奇数位数字和与偶数位数字和之差能被11整除. (“奇偶位差法”).6.被7、11、13整除特征:末三位与末三位之前的数之差能被7、11、113整除.7.整除性质、特征的综合应用,末尾0的个数问题的处理,运用设未知量求解整除问题.例题:例1、如果六位数能够被105整除,那么后两位数是多少?[答疑编号5721130101]【解答】设六位数为,105=3×5×7,依次考虑被3,5,7整除得到得到唯一解a=8,b=5.故后两位为85.例2、求所有的x,y ,使得 .[答疑编号5721130102]【解答】72=8×9,根据整除9性质易得x+y=8或17,根据整除4 的性质y=2或6,分别可以得到5位数32652、32256,检验可知只有32256满足题意.例3、一本陈年旧账上写的:购入143只羽毛球共花费元,其中处字迹已经模糊不清,请你补上中的数字并且算出每只羽毛球的单价.2[答疑编号5721130103]【解答】解得:a=7,b=1所以方框处的数字是7和1,单价5.37元.例4、要使六位数能够被63整除,那么商最小是多少?[答疑编号5721130104]【解答】63=7×9.再考虑该数能被9整除,有a+b+c=2或11或20. 由于要求最小的商也就是最小的被除数,先希望a=0. 此时,易验证b=0,b=1无解,而在b=2时,有解c=9,所以最小的被除数是100296,最小的商是1592.3例5、请用数字6、7、8各两次组成一个六位数使得这个六位数能够被168整除.[答疑编号5721130105]【解答】168=3×7×8,用6,7,8各两次,数字和42,是3的倍数.而用6、7、8组成的3位数是8的倍数的只有768,776 .当后三位是768,776时,前三位只有12种取法,经实验只有数768768符合题目要求。

第一节 整除意义、特征和性质

第一节 整除意义、特征和性质

第一讲数的整除第一节整除的意义与特征、性质第1课时教学内容:整除的意义与常用数的整除特征。

教学目标:理解整除的意义,掌握常用数的整除特征,并能运用特征判断。

教学重难点:理解掌握常用数的整除的特征。

教学过程:一、整除的意义当两个整数a和b(b≠0),a除以b商为整数余数为零时,则称a能被b整除或b能整除a,也把a叫做b的倍数,b叫a的因数,记作b|a,如果a 除以b所得的余数不为零,则称a不能被b整除,或b不整除a,记作b|a.二、整除特征(1)1与0的特性:1是任何整数的因数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的个位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的各位数字和能被3整除,则这个整数能被3整除。

(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)若一个整数的个位是0或5,则这个数能被5整除。

(6)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

(7)若一个整数的各位数字和能被9整除,则这个整数能被9整除。

(8)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

(9)如果一个数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)能被7(11、13)整除,这个数就能被7(11、13)整除。

三、例题讲解例1:(1)判断47382能否被3或9整除?(2)判断1548764能否被7整除?(3)判断42559,7295872能否被11整除?解:(1)4+7+3+8+2=24 3|24, 9|24∴3|47382, 9|47382(2)1548-764=784=7×112 7|784 ∴ 7|1548764(3)(4+5+9)―(2+5)=18―7=11∴11|42559(7+9+8+2)―(2+5+7)=26―14=12 11|12 ∴11|7295871小结:判断一个整数能否被另一个整数整除,充分考虑整除的特征,这样有利于我们去判断。

整除规则(原理,性质)

整除规则(原理,性质)

整除规则(原理,性质)各种被整除的数的特征(放在这里以备以后查阅方便)(1)被2整除的数的特征:一个整数的末位是偶数(0、2、4、6、8)的数能被2整除。

(2)被3整除的数的特征:一个整数的数字和能被3整除,则这个数能被3整除。

(3)被4整除的数的特征:一个整数的末尾两位数能被4整除则这个数能被4整除。

可以这样快速判断:最后两位数,要是十位是单数,个位就是2或6,要是十位是双数,个位就是0、4、8。

(4)被5整除的数的特征:一个整数的末位是0或者5的数能被5整除。

(5)被6整除的数的特征:一个整数能被2和3整除,则这个数能被6整除。

(6)被7整除的数的特征:“割减法”。

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,这样,一次次下去,直到能清楚判断为止,如果差是7的倍数(包括0),则这个数能被7整除。

过程为:截尾、倍大、相减、验差。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

(7)被8整除的数的特征:一个整数的未尾三位数能被8整除,则这个数能被8整除。

(8)被9整除的数的特征:一个整数的数字和能被9整除,则这个数能被9整除。

(9)被10整除的数的特征:一个整数的末位是0,则这个数能被10整除。

(10)被11整除的数的特征:“奇偶位差法”。

一个整数的奇位数字之和与偶位数字之和的差是11的倍数(包括0),则这个数能被11整除。

(隔位和相减)例如,判断491678能不能被11整除的过程如下:奇位数字的和9+6+8=23,偶位数位的和4+1+7=12。

23-12=11。

因此491678能被11整除。

(11)被12整除的数的特征:一个整数能被3和4整除,则这个数能被12整除。

(12)被13整除的数的特征:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,这样,一次次下去,直到能清楚判断为止,如果是13的倍数(包括0),则这个数能被13整除。

整除的性质和特征

整除的性质和特征

整除的性质和特征整除问题是整数内容最基本的问题;理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感;一、整除的概念:如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b 整除或b能整除a,记作b/a,读作“b整除a”或“a能被b整除”;a叫做b的倍数,b叫做a 的约数或因数;整除属于除尽的一种特殊情况;二、整除的五条基本性质:1如果a与b都能被c整除,则a+b与a-b也能被c整除;2如果a能被b整除,c是任意整数,则积ac也能被b整除;3如果a能被b整除,b能被c整除,则积a也能被c整除;4如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;5任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数;三、一些特殊数的整除特征:根据整除的基本性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便;1如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征;①若一个整数的个位数字是2的倍数0、2、4、6或8或5的倍数0、5,则这个数能被2或5整除;②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除;推理过程:2、5都是10的因数,根据整除的基本性质2,可知所有整十数都能被10、2、5整除;任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基本性质1,则这个数能被2或5整除;又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基本性质2,可知任意整百数都能被4、25整除,任意整千数都能被8、125整除;同时,任意一个多位数都可以看作一个整百数和它末两位数的和或一个整千数和它的末三位数的和,根据整除的基本性质1,可以推导出上面第②条、第③条整除特征;同理可证,若一个数的末四位数能被16或625整除,则这个数能被16或625整除,依此类推;2若一个整数各位上数字和能被3或9整除,则这个数能被3或9整除;推理过程:因为10、100、1000……除以9都余1,所以几十、几百、几千……除以9就余几;因此,对于任意整数ABCDE…_______________都可以写成下面的形式n为任意整数:9n+A+B+C+D+E+……9n一定能被3或9整除,根据整除的基本性质1,只要这个数各位上的数字和A+B +C+D+E+……能被3或9整除,这个数就能被3或9整除;3用“截尾法”判断整除性;①截尾减2法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的2倍,差是7的倍数,则原数能被7整除;②截尾减1法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的1倍,差是11的倍数,则原数能被11整除;③截尾加4法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的4倍,差是13的倍数,则原数能被13整除;④截尾减5法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的5倍,差是17的倍数,则原数能被17整除;⑤截尾加2法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的2倍,差是19的倍数,则原数能被19整除;根据整除的基本性质3,以上5条整除特征中,如果差太大,可以继续前面的“截尾翻倍相加”或“截尾翻倍相减”的过程,直到能直接判断为止;推理过程:设任意一个整数的个位数字为y,这个数可以表示成10x+y的形式,其中x为任意整数;一个数截尾减2后,所得数为x-2y;因为截去这个数的个位数字后,所得数x减去个位数字y的2倍,实际上是在原数的十位数字上减去2个y,即减去了20个y,截尾一个y,总共减去了21个y,剩下了x-2y个10;如下式:10x-20y+y-y﹦x-2y×10﹦10x +y-21y;根据整除的基本性质,如果x-2y能被7整除,则x-2y×10就能被7整除,即10x+y-21y能被7整除,21y是7的倍数,可以推出原数10x+y一定能被7整除;“截尾加4”就是原数截去1个y、加上40个y,总共加了39y13的倍数,得到x+4y 个10,“截尾加4”所得x+4y如果能被13整除,原数必能被13整除;同理,“截尾减1”就是原数减去了11个y11的倍数,原数剩下x-y个10,“截尾减1”所得x-y能被11整除,原数必能被11整除;“截尾减5”就是原数减去了51个y17的倍数,原数剩下x-5y个10,“截尾减5”所得x-5y能被17整除,原数必能被17整除;“截尾加2”就是原数加了19y19的倍数,得到x+2y个10,“截尾加2” 所得x+2y如果能被19整除,原数必能被19整除;依此类推,可以用“截尾加3”判断一个数能否被29整除,用“截尾减4”判断一个数能否被41整除等等;4 “截尾法”的推广使用;①若一个数的末三位数与末三位之前的数字组成的数相减之差大数减小数能被7、11或13整除,则这个数一定能被7、11或13整除;②若一个整数的末四位与之前数字组成数的5倍相减之差能被23或29整除,则这个数能被23或29整除;比较适合对五位数进行判断推理过程:①设任意一个整数的末三位数为y,则这个数可以表示成1000x+y的形式,其中x 为任意整数;当x大于y时,这个数末三位之前的数字组成的数减去末三位数得到x-y;这里x 减y实际上是在原数的千位上减去y,即减去了1000y,加上截去末三位数y,总共减去了1001y,原数剩下x-y个1000;如下式:1000x-1000y+y-y﹦1000x-y﹦1000x+y-1001y7×11×13﹦1001,7、11和13都是1001的因数;综上所述,如果这个数末三位之前的数字组成的数减去末三位数得到x-y能被7、11或13整除,即1000x+y-1001y能被7、11或13整除,则原数必能被7、11或13整除;当y大于x时,可得1000y-x﹦1001y-1000x+y,如果y-x能被7、11或13整除,则原数必能被7、11或13整除;②设任意一个整数的末四位数为y,则这个数可以表示成10000x+y的形式,其中x 为任意整数;末四位与之前数字组成数的5倍相减之差即y-5x;10000y-5x﹦1005y-510000x+y因为1005是23和29的公倍数,如果一个数末四位与之前数字组成数的5倍相减之差即y-5x能被23或29整除,即10000y-5x能被23或29整除,则原数必能被23或29整除;依此类推,如果一个数末两位数与之前数字相减之差能被101整除,则这个数必能被101整除等等;5若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除;推理过程:一个整数偶数位上每个计数单位除以11都余1,如1、100、10000……等,除以11都余1,因此每个偶数位上数字是几,它所表示的数值除以11就余几,所有偶数位上数字之和除以11余几,所有偶数位数字所表示的数值除以11就余几;一个整数奇数位上每个计数单位除以11都“缺1”余数为10,如10、1000、100000……等,除以11都“缺1”, 因此每个奇数位上数字是几,它所表示的数值要整除11就缺几,所有奇数位上数字之和除以11缺几,所有奇数位数字所表示的数值除以11就缺几;“移多补少”,只有一个整数所有奇位数字之和与偶位数字之和相减之差能被11整除,原数才能被11整除;。

整除

整除

整除整除的两个基本性质:(1)如果甲、乙两个数都能被整数丙整除,那么甲、乙两数的和或差也能被丙整除;(2)几个整数相乘,如果其中有一个因数能被某个整数整除,那么它们的积能被这个数整除。

11的倍数特征:奇数位数字之和与偶数之和的差能被11整除,同样这个数被11除的余数也即差的余数。

7、13的倍数特征:这个末三位与末三位以前的数字组成的数的差能否被7、13整除。

例1、(1)判断47382能否被3或9整除?(2)判断42559,7295871能否被11整除?例2、求一个首位数字为5的最小六位数,使这和数能被9整除,且各位数字不相同。

例3、老师买了相同的书,当时没有记住每本书的价格,只用铅笔记下用掉的总钱数,回小后发现有两个数字已看不清,你能帮助补上这两个数字吗?(例499整除,这个六位数是多少?例5、有一个六位数,前四位数是2857,即11和13整除,请你算出后两位数。

例6、若四位数b a 89能被15整除,则a 代表的数字是多少?例7、已知四位数abcd 是11的倍数,且有a c b =+,bc 为完全平均数,求此四位数。

例8、在一个四位数的某位数字前添上一个小数点,再和原来的四位数相减,差是1803.6,则原来的四位数是多少?例9、三个连续的自然数介于100到200之间,其中最小的能被3整除,中间的能被5整除,最大的能被7整除。

是求出所有的这样的三个自然数。

练习:1、 已知45|y x 1993,求满足条件的六位数y x 1993。

2、 李老师为学校一共买了28支价格相同的钢笔,共付人民币9 字相同,请问每支钢笔多少元?3、 已知整数a a a a a 54321能被11整除,求所有满足这个条件的整数。

4、 六位数99整除,它的最后两位数是多少?5、 将1996加一个整数,使和能被23与19整除,加的整数要尽可能小,那么所加的整数是多少?6、 如果一个九位数B A 1999311能被72整除,试求A 、B 两位数的差(大减小)。

整除数的性质和规律

整除数的性质和规律

整除数的性质和规律一、整除性质1:如果数a、b都能被c整除,则(a+b)与(a-b)也能被c整除;2:如果数a能被数b整除,c为整数,则积ac也能被数b整除;3:如果数a能被数b整除,b又能被c整除,则a也能被数c整除;4:如果数a能同时被数b、c整除,且b,c互质,则a一定能被b和c的积整除;5:如果数a能被c整除,b不能被c整除,则(a+b)与(a-b)不能被c整除。

二、整除规律⑴、能被1整除的数:任何数都能被1整除。

⑵、能被2整除的数:末位是0,2,4,6或8的数,都能被2整除。

⑶、能被5整除的数一个整数的末位是0或5,则这个整数能被5整除个位上是0的数,既能被2整除,又能被5整除,而且还能被10整除。

⑷、能被3或9整除的数:一个数只要各数位数字的和是3或9的倍数,就一定能被3或9整除。

例如:判断3576,2549能不能被3整除3576:∵3+5+7+6=21(21是3的倍数)∴3576能被3整除。

2549:∵2+5+4+9=20(20不是3的倍数)∴2549不能被3整除。

检验:2549÷3=849 (2)又如:判4212、5282能不能被9整除4212:∵4+2+1+2=9(9是9的倍数)∴4212能被9整除。

5282:∵5+2+8+2=17(17不是9的倍数)∴5282不能被9整除。

用上述方法不但能判断一个数能不能被3或9整除,而且还能判断不能整除时,余数是多少。

如:判断7485能不能被9整除7+4+8+5=24→2+4=6各位数字继续相加从结果看出:把7485的各位数字相加,最后所得的和是6不是9,所以7485这个数不能被9整除。

最后得出的6,就是7485除以9的余数。

即:7485÷9=831 (6)能被9整除的数,一定能被3整除。

能被3整除的数,却不一定能被9整除。

⑸、能被6整除的数既能被2整除,又能被3整除,也就是能被6整除的数。

①.首先看这个数是不是偶数,凡是偶数都能被2整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整除的性质和特征
整除问题是整数内容最基本的问题。

理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感。

一、整除的概念:
如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b整除(或b能整除a),记作b/a,读作“b整除a”或“a能被b整除”。

a叫做b的倍数,b叫做a的约数(或因数)。

整除属于除尽的一种特殊情况。

二、整除的五条基本性质:
(1)如果a与b都能被c整除,则a+b与a-b也能被c整除;
(2)如果a能被b整除,c是任意整数,则积ac也能被b整除;
(3)如果a能被b整除,b能被c整除,则积a也能被c整除;
(4)如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;
(5)任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数。

三、一些特殊数的整除特征:
根据整除的基本性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便。

(1)如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征。

①若一个整数的个位数字是2的倍数(0、2、4、6或8)或5的倍数(0、5),则这个数能被2或5整除;
②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;
③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除。

【推理过程】:
2、5都是10的因数,根据整除的基本性质(2),可知所有整十数都能被10、2、5整除。

任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基本性质(1),则这个数能被2或5整除。

又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基本性质(2),可知任意整百数都能被4、25整除,任意整千数都能被8、125整除。

同时,任意一个多位数都可以看作一个整百数和它末两位数的和或一个整千数和它的末三位数的和,根据整除的基本性质(1),可以推导出上面第②条、第③条整除特征。

同理可证,若一个数的末四位数能被16或625整除,则这个数能被16或625整除,依此类推。

(2)若一个整数各位上数字和能被3或9整除,则这个数能被3或9整除。

【推理过程】:
因为10、100、1000……除以9都余1,所以几十、几百、几千……除以9就余几。

因此,对于任意整数ABCDE…(_______________)都可以写成下面的形式(n为任意整数):
9n+(A+B+C+D+E+……)
9n一定能被3或9整除,根据整除的基本性质(1),只要这个数各位上的数字和(A+B+C+D+E+……)能被3或9整除,这个数就能被3或9整除。

(3)用“截尾法”判断整除性。

①截尾减2法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的2倍,差是7的倍数,则原数能被7整除;
②截尾减1法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的1倍,差是11的倍数,则原数能被11整除;
③截尾加4法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的4倍,差是13的倍数,则原数能被13整除;
④截尾减5法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的5倍,差是17的倍数,则原数能被17整除;
⑤截尾加2法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的2倍,差是19的倍数,则原数能被19整除。

根据整除的基本性质(3),以上5条整除特征中,如果差太大,可以继续前面的“截尾翻倍相加”或“截尾翻倍相减”的过程,直到能直接判断为止。

【推理过程】:
设任意一个整数的个位数字为y,这个数可以表示成10x+y的形式,其中x为任意整数。

一个数截尾减2后,所得数为(x-2y)。

因为截去这个数的个位数字后,所得数x减去个位数字y的2倍,实际上是在原数的十位数字上减去2个y,即减去了20个y,截尾一个y,总共减去了21个y,剩下了(x-2y)个10。

如下式:10x-20y+y -y﹦(x-2y)×10﹦(10x+y)-21y。

根据整除的基本性质,如果(x-2y)能被7整除,则(x-2y)×10就能被7整除,即(10x+y)-21y能被7整除,21y是7的倍数,可以推出原数(10x+y)一定能被7整除。

“截尾加4”就是原数截去1个y、加上40个y,总共加了39y(13的倍数),得到(x+4y)个10,“截尾加4”所得(x+4y)如果能被13整除,原数必能被13整除。

同理,“截尾减1”就是原数减去了11个y(11的倍数),原数剩下(x-y)个10,“截尾减1”所得(x-y)能被11整除,原数必能被11整除;
“截尾减5”就是原数减去了51个y(17的倍数),原数剩下(x-5y)个10,“截尾减5”所得(x-5y)能被17整除,原数必能被17整除;
“截尾加2”就是原数加了19y(19的倍数),得到(x+2y)个10,“截尾加2” 所得(x+2y)如果能被19整除,原数必能被19整除。

依此类推,可以用“截尾加3”判断一个数能否被29整除,用“截尾减4”判断一个数能否被41整除等等。

(4)“截尾法”的推广使用。

①若一个数的末三位数与末三位之前的数字组成的数相减之差(大数减小数)能被7、11或13整除,则这个数一定能被7、11或13整除;
②若一个整数的末四位与之前数字组成数的5倍相减之差能被23或29整除,则这个数能被23或29整除。

(比较适合对五位数进行判断)
【推理过程】:
①设任意一个整数的末三位数为y,则这个数可以表示成1000x+y的形式,其中x为任意整数。

当x大于y时,这个数末三位之前的数字组成的数减去末三位数得到(x-y)。

这里x减y实际上是在原数的千位上减去y,即减去了1000y,加上截去末三位数y,总共减去了1001y,原数剩下(x-y)个1000。

如下式:
1000x-1000y+y-y﹦1000(x-y)﹦(1000x+y)-1001y
7×11×13﹦1001,7、11和13都是1001的因数。

综上所述,如果这个数末三位之前的数字组成的数减去末三位数得到(x-y)能被7、11或13整除,即(1000x+y)-1001y能被7、11或13整除,则原数必能被7、11或13整除。

当y大于x时,可得1000(y-x)﹦1001y-(1000x+y),如果(y-x)能被
7、11或13整除,则原数必能被7、11或13整除。

②设任意一个整数的末四位数为y,则这个数可以表示成10000x+y的形式,其中x为任意整数。

末四位与之前数字组成数的5倍相减之差即(y-5x)。

10000(y-5x)﹦1005y-5(10000x+y)
因为1005是23和29的公倍数,如果一个数末四位与之前数字组成数的5倍相减之差即(y-5x)能被23或29整除,即10000(y-5x)能被23或29整除,则原数必能被23或29整除。

依此类推,如果一个数末两位数与之前数字相减之差能被101整除,则这个数必能被101整除等等。

(5)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

【推理过程】:
一个整数偶数位上每个计数单位除以11都余1,如1、100、10000……等,除以11都余1,因此每个偶数位上数字是几,它所表示的数值除以11就余几,所有偶数位
上数字之和除以11余几,所有偶数位数字所表示的数值除以11就余几。

一个整数奇数位上每个计数单位除以11都“缺1”(余数为10),如10、1000、100000……等,除以11都“缺1”,因此每个奇数位上数字是几,它所表示的数值要整除11就缺几,所有奇数位上数字之和除以11缺几,所有奇数位数字所表示的数值除以11就缺几。

“移多补少”,只有一个整数所有奇位数字之和与偶位数字之和相减之差能被11整除,原数才能被11整除。

相关文档
最新文档