示踪气体的CFD模拟分析采空区瓦斯流动规律

示踪气体的CFD模拟分析采空区瓦斯流动规律
示踪气体的CFD模拟分析采空区瓦斯流动规律

收稿日期:

2010-08-21

基金项目:国家重点基础研究发展计划973项目(2005CB221503)

作者简介:郑竹林(1963-),男,四川广安人,高级工程师,现在煤炭科学研究总院重庆研究院从事煤矿安全装备研

究工作。

示踪气体的CF D 模拟分析采空区

瓦斯流动规律

郑竹林

(煤炭科学研究总院重庆研究院,重庆 400037)

摘 要:为了加强采空区瓦斯的治理,需要对工作面后方采空区瓦斯流动和分布规律进行研究,文章介绍了利用CFD 采空区气体流场模拟软件模拟分析瓦斯在采空区中的流动规律,通过示踪气体的CFD 模拟分析,掌握了13118工作面采空区瓦斯流动规律,为工作面建立合理的通风方式以及进行采空区瓦斯抽采提供了依据。

关键词:CFD 模拟;采空区瓦斯;瓦斯流动规律

中图分类号:TD712+

5 文献标识码:B 文章编号:1671-0959(2011)01 0058 02

工作面采空区瓦斯流动和分布规律的研究,能为建立合理通风方式、采空区瓦斯抽采以及防治自然发火提供可靠的技术基础。然而采空区气体流动是一个较复杂的过程,不同的采空区其内部气体的运移规律是有差别的,即使是相同的采空区,不同的深度其气体的运移特征也是不同的,这无疑增加了采空区流动气体研究的复杂性[1-2]。另外,由于采空区内部环境的复杂,人和仪器都不可能进入其内部进行测量,而采用普通的采空区埋管的方式成功率非常低,测取的数据可信度也没有保障

[3]

。为了研究采空区瓦斯流动规律,

试验采用商业的CFD 程序FLUENT 来模拟长壁工作面采空区气体的流动规律。根据矿井的实际情况,长壁工作面的CFD 模型是通过FLU ENT 的G a m bit 前处理器进行构建和划分网格的,随之导入解算器进行模拟[4]。鉴于采空区瓦斯气体的多样性,本文主要介绍了谢桥煤矿13118工作面运用CFD 模型模拟示踪气体在采空区中的流动及分布规律,进而分析出采空区中瓦斯的流动及分布规律。

1 试验区概况

谢桥矿位于淮南煤田潘谢矿区西翼,井田处于不对称的谢桥隐伏向斜北翼西段,为一简单单斜构造,地层走向近东西,倾向南,倾角8 ~15 ,平均12 ,东西走向长约为10k m,倾斜宽4 3km ,面积约41k m 2。

试验区选在13118工作面。13118工作面为8#煤层工作面,煤层平均厚度为2 9m,工作面长为1520m,宽为210m 。煤层结构简单,局部含炭质泥岩夹矸一层。顶板以泥岩为主,八线以东多为砂岩及石英砂岩;底板为泥岩及砂质泥岩。该长壁工作面在开切眼处的标高为-420m,而停采线处标高为-510m 。煤层倾角平均12 ,回风巷比机巷高出50m 。采用单巷道进风,双巷道回风。采煤方法为综采,一次采全高。

2 示踪气体的CFD 模拟分析采空区瓦斯流动规律2 1 采空区模拟区域的确定

采空区瓦斯流动规律模拟分析区域如图1所示。其中Q 1,Q 2分别是进风量和回风量,

q 1,

q 2

是采空区漏风量。

图1 采空区模拟区域示意图(m )

2 2 示踪气体的选择

为CFD 模拟选择合适的示踪气体需要符合以下标准: 该示踪气体为一种惰性气体;!该示踪气体能够容易测定,并能够将灵敏度精确至10-6,最好能够精确到10-9;?示踪气体使用的前提是浓度均匀稳定,且能够容易建立。

根据以上条件,经过对几种示踪气的比较,并结合示踪气体选择的要求,最后决定选用SF 6作为CFD 模拟用的示踪气体。

2 3 初始模拟条件和参数

58

谢桥煤矿13118工作面进风量为29 1m3/s,回风量为26 5m3/s,工作面两端静压差为620Pa,位压差为612P a;释放SF

6

气体25kg,释放速率为0 833kg/m i n;模拟时采空区碎胀系数取1 15~1 5,根据公式,此时n=0 13~0 33,

渗透性系数k

p =0 001~0 0285m2/(P a#s);SF

6

气体在采

空区内的扩散系数取0 080m2/h。SF

6

气体在空气中的扩散

规律取C=C

m e

[ln t-ln t0]2

2ln2 ,其中C m为定点处的SF6气体峰值

浓度;t

0为SF

6

气体峰值浓度到达x

点的时间,m i n; 为

对数正态分布曲线方程方差。

2 4 模拟分析

利用采空区气体流场模拟软件,在1000m?200m的区域内运用采空区模型,对SF

6

释放后300m i n、500m i n左右的浓度分布进行模拟,如图2、图3所示,色彩较浓的地方瓦斯浓度大。

通过对示踪气体的模拟结果进行分析表明:

1)气体释放后300m i n后,采空区内沿运输巷的SF

6气体浓度较大,采空区中部在离开工作面一定距离后气体浓度逐渐增大,在采空区的某一深度浓度达到最高,过后又开始逐渐降低。分析其原因是:靠近工作面附近的采空区岩石处于初始冒落,且工作面的综采支架及进、回风巷支护较好,顶板垮落不严重,形成几十米的不垮落空间或半垮落空间,一部分新鲜风从进风巷漏入采空区,漏风流

对采空区内的SF

6

稀释、混合后,在通风负压作用下,从工作面上隅角涌出;靠近工作面的区域风速大,对气体稀释、运移影响较大;而采空区深部则受风流的影响越来越小,采空区深部破碎岩石的压实程度不断增强,能够连通的有效缝隙越来越小,绝大部分气体已不再进入密实的采空区中部[5]。

2)SF

6

气体释放后,在工作面下隅角处分为两个支流,其中一个支流流经工作面,另一支流则沿运输巷流进采空区,进入采空区的支流继续向采空区中部扩散。中部扩散时气体先是沿采空区大的裂隙通道流动,这一点在模拟结果中直接表现为离工作面较远的取样点其峰值浓度较大。模拟结果中距离工作面下隅角较远的取样点在20m i n 内就达到较高的浓度,说明谢桥矿13118工作面采空区连通性较好,有利于气体在其内部流动。

3)SF

6

气体释放300m in、500m i n后,气体在采空区内的扩散较为均匀,浓度变化梯度较小。靠近工作面的采空区下部区域由于漏风流的携带作用浓度已经很小,采空区内部也有部分区域浓度很小,采空区靠近上下两巷两侧要比中部浓度稍大一些。

4)示踪气体释放初期采空区内的SF

6

气体分布不均衡,各处瓦斯浓度存在显著差异。离工作面较近的位置有

风流漏入,比较容易聚集SF

6

气体,但是由于其风量也大,气体浓度衰减很快;离开释放口较远的地方,因风量不足,

SF

6

气体浓度反而较高。

5)释放气体经过约10h的扩散后,采空区内的气体浓度梯度就比较小了,浓度大的区域主要集中在上下顺槽两侧50m左右的距离,采空区中部区域整体浓度相对较小。

3 结 语

1)通过示踪气体的CFD模拟分析,掌握了13118工作面采空区内瓦斯的流动及分布规律。采空区中部在离开工作面一定距离后气体浓度逐渐增大,在采空区的某一深度浓度达到最高,过后又开始逐渐降低;采空区靠近上下两巷两侧的瓦斯浓度相对较大,而采空区中部瓦斯浓度相对较小;采空区连通性较好,有利于气体在其内部流动。

2)13118工作面采空区瓦斯浓度流动规律的掌握,可为工作面建立合理的通风方式以及进行采空区瓦斯抽采提供了指导依据。

参考文献:

[1] 周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:

煤炭工业出版社,1999.

[2] 张东明,刘见中.煤矿采空区瓦斯流动分布规律分析[J].

中国地质灾害与防治学报,2003,14(1):81~84.

[3] 胡千庭,梁运培,刘见中.采空区瓦斯流动规律的CF D模

拟[J].煤炭学报,2007,32(7):719~723.

[4] 淮南矿业(集团)有限责任公司,煤炭科学研究总院重庆分院,

澳大利亚联邦工业科学院.地面钻井抽放采动区域瓦斯技术研

究[R].重庆:煤炭科学研究总院重庆研究院,2006.

[5] 钱鸣高,许家林.覆岩采动裂隙分布的%O&形圈特征研究

[J].煤炭学报,1998,23(5):466~469.

(责任编辑 张宝优)

59

第七 章 CFD仿真模拟

第七章CFD仿真模拟 一.初识CFD CFD是英文Computational Fluid Dynamics(计算流体动力学)的简称。它是伴随着计算机技术、数值计算技术的发展而发展的。简单地说,CFD相当于"虚拟"地在计算机做实验,用以模拟仿真实际的流体流动情况。而其基本原理则是数值求解控制流体流动的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动情况。可以认为CFD是现代模拟仿真技术的一种。 1933年,英国人Thom首次用手摇计算机数值求解了二维粘性流体偏微分方程,CFD由此而生。1974年,丹麦的Nielsen首次将CFD用于暖通空调工程领域,对通风房间内的空气流动进行模拟。之后短短的20多年内,CFD技术在暖通空调工程中的研究和应用进行得如火如荼。如今,CFD技术逐渐成为广大空调工程师和建筑师解决分析工程问题的有力工具。 二.为什么用CFD CFD是一种模拟仿真技术,在暖通空调工程中的应用主要在于模拟预测室内外或设备内的空气或其他工质流体的流动情况。以预测室内空气分布为例,目前在暖通空调工程中采用的方法主要有四种:射流公式,Zonal model,CFD以及模型实验。 由于建筑空间越来越向复杂化、多样化和大型化发展,实际空调通风房间的气流组织形式变化多样,而传统的射流理论分析方法采用的是基于某些标准或理想条件理论分析或试验得到的射流公式对空调送风口射流的轴心速度和温度、射流轨迹等进行预测,势必会带来较大的误差。并且,射流分析方法只能给出室内的一些集总参数性的信息,不能给出设计人员所需的详细资料,无法满足设计者详细了解室内空气分布情况的要求; Zonal model是将房间划分为一些有限的宏观区域,认为区域内的相关参数如温度、浓度相等,而区域间存在热质交换,通过建立质量和能量守恒方程并充分考虑了区域间压差和流动的关系来研究房间内的温度分布以及流动情况,因此模拟得到的实际上还只是一种相对"精确"的集总结果,且在机械通风中的应用还存在较多问题; 模型实验虽然能够得到设计人员所需要的各种数据,但需要较长的实验周期和昂贵的实验费用,搭建实验模型耗资很大,有文献指出单个实验通常耗资3000~20000美元,而对于不同的条件,可能还需要多个实验,耗资更多,周期也长达数月以上,难于在工程设计中广泛采用。 另一方面,CFD具有成本低、速度快、资料完备且可模拟各种不同的工况等独特的优点,故其逐渐受到人们的青睐。由表1给出的四种室内空气分布预测方法的对比可见,就目前的三种理论预测室内空气分布的方法而言,CFD方法确实具有不可比拟的优点,且由于当前计算机技术的发展,CFD方法的计算周期和成本完全可以为工程应用所接受。尽管CFD方法还存在可靠性和对实际问题的可算性等问题,但这些问题已经逐步得到发展和解决。因此,CFD方法可应用于对室内空气分布情况进行模拟和预测,从而得到房间内速度、温度、湿度以及有害物浓度等物理量的详细分布情况。 进一步而言,对于室外空气流动以及其它设备内的流体流动的模拟预测,一般只有模型实验或CFD方法适用。表1的比较同样表明了CFD方法比模型实验的优越性。故此,CFD方法可作为解决暖通空调工程的流动和传热传质问题的强有力工具而推广应用。 表1四种暖通空调房间空气分布的预测方法比较 比较项目 1射流公式 2 ZONAL MODEL 3CFD 4模型实验 房间形状复杂程度简单较复杂基本不限基本不限 ?对经验参数的依赖性几乎完全很依赖一些不依赖

一维CFD模拟仿真设计

CFD simulation in Laval nozzle SIAE 090441313 Abstract We aim to simulate the quasi one dimension flow in the Laval nozzle based on CFD computation in this paper .We consider the change of the temperature ,the pressure ,the density and the speed of the flow to study the flow.The analytic solution of the flow in the Laval nozzle is provided when the input velocity is supersonic.We use the Mac-Cormack Explicit Difference Scheme to slove the question. Key words :Laval nozzle ,CFD,throat narrow. Contents Abstract .................................................. . (1) Introduction .............................................. .. (2) Simulation of one-dimensional steady flow (3)

Basis equations ................................................. (3) Dimensionless .......................................... . (10) Mac -Cormack Explicit Difference Scheme (11) Boundary conditions ................................................ (13) Reference .............................................. (13) Annex .................................................. .. (14) Introduction Laval nozzle is the most commonly used components of rocket engines and aero-engine, constituted by two tapered tube, one shrink tube, another expansion tube. Laval nozzle is an important part of the thrust chamber. The first half of the nozzle from large to small contraction to a narrow throat to the middle. Narrow throat and then expand

空气在管道中流动的基本规律

第一章空气在管道中流动的基本 规律 工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。 通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的理论基础。 本章中心内容是工程流体力学基本知识,主要是空气的基本特性及运动时的基本规律。 1.1 空气的基本特性及流动的基本概念 流体是液体和气体的统称,由液体分子和气体分

子组成,分子之间有一定距离。而我们在通风除尘与气力输送中所接触到的流体(主要是空气)可视为连续体,即所谓连续性的假设。这意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。研究证明,按连续质点的概念所得出的结论与试验结果是很符合的。因此在工程应用上,用连续函数来进行流体及运动的研究,并使问题大为简化。 1.1.1 空气的基本特性 1.密度和重度 单位体积空气所具有的空气质量称为空气密度,用符号ρ表示。其表达式为: (1-1) 式中:ρ——空气的密度(kg/m3); m——空气的质量(kg); V——空气的体积(m3)。

单位体积空气所具有的空气重量称为空气重度, 用符号表示。其表达式为: (1-2) 式中:——空气的重度(N/m3); ——空气的重量(N); ——空气的体积(m3)。 对于液体而言,重度随温度改变而变化。而对于气体而言,气体的重度取决于温度和压强的改变。 由公式(1-2)两边除以 ,可以得出空气的密度与重度存在如下关系; (1-3) 式中:——当地重力加速度,通常取9.81(m/s2)。 2.温度

示踪气体的CFD模拟分析采空区瓦斯流动规律

收稿日期: 2010-08-21 基金项目:国家重点基础研究发展计划973项目(2005CB221503) 作者简介:郑竹林(1963-),男,四川广安人,高级工程师,现在煤炭科学研究总院重庆研究院从事煤矿安全装备研 究工作。 示踪气体的CF D 模拟分析采空区 瓦斯流动规律 郑竹林 (煤炭科学研究总院重庆研究院,重庆 400037) 摘 要:为了加强采空区瓦斯的治理,需要对工作面后方采空区瓦斯流动和分布规律进行研究,文章介绍了利用CFD 采空区气体流场模拟软件模拟分析瓦斯在采空区中的流动规律,通过示踪气体的CFD 模拟分析,掌握了13118工作面采空区瓦斯流动规律,为工作面建立合理的通风方式以及进行采空区瓦斯抽采提供了依据。 关键词:CFD 模拟;采空区瓦斯;瓦斯流动规律 中图分类号:TD712+ 5 文献标识码:B 文章编号:1671-0959(2011)01 0058 02 工作面采空区瓦斯流动和分布规律的研究,能为建立合理通风方式、采空区瓦斯抽采以及防治自然发火提供可靠的技术基础。然而采空区气体流动是一个较复杂的过程,不同的采空区其内部气体的运移规律是有差别的,即使是相同的采空区,不同的深度其气体的运移特征也是不同的,这无疑增加了采空区流动气体研究的复杂性[1-2]。另外,由于采空区内部环境的复杂,人和仪器都不可能进入其内部进行测量,而采用普通的采空区埋管的方式成功率非常低,测取的数据可信度也没有保障 [3] 。为了研究采空区瓦斯流动规律, 试验采用商业的CFD 程序FLUENT 来模拟长壁工作面采空区气体的流动规律。根据矿井的实际情况,长壁工作面的CFD 模型是通过FLU ENT 的G a m bit 前处理器进行构建和划分网格的,随之导入解算器进行模拟[4]。鉴于采空区瓦斯气体的多样性,本文主要介绍了谢桥煤矿13118工作面运用CFD 模型模拟示踪气体在采空区中的流动及分布规律,进而分析出采空区中瓦斯的流动及分布规律。 1 试验区概况 谢桥矿位于淮南煤田潘谢矿区西翼,井田处于不对称的谢桥隐伏向斜北翼西段,为一简单单斜构造,地层走向近东西,倾向南,倾角8 ~15 ,平均12 ,东西走向长约为10k m,倾斜宽4 3km ,面积约41k m 2。 试验区选在13118工作面。13118工作面为8#煤层工作面,煤层平均厚度为2 9m,工作面长为1520m,宽为210m 。煤层结构简单,局部含炭质泥岩夹矸一层。顶板以泥岩为主,八线以东多为砂岩及石英砂岩;底板为泥岩及砂质泥岩。该长壁工作面在开切眼处的标高为-420m,而停采线处标高为-510m 。煤层倾角平均12 ,回风巷比机巷高出50m 。采用单巷道进风,双巷道回风。采煤方法为综采,一次采全高。 2 示踪气体的CFD 模拟分析采空区瓦斯流动规律2 1 采空区模拟区域的确定 采空区瓦斯流动规律模拟分析区域如图1所示。其中Q 1,Q 2分别是进风量和回风量, q 1, q 2 是采空区漏风量。 图1 采空区模拟区域示意图(m ) 2 2 示踪气体的选择 为CFD 模拟选择合适的示踪气体需要符合以下标准: 该示踪气体为一种惰性气体;!该示踪气体能够容易测定,并能够将灵敏度精确至10-6,最好能够精确到10-9;?示踪气体使用的前提是浓度均匀稳定,且能够容易建立。 根据以上条件,经过对几种示踪气的比较,并结合示踪气体选择的要求,最后决定选用SF 6作为CFD 模拟用的示踪气体。 2 3 初始模拟条件和参数 58

CFD仿真验证及有效性指南

CFD仿真验证及有效性指南 摘要 本文提出评估CFD建模和仿真可信性的指导方法。评估可信度的两个主要原则是:验证和有效。验证,即确定计算模拟是否准确表现概念模型的过程,但不要求仿真和现实世界相关联。有效,即确定计算模拟是否表现真实世界的过程。本文定义一些重要术语,讨论基本概念,并指定进行CFD仿真验证和有效的一般程序。本文目的在于提供验证和有效的重要问题和概念的基础,因为一些尚未解决的重要问题,本文不建议作为该领域的标准。希望该指南通过建立验证和有效的共同术语和方法,以助于CFD仿真的研究、发展和使用。这些术语和方法也可用于其他工程和科学学科。 前言 现在,使用计算机模拟流体的流动过程,用于设计,研究和工程系统的运行,并确定这些系统在不同工况下的性能。CFD模拟也用于提高对流体物理和化学性质的理解,如湍流和燃烧,有助于天气预报和海洋。虽然CFD模拟广泛用于工业、政府和学术界,但目前评估其可信度的方法还很少。这些指导原则基于以下概念,没有适用于所有CFD模拟的固定的可信度和精确度。模拟所需的精确度取决于模拟的目的。 建立可信度的两个主要原则是验证和有效(V&V)。这里定义,验证即确定模型能准确表现设计者概念模型的描述和模型解决方案的过程,有效即确定预期模型对现实世界表现的准确度的过程。该定义表明,V&V的定义还在变动,还没有一个明确的最终定义。通常完成或充分由实际问题决定,如预算限制和模型的预期用途。复合建模和计算模拟没有任何包括准确性的证明,如在数学分析方面的发展。V&V的定义也强调准确度的评价,一般在验证过程中,准确度以对简化模型问题的基准解决方法符合性确定;有效性时,准确度以对实验数据即现实的符合性确定。 通常,不确定性和误差可视为与建模和仿真准确度相关的正常损失。不确定性,即在任一建模过程中由于缺乏知识导致的潜在缺陷。知识缺乏通常是由对物理特性或参数的不完全了解造成的,如对涡轮叶片表面粗糙度分布的不充分描述。知识缺乏的另一个原因是物理过程的复杂性,如湍流燃烧。误差即在建模和

采空区瓦斯抽入方法与展望参考文本

采空区瓦斯抽入方法与展 望参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

采空区瓦斯抽入方法与展望参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 (作者:龚乃勤) 1概述 近年来,随着矿井开采程度的提高,工作面瓦斯涌出 量逐年增大,特别是采空区瓦斯涌出更为突出。为解决采 空区瓦斯涌出这一难题,采取加大采空区瓦斯的抽放力 度,但由于对采空区瓦斯的涌出特征和采空区抽放技术的 掌握程度的不同,个别矿井盲目照搬,导致失败的结果。 为此,作者就采空区瓦斯的涌出特点和抽入方法进行探讨 及分析,供参考。 2采空区瓦斯运移规律 2.1瓦斯运移数学模型 按照渗流力学理论,将采场视为连续的渗流空间,在

孔隙介质空间中可直接运用质量守恒定律和N-S方程;瓦斯在采空区的运移实际是机械弥散和分子扩散引起的散布过程,瓦斯在多孔介质中流动的对流扩散和机械弥散遵循Fick扩散定律;根据质量守恒定律、流体动力弥散定律和采空区瓦斯浓度分布定解条件,可建立瓦斯在采空区流动的微分方程组(数学模型): 2.2模拟求解 上述数学模型求解采用Galerkin有限单元法编制TurboC计算程序,输入祁东矿7124工作面开采条件边值,经反演优化,可得出7124工作面采空区瓦斯运移规律和浓度分布三带。 (1)I涌出带:采空区瓦斯在工作面切眼0~20m范围内瓦斯浓度变化较大,一般在3%~15%之间,在涌出带中,采空区丢煤的缷压邻近层解吸的瓦斯向工作面和采

采空区瓦斯抽采方法

采空区瓦斯抽入方法与展望 近年来,随着矿井开采程度的提高,工作面瓦斯涌出量逐年增大,特别是采空区瓦斯涌出更为突出。为解决采空区瓦斯涌出这一难题,采取加大采空区瓦斯的抽放力度,但由于对采空区瓦斯的涌出特征和采空区抽放技术的掌握程度的不同,个别矿井盲目照搬,导致失败的结果。为此,作者就采空区瓦斯的涌出特点和抽入方法进行探讨及分析,供参考。 2采空区瓦斯运移规律 2.1瓦斯运移数学模型 按照渗流力学理论,将采场视为连续的渗流空间,在孔隙介质空间中可直接运用质量守恒定律和N-S方程;瓦斯在采空区的运移实际是机械弥散和分子扩散引起的散布过程,瓦斯在多孔介质中流动的对流扩散和机械弥散遵循Fick扩散定律;根据质量守恒定律、流体动力弥散定律和采空区瓦斯浓度分布定解条件,可建立瓦斯在采空区流动的微分方程组(数学模型):

2.2模拟求解 上述数学模型求解采用Galerkin有限单元法编制TurboC计算程序,输入祁东矿7124工作面开采条件边值,经反演优化,可得出7124工作面采空区瓦斯运移规律和浓度分布三带。 (1)I涌出带:采空区瓦斯在工作面切眼0~20m范围内瓦斯浓度变化较大,一般在3%~15%之间,在涌出带中,采空区丢煤的缷压邻近层解吸的瓦斯向工作面和采空区排放,进入涌出带的瓦斯流动速度较快,多以层流形式存在,且这部分几乎全部被工作面风流和采空区的漏风流携带到回风道内; (2)II过渡带:20~50m范围内瓦斯浓度变化幅度较快,瓦斯浓度一般在20~30%之间,随着工作面的推进,采空区进入过渡带,过渡带的瓦斯在工作面和采空区压差作用下,一部分进入工作面,另一部分暂时或滞留在采空区内,该区域瓦斯流动速度也明显下降,流动呈现出不均衡性,处于层、紊交错阶段; III滞留带50m以上范围内瓦斯浓度变化较小,瓦斯浓度在35%~50%之间,而进入滞留带时,释放采空区内的瓦斯一般滞留在采空区的深部,流动速度较低。

车流量仿真分析-Flotran CFD

2006年用户年会论文 基于ANSYS流体动力学的车流量仿真分析1 [刘长虹,郑杰,朱晓华,张海波,黄虎,陈力华] [上海工程技术大学汽车工程学院,上海,201600] [ 摘要 ] 将交通流比拟为管道流体模型并且利用有限元分析软件ANSYS中的FLOTRAN CFD流体分析模块对隧道口交通流进行比拟及仿真,得出相应交通流量模型和车辆流动模拟图。并对不同车速下 交叉道口的通行能力进行模拟,确定出最佳车速比。且对不同入口形状进行车流通畅度的 ANSYA软件比较模拟,通过模拟直观的展示出不同道路入口形状对车流和道路的影响。最后对 高峰路段路口设计提出有关建议。 [ 关键词]交通流,交通流模型,ANSYS,模拟 Simulating to Traffic Flux By the ANSYS Fluid Dynamic Analysis [Liu Changhong, Zheng Jie, Zhu Xiaohua, Zhang Haibo, Huang Hu, Chen Lihua] [Automobile College Shanghai University of Engineering Science, Shanghai 201600] [Abstract ] Firstly, based on the fluid dynamic mechanics of channel, a traffic flow model is built. Secondly, the traffic flow model on cross road is simulated with the finite element method software (ANSYS). Then according to the calculating results, the simulating traffic ability at the entrance of the roadl in different speed and the different entrance figures are calculated directly. Finally, some suggestions of designing the heavy road are given. [ Keyword ] traffic flow, traffic flow simulation, ANSYS, Simulation. 1.前言 当前,社会经济的迅速发展与交通建设的相对滞后,已经构成非常突出的世界性矛盾,在发展中国家尤其突出。在我国许多大城市中,交通堵塞,事故频繁,成了众所周知的“都市顽症”。以上海市为例,上世纪九十年代的资料表明,在交通高峰期,市中心机动车平均车速不到15km/h,最低的车速仅仅为4km/h,即低于正常的步行速度。解决这个矛盾的一个重要办法是大力进行市政交通建设,实现交通的立体化,现代化。同时还要保证建设道路的合理性。交通流理论是解决这类方法的一种理论方法[1,2],其中有根据流体动力学理 1上海市教委基金项目(041NE31)和上海市科委基金项目(04QMX1452)资助

采空区瓦斯抽入方法与展望(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 采空区瓦斯抽入方法与展望(新 版) Safety management is an important part of production management. Safety and production are in the implementation process

采空区瓦斯抽入方法与展望(新版) (作者:龚乃勤) 1概述 近年来,随着矿井开采程度的提高,工作面瓦斯涌出量逐年增大,特别是采空区瓦斯涌出更为突出。为解决采空区瓦斯涌出这一难题,采取加大采空区瓦斯的抽放力度,但由于对采空区瓦斯的涌出特征和采空区抽放技术的掌握程度的不同,个别矿井盲目照搬,导致失败的结果。为此,作者就采空区瓦斯的涌出特点和抽入方法进行探讨及分析,供参考。 2采空区瓦斯运移规律 2.1瓦斯运移数学模型 按照渗流力学理论,将采场视为连续的渗流空间,在孔隙介质空间中可直接运用质量守恒定律和N-S方程;瓦斯在采空区的运移实际是机械弥散和分子扩散引起的散布过程,瓦斯在多孔介质中流

动的对流扩散和机械弥散遵循Fick扩散定律;根据质量守恒定律、流体动力弥散定律和采空区瓦斯浓度分布定解条件,可建立瓦斯在采空区流动的微分方程组(数学模型): 2.2模拟求解 上述数学模型求解采用Galerkin有限单元法编制TurboC计算程序,输入祁东矿7124工作面开采条件边值,经反演优化,可得出7124工作面采空区瓦斯运移规律和浓度分布三带。 (1)I涌出带:采空区瓦斯在工作面切眼0~20m范围内瓦斯浓度变化较大,一般在3%~15%之间,在涌出带中,采空区丢煤的缷压邻近层解吸的瓦斯向工作面和采空区排放,进入涌出带的瓦斯流动速度较快,多以层流形式存在,且这部分几乎全部被工作面风流和采空区的漏风流携带到回风道内; (2)II过渡带:20~50m范围内瓦斯浓度变化幅度较快,瓦斯浓度一般在20~30%之间,随着工作面的推进,采空区进入过渡带,过渡带的瓦斯在工作面和采空区压差作用下,一部分进入工作面,另一部分暂时或滞留在采空区内,该区域瓦斯流动速度也明显下降,

采空区抽放瓦斯安全技术措施

采空区抽放瓦斯安全技术措施 1

采空区抽放瓦斯安全技术措施 2307工作面正在生产,随着工作面生产的推进,工作面回风隅角瓦斯浓度较高,且有增大趋势。为杜绝瓦斯超限,保证工作面安全正常生产,经研究,决定在2307工作面进行瓦斯抽放,现抽放设备正在安装。为保证瓦斯抽放期间的安全,特编制本措施,望施工人员认真贯彻执行。 一、瓦斯抽放方式 1、瓦斯抽放方式: 采用在2307工作面沿回风巷在采空区内埋管抽放采空区瓦斯。2、采空区埋管方式: 将抽放管路预埋在采空区皮带顺槽位置,预埋管抽放管口距工作面的距离在30m左右时进行抽放,抽放管口的间距为30m,为减少采 空区漏风和提高抽放效果,预先在皮顺端头支架和煤壁之间构筑密闭,密闭距离抽放管口5m左右,密闭间距15m。为提高抽放效果,预埋管路应做到”四防”(防水、防渣堵塞、防爆、防砸),抽放管口用 钢筋网片进行保护,以使抽放管路处于可靠的工作状态。 抽放管路采用双埋管法(见图1):当第一条埋管达到30m时,预埋第二条管路,在第一条管路的60m处用三通和阀门与第二条管路相连,此时第二条管路处于关闭状态,当工作面推过第二条管路管口30m 时,打开第二条管路的阀门并投入抽放,以此类推。 二、瓦斯抽放泵站及管路 2

1、瓦斯抽放泵站位置及固定:泵站选定在2307工作面联络巷风门以外的进风侧。 2、瓦斯抽放泵站:采用淄博市博山开发区真空设备厂生产的ZWY-30/55型水环真空泵,极限真空度33hPa,最大抽气量为30m3/min,电机功率55KW。 3、管路选型及安装长度:瓦斯抽放管路采用Φ159专用管路。瓦斯抽气管路由2307采空区→2307皮带顺槽→2307联络巷接入瓦斯抽放泵站进气管路;排气管路由瓦斯抽放泵→2307联络巷→2307 皮带顺槽→2307专用回风巷→西部回风大巷,进气管路全长1200m,排气管路全长380m。 4、瓦斯排放口的设置及要求:高浓度瓦斯排放口设置在西部回风 大巷2307专用回风巷门口向东40m处,排放口设置全封闭栅栏,栅栏宽3 m,上风侧栅栏长度距管路出口长度5m,下风侧栅栏长度距 管路出口35m,设置”严禁入内”警戒牌,栅栏要加强管理,非专业人 员不准进入。 5、在抽放管路进、排气侧管路上必须设置放水器。 6、在抽放管路的进、排气侧管路上各加一组防回火装置。 三、监测仪器仪表的设置与安装 1、在抽放泵站处和瓦斯排放口栅栏外各设瓦斯传感器一个,检测 两处的风流瓦斯浓度,如果瓦斯抽放泵站的瓦斯浓度达到0.5%,报警断电;如果瓦斯排放口栅栏外的瓦斯浓度达到1%,报警断电,断电 3

流动流体的基本规律

2.2 流动流体的基本规律 2.2.1 流动的基本概念 流体和连续性假设 流体是气体和液体的统称。气体和液体的共同点是不能保持一定形状,具有流动性;而其不同点表现在液体具有一定的体积,几乎不可压缩;而气体可以压缩。 当所研究的问题并不涉及到压缩性时,所建立的流动规律,既适合于液体也适合于气体,通常称为流体力学规律;此时通常不明确区分气体和液体而泛称为流体。当计及压缩性时,气体和液体就必须分别处理。 空气是由分子构成,在标准状态下(即在气体温度15℃、一个大气压的海平面上),每一立方毫米的空间里含有2.7×1016个分子。空气分子的自由行程很小,大约为6×10-6cm。当飞行器在这种空气介质中运动时,由于飞行器的外形尺寸远远大于空气分子的自由行程,故在研究飞行器和大气之间的相对运动时,空气分子之间的距离完全可以忽略不计,即把空气看成是连续的介质。这就是空气动力学研究中常说的连续性假设。 随着海拔高度的增加,空气的密度越来越小,空气分子的自由行程越来越大。当飞行器在40km以下高度飞行时,可以认为是在稠密大气层内飞行,这时空气可看成连续的。在120~150km高度上,空气分子的自由行程大约与飞行器的外形尺寸在同一个量级范围之内;在200km高度以上,气体分子的自由行程有好几千米。在这种情况下,大气就不能看成是连续介质了。 运动的转换 在空气动力学中,为了简化理论和试验研究,广泛采用运动的转换原理 运动的转换原理,是根据加利略所确定的运动的相对原理而建立的。相对原理,即如果在一个运动的物体系上附加上一个任意的等速直线运动,则此附加的等速直线运动并不破坏原来运动的物体系中各物体之间的相对运动,也不改变各物体所受的力。 利用运动的转换原理,使问题的研究大为简化。设飞机以速度v∞在静止空气中运动(图2.2.1),根据相对原理,可以给该物体系(飞机与周围空气)加上一个与速度v∞大小相等方向相反的速度。这样得到的运动是,飞机静止不动,无穷远处气流以速度v∞流向飞机。这两种情况下,空气作用在飞机上的力是完全相同的,这就是运动的转换原理。也就是说,空气作用在飞机上的力,并不决定于空气或物体的绝对速度,而决定于二者之间的相对运动。在风洞试验时,为了模拟飞行器在天空中的飞行情况,可以让模型固定不动,让气流吹过,这样就大大简化了试验技术。

采空区瓦斯抽放

采空区瓦斯抽放 摘要:我国煤矿采空区瓦斯抽放方法种类较多,称谓也不十分统一;适用条件不同,在各矿区抽放效果也不尽相同。通过系统梳理和总结我国现在比较成熟的采空区瓦斯抽放技术,分析其特点及应用情况扣条件,从中优选出先进的技术,并进行适用性研究。优选出的抽放技术可在全国范围内推广使用。关键词:采空区;瓦斯抽放;优选采空区瓦斯是回采工作面瓦斯涌出主要来源之一,而采空区瓦斯抽放具有抽放流量大、来源稳定等特点,成为回采工作面瓦斯治理的重要手段。尤其是对于本煤层预抽效果不理想、采空区瓦斯涌出量大的工作面,采空区抽放方法是首选的抽放方法。近年来,国内外对高瓦斯矿井采空区瓦斯抽放进行了大量的研究,随着煤矿安全生产以及对瓦斯利用的重视,采空区抽放比例正在逐步增大。 目前,我国煤矿采空区抽放方法种类较多,称谓也不十分统一;适用条件不同,在各矿井抽放效果也不尽相同。如果系统梳理和总结我国现在比较成熟的采空区瓦斯抽放技术,分析其特点及应用情况和条件,从中优选出先进的技术并进行适用性研究,并在典型矿区推广使用,其意义是深远的。 1 采空区瓦斯抽放方法分类 如图1所示,采空区瓦斯抽放方法根据采空区类别按瓦斯来源可分成3类:回采工作面采空区瓦斯抽放方法、老采空区瓦斯抽放方法、报废矿井瓦斯抽放方法。其中回采工作面采空区瓦斯抽放方法又为冒落带(冒落拱)瓦斯抽放、采空区积聚瓦斯抽放及回采工作面上隅角局

部积聚瓦斯抽放等3种方法。而采空区瓦斯抽放方法又根据实施方式的不同分为钻孔抽放方式、巷道抽放方式、插(埋)管抽放方式。本文主要依据瓦斯来源分类方式展开。 2 采空区瓦斯抽放可行性 向冒落带打钻或用低位集瓦斯巷道方式比邻近层瓦斯抽放率低,抽放瓦斯浓度也要低,但比埋管抽放采空区积聚瓦斯的抽放率及浓度要高,抽冒落带邻近层瓦斯及插埋管抽采空区积聚瓦斯,技术上都是可行的。 图1 采空区抽放瓦斯方法分类 插管抽放(排)上隅角瓦斯,在技术上也是可行的,但一般浓度较低(<20%),所以需要单设一趟抽放瓦斯管路进行抽放。 此外,当煤层属于容易自燃及自燃煤层时,采空区瓦斯抽放时,必须实施采空区自然发火监测,抽放负压不能过大,以防止采空区煤的

采空区瓦斯浓度分布规律研究

采空区瓦斯浓度分布规律研究 摘要:通过对采空区顶板覆岩活动及空隙介质特征分析,采用现场束管监测的方法来测定采空区瓦斯浓度分布。根据现场观测结果进行了采空区瓦斯浓度分布状态分区,得出采空区后方0-6m范围内的瓦斯稀释的区域;6~10 m范围内的瓦斯聚集区域;10 m以外的范围是瓦斯稳定区域,并根据这个理论,本文主要分析了采空区后方的岩层活动和瓦斯浓度分布的关系,得出造成采空区瓦斯浓度分布不同的根本原因。 关键词:采空区瓦斯浓度状态分区岩层活动 Goaf gas concentration distribution Abstract: Through the roof rock activities in gob and the porosity media features analysis, Using the method of the scene beam pipe monitoring to determine he Distribution of Gas Density in Gob. According to the scene test results divided the gas density in gob into different regions. Reaching conclusion that 0-6m behind gob is gas dilution area and 0-10m behind gob is gas Gathering area and 10m beyond is gas stabilizing area. We analyzed the rough relationship between the distribution of gas density in gob and the strata movement. We get the basic causing that the different on the distribution of gas density in gob.

采空区瓦斯分布规律及瓦斯抽采措施_刘庆海

采空区瓦斯分布规律及瓦斯抽采措施 刘庆海 (双矿集团新安煤矿,黑龙江双鸭山 155100) 摘 要 该文主要阐述了生产采空区瓦斯分布规律与抽采,封闭采空区瓦斯分布规律与抽采,采空区瓦斯抽采措施等问题。由于生产采空区和封闭采空区的瓦斯涌出成因不同,使得形成的瓦斯分布规律也不同,必须根据各采空区的实际情况,选择合理的抽采方法进行瓦斯抽采。关键词 采空区 瓦斯 分布规律 顶板走向 埋管 中图分类号T D712 文献标识码 A 我国多数矿井采空区瓦斯涌出量占全矿井瓦斯涌出量的20~45%,少数矿井为50%左右,因此,应在分析生产采空区和封闭采空区瓦斯分布规律的基础上,应用较成熟的采空区瓦斯抽采方法和措施。 1 生产采空区瓦斯分布规律与抽采 在煤矿开采过程中,煤层和围岩将发生移动变形而卸压,煤层透气性增大,围岩裂隙也随之增加与扩张,邻近煤层和围岩中的瓦斯即通过这些裂隙流动而进入开采工作面空间和采空区。开采层的采动使周围岩层在倾斜方向上发生移动、破坏和缓慢下沉,引起地层应力重新分布。这种移动和破坏随着与开采层距离的增加而减弱,自下而上依次出现冒落带、裂隙带和弯曲下沉带。处于冒落带中的煤层、煤线和岩层由于失去支撑而垮落,其中的瓦斯极易直接进人采空区;裂隙带中的煤、岩层由于下部岩层垮落而断裂、离层,形成自下而上逐渐减弱的垂直与水平裂隙,甚至离层空洞。处于裂隙带的煤、岩层中的瓦斯通过贯通裂隙,在瓦斯压力作用下进入采空区,瓦斯涌出强度随贯通裂隙自下而上逐渐减弱而衰减,积聚在采空区顶板裂隙带的瓦斯量非常大;弯曲、下沉带中的煤、岩层基本上是非破坏性的,仅呈现弹塑性变形和整体弯曲下沉,弯曲下沉的上限甚至达到地表,在弯曲下沉带中的煤岩层中的瓦斯不会或很少向下移动进入采空区。 工作面回风流中的瓦斯大部分来自采空区。据某工作面测定,在工作面正常开采时,采空区瓦斯涌出量占工作面总涌出量的56.4%;工作面检修时,采空区瓦斯涌出量占工作面瓦斯总涌出量的65.2%。在采空区距离工作面20m范围内,瓦斯浓度波动较大,且浓度偏低;在距离工作面20~50m范围内,采空区瓦斯浓度逐渐增大,按一定梯度增加。 采空区抽采最佳位置是实施抽采时能有效减少工作面的瓦斯涌出量,以满足安全生产的需要和达到生产煤层气目的的抽采位置。采空区瓦斯最佳抽采位置 3收稿日期:2009-10-09 作者简介:刘庆海(1952-),男,汉族,黑龙江双鸭山人,毕业于黑龙江科技学院电气工程自动化专业,双矿集团新安矿,工程师。是在距离工作面30~60m的范围内。因此,生产采空区瓦斯抽采应该通过钻孔、以裂隙为通道使抽采负压能够加速瓦斯解吸,再通过煤壁裂隙和顶板裂隙流入抽采钻孔,这是能抽到高浓度瓦斯的原因。 生产采空区抽采普遍采用的方法主要有瓦斯道抽采法、钻孔抽采法、导入法、埋管抽采法。生产采空区瓦斯抽采的应抽强度与采面产量、风量、推进距离、瓦斯涌出量的大小、大气压力的变化以及采空区三带分布状况等因素的影响有着密切关系。条件不同的采面,这些因素影响的程度也各有差异。 2 封闭采空区瓦斯分布规律与抽采 煤矿开采所带来的大面积封闭采空区就是天然的瓦斯存储罐,是威胁安全生产的重大危险源,大量高浓度瓦斯在通风负压的作用和大气压力变化的情况下,可能会通过密闭墙或煤柱裂隙进入采区或矿井巷道中,增加通风负担和不安全因素。 全封闭采空区抽采瓦斯效果在很大程度上取决于密闭墙的气密性质量。全封闭采空区的瓦斯抽采可采用在已封闭的采空区密闭墙中插入抽采瓦斯管的方法直接抽采采空区瓦斯。密闭墙的构筑要保证良好的气密性,并设有观测管和泄水管。全封闭采空区抽采瓦斯浓度一般在初期较大,以后逐渐减小,抽采量则和采空区内瓦斯涌出量多少、采空区范围大小以及封闭采空区的时间长短有关。但是在有煤层自燃起火的矿井中进行全封闭采空区瓦斯抽采时,必须采取相应措施避免因抽采瓦斯导致采空区或密闭漏风,从而使残留煤自燃。封闭采空区瓦斯是矿区煤层气产业开发所特有的宝贵资源,抽采成本极低,适合与其它煤层气开发方式配合生产,以降低煤层气的生产成本。 3 采空区瓦斯抽采措施 3.1 顶板走向钻孔抽采 采空区和上隅角抽采方法很多,通常情况下,可采用顶板走向钻孔抽采和上隅角埋管抽采联合的抽采方法。采用顶板走向钻孔法时,钻场距离煤层顶板上方约1~2m,钻场深度为5.5m。钻场间距为70~80m,为长短、高低两排孔,终孔距离煤层(下转第211页)

抽采瓦斯的方法分类

抽采瓦斯的方法分类 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

抽采瓦斯的方法分类 更具从时间上、空间上的不同可以分为 采前抽采、采中抽采、采后抽采 本煤层、临近层、采空区、工作面(回采工作面,掘进工作面)抽采 开采层瓦斯抽采 选择瓦斯抽采方法的原则 开采层、邻近层和采空区瓦斯抽采是目前国内外广泛应用的三种煤矿瓦斯抽采办 法。选择合理有效的瓦斯抽采方法需要综合考虑矿井主要瓦斯来源、煤层赋存特征、采掘布置方式以及煤层开采程序等许多客观因素。经前人不断探索实践,总结出以下五个选择瓦斯抽采方法的原则首先要与矿井地质条件、煤层基本赋存特征、采掘巷道布置方式和煤炭开采技术条件相符。其次要考虑煤矿瓦斯涌出主要来源及构成,尽可能应用综合瓦斯抽采技术来提高抽采效果。然后要做到抽采与采掘巷道相结合,以达到减少井巷工程量的目的。再次要有助于抽采巷道的布置、维护和维修,己达到降低抽采成本的目的。最后,应尽量方便于抽采管路的敷设,确保抽采工程的施工安全和增加抽采时间。、瓦斯抽采方法概述 回采工作面瓦斯来源及构成 工作面瓦斯涌出量构成预测结果表明其一部分来源于开采层煤壁和落煤解析的瓦 斯,另一部分来源于采空区丢煤解析的瓦斯和周围岩层及上下邻近层涌出的瓦斯。工作面瓦斯主要来源于采空区含采空区丢煤、周围岩层及邻近层和开采层涌出的瓦斯。 采前预抽、边采边抽和强化抽采等方式都属于开采层瓦斯抽采方式。 ①采前预抽主要是一项对未卸压的煤层或岩层进行瓦斯抽采的技术手段,它多应 用钻孔技术将被采煤体中的瓦斯在煤层开采之前预先抽采出来。因此说,当煤层透气性

采空区瓦斯抽入方法与展望(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 采空区瓦斯抽入方法与展望(标 准版)

采空区瓦斯抽入方法与展望(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 (作者:龚乃勤) 1概述 近年来,随着矿井开采程度的提高,工作面瓦斯涌出量逐年增大,特别是采空区瓦斯涌出更为突出。为解决采空区瓦斯涌出这一难题,采取加大采空区瓦斯的抽放力度,但由于对采空区瓦斯的涌出特征和采空区抽放技术的掌握程度的不同,个别矿井盲目照搬,导致失败的结果。为此,作者就采空区瓦斯的涌出特点和抽入方法进行探讨及分析,供参考。 2采空区瓦斯运移规律 2.1瓦斯运移数学模型 按照渗流力学理论,将采场视为连续的渗流空间,在孔隙介质空间中可直接运用质量守恒定律和N-S方程;瓦斯在采空区的运移实际是机械弥散和分子扩散引起的散布过程,瓦斯在多孔介质中流动的对流扩散和机械弥散遵循Fick扩散定律;根据质量守恒定律、流体动力

采空区瓦斯抽采技术标准

采空区瓦斯抽采技术标准 1 范围 本标准规定了煤矿采空区瓦斯抽采方法、技术标准等要求。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 AQ 1027-2006 煤矿瓦斯抽放规范 GB 50471-2008 煤矿瓦斯抽采工程设计规范 MT 1035-2007 采空区瓦斯抽放监控技术规范 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程(2000版) 3 术语及定义 采空区 指矿井回采工作面后冒落或封闭的区域。正在回采工作面的冒落区域称半封闭式采空区或现采空区,已经封闭的回采工作面的区域称老空区。 4 采空区抽采瓦斯方法 4.1 埋管法 沿回采的采煤工作面回风巷敷设抽采管路由上隅角进入采空区进行瓦斯抽采的一种工艺方法,见图1。具体可参照以下要求实施: a) 抽采管路上每间隔20m~50m设置一个立管; b) 立管高度根据采高和冒落情况确定,立管上方设置顶端封闭、四周钻孔的筛孔管, 筛孔个数根据抽采瓦斯情况确定,同时需对立管采取保护措施; c) 在立管进入采空区20m~30m后打开,接替上一立管依次投入抽采。

图 1 采空区埋管抽采布置剖面示意图 4.2 插管法 利用抽采管路系统,对回采的采煤工作面封闭采空区部分和已采的采煤工作面全封闭采空区进行抽采的一种工艺方法。抽采管路可沿回风巷、专用排瓦斯尾巷敷设,见图2、图3.全封闭采空区闭墙还应符合以下要求: a) 闭墙要严密不漏风; b) 插管开孔高度应在闭墙高度的三分之二以上; c) 插管应穿透闭墙超过0.5~1m; d) 插管管材应采用阻燃、抗静电、不导电材质; e) 墙外的管路应加观测孔、阀门。 图 2 现采空区插管抽采布置示意图

相关文档
最新文档