行程问题“九大题型”与“五大方法”
公考行程题型归纳

公考行程题型归纳一、行程问题概述行程问题是公务员考试中的重要题型之一,主要考查考生对运动学知识的理解和应用能力。
行程问题涉及到的知识点包括路程、速度、时间等,通过不同的组合和变化,形成多种复杂的题型。
二、基础行程模型基础行程模型是行程问题的基本模型,包括直线行程和曲线行程两种。
直线行程模型涉及到的知识点包括速度、时间和距离之间的关系,即速度=距离/时间。
曲线行程模型涉及到圆周运动和匀速圆周运动等知识点。
三、相对速度问题相对速度问题是行程问题中的难点之一,主要考查考生对相对速度概念的理解和应用能力。
在相对速度问题中,需要考虑两个物体之间的相对速度,即一个物体相对于另一个物体的速度。
这种题型需要考生对速度的合成和分解有深入的理解。
四、相遇与追及问题相遇与追及问题是行程问题中的常见题型之一,主要考查考生对运动学规律的理解和应用能力。
在相遇与追及问题中,两个物体在同一直线上运动,一个物体追赶另一个物体,或者两个物体在某一地点相遇。
这种题型需要考生对追及和相遇的条件有深入的理解。
五、环形跑道问题环形跑道问题是行程问题中的另一种常见题型,主要考查考生对环形运动规律的理解和应用能力。
在环形跑道问题中,两个或多个物体在圆形跑道上运动,它们可能迎面相遇,也可能背向而行。
这种题型需要考生对环形跑道的运动规律有深入的理解。
六、多次往返问题多次往返问题是行程问题中的一种复杂题型,主要考查考生对往返运动规律的理解和应用能力。
在多次往返问题中,两个物体在同一直线上运动,一个物体从起点出发,经过多次往返运动后回到起点。
这种题型需要考生对往返运动的规律有深入的理解。
七、火车过桥问题火车过桥问题是行程问题中的另一种特殊题型,主要考查考生对火车过桥运动规律的理解和应用能力。
在火车过桥问题中,火车从桥的一端驶向另一端,同时桥上的路灯或其他物体也在移动。
这种题型需要考生对火车过桥的运动规律有深入的理解。
八、时间与距离计算时间与距离计算是行程问题的核心知识点之一,主要考查考生对时间和距离计算方法的理解和应用能力。
小学奥数行程问题类型归纳及解题技巧总结

小学奥数行程问题类型归纳及解题技巧总结在小学生数学竞赛中,行程问题是一个常见的考点。
而在行程问题中,又分为多种类型,比如速度问题、时间问题、距离问题等等。
本文将对小学奥数行程问题的类型进行归纳总结,并提供解题技巧供同学们参考。
一、速度问题速度问题是行程问题中最经典的类型之一。
通常情况下,速度问题会给出一个人或物体的速度以及时间,然后要求计算距离。
解决速度问题的关键在于掌握单位之间的转换关系。
常见的单位包括:米/秒、千米/时、厘米/分等等。
在解题过程中,我们可以利用等速运动的基本公式:速度=距离/时间。
通过根据已知条件列出方程,求解未知量即可得到结果。
例如,某辆汽车以60千米/时的速度行驶了3小时,求汽车行驶的距离。
解法:根据已知条件,我们可以列出方程:60 = 距离/3。
通过解方程可得距离=60×3=180千米。
因此,汽车行驶的距离为180千米。
二、时间问题时间问题是行程问题中常见的类型之一。
解决时间问题的关键在于掌握时间的单位换算。
在解题过程中,我们需要灵活运用时间=距离/速度的公式,根据已知条件列方程,最后求解未知量。
例如,小明骑自行车以20千米/时的速度骑行了2小时,求小明骑行的距离。
解法:根据已知条件,我们可以列出方程:2 = 距离/20。
通过解方程可得距离=2×20=40千米。
因此,小明骑行的距离为40千米。
三、距离问题距离问题是行程问题中常见的类型之一。
在距离问题中,我们通常需要根据已知的速度和时间,求解行程的距离。
同样,解决距离问题也需要掌握单位的换算关系。
例如,一辆火车以每小时50千米的速度行驶了4小时,求火车行驶的距离。
解法:根据已知条件,我们可以列出方程:50 = 距离/4。
通过解方程可得距离=50×4=200千米。
因此,火车行驶的距离为200千米。
四、奥数行程问题解题技巧总结1. 学会单位之间的转换:在解决行程问题时,单位之间的转换是非常重要的。
小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。
行程问题是物体匀速运动的应用题。
不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。
要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。
以下是总结的10种经典行程问题的相关解法。
一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。
行程问题九大题型

行程问题九大题型一、相遇问题1. 基本概念两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇。
2. 公式相遇路程= 速度和×相遇时间,相遇时间= 相遇路程÷速度和,速度和= 相遇路程÷相遇时间。
3. 例题甲、乙两人分别从A、B两地同时出发,相向而行。
甲的速度是每小时5千米,乙的速度是每小时3千米,经过4小时两人相遇。
求A、B两地的距离。
解:根据公式相遇路程= 速度和×相遇时间,速度和为\(5 + 3=8\)(千米/小时),相遇时间是4小时,所以相遇路程(即A、B两地距离)为\(8×4 = 32\)千米。
二、追及问题1. 基本概念两个物体同向运动,慢者在前,快者在后,经过一定时间快者追上慢者。
2. 公式追及路程= 速度差×追及时间,追及时间= 追及路程÷速度差,速度差= 追及路程÷追及时间。
3. 例题甲以每小时6千米的速度先走1小时后,乙以每小时8千米的速度从同一地点出发去追甲。
问乙多长时间能追上甲?解:甲先走1小时的路程就是追及路程,为\(6×1 = 6\)千米,速度差为\(8 - 6 = 2\)千米/小时。
根据追及时间= 追及路程÷速度差,可得追及时间为\(6÷2 = 3\)小时。
三、环形跑道问题1. 同地出发同向而行基本概念:在环形跑道上,两人同地出发同向而行,快者每追上慢者一次,就比慢者多跑一圈。
公式:追及路程= 环形跑道一圈的长度,追及时间= 环形跑道一圈的长度÷速度差。
例题:在周长为400米的环形跑道上,甲的速度是每秒6米,乙的速度是每秒4米。
如果两人同时同地同向出发,经过多长时间甲第一次追上乙?解:追及路程为400米,速度差为\(6 - 4 = 2\)米/秒,根据追及时间= 追及路程÷速度差,可得追及时间为\(400÷2 = 200\)秒。
行程问题的解题技巧

行程问题的解题技巧1. 哎呀呀,行程问题中遇到相向而行的情况,那简直就像是两个人对着跑呀!比如说,小明和小红在一条路上,一个从这头走,一个从那头走,他们多久能相遇呢?这时候只要把两人的速度加起来,再用总路程除以这个和,不就能算出相遇时间啦!就像搭积木一样简单嘛!2. 嘿,要是同向而行呢,那不就是一个追一个嘛!就好像跑步比赛,跑得快的追跑得慢的。
比如小强每分钟跑 100 米,小亮每分钟跑 80 米,那小强要多久才能追上小亮呀?用他们的速度差乘以时间等于最初的距离差这个道理,一下子就能算出来啦,是不是超有趣呀!3. 碰到那种来回跑的行程问题呀,可别晕!比如说小李在 A、B 两点间跑来跑去。
这就像钟摆一样来来回回呀!这时候得仔细分析他跑的每一段路程和时间,然后加起来或者算差值,搞清楚到底怎么回事儿!这很考验耐心哦,但搞懂后会超有成就感的呀!4. 还有那种在环形跑道上跑的呢,这不就像围着一个大圆圈转嘛!比如小王在环形跑道上跑,和别人相遇几次或者追上几次,就得想想他们相对的速度和跑的圈数啦。
这多有意思呀,就好像在玩一个特别的游戏!5. 你们想想看,行程问题里有时候给的条件可隐晦啦!这就像捉迷藏一样,得仔细找线索呀!比如说告诉你一段路程走了几小时,又告诉你另外一些模糊的信息,就得开动脑筋把有用的找出来,算出行程中的各种数据。
是不是有点像侦探破案呀,刺激吧!6. 有时候行程问题里会有停顿呀什么的,那就像走路走一半歇会儿一样。
比如小张走一段路,中间停了几分钟,这时候得把停顿的时间考虑进去呀,不然可就算错啦,可不能马虎哟!7. 哈哈,行程问题其实就是生活中的各种走呀跑呀的情况。
只要我们把它当成有趣的事儿,像玩游戏一样去对待,就不会觉得难啦!所以呀,不要害怕行程问题,大胆去挑战它们吧!我的观点结论就是:行程问题没那么可怕,只要用心去理解和分析,都能轻松搞定!。
行程问题九大题型初中公式

行程问题九大题型初中公式
在解决行程问题时,初中阶段主要涉及到的公式主要包括以下九大题型:
1. 相遇问题:
公式:总路程 = (甲速度 + 乙速度) × 相遇时间
2. 追及问题:
公式:追及时间 = 追及路程 / (快速 - 慢速)
公式:追及路程 = (快速 - 慢速) × 追及时间
3. 环形跑道上的相遇与追及:
公式:外圈路程 - 内圈路程 = 快者速度× 时间 - 慢者速度× 时间
4. 行程问题中的正反比例关系:
公式:路程一定,速度与时间成反比
5. 航行问题:
公式:顺水速度 = 静水速度 + 水流速度
公式:逆水速度 = 静水速度 - 水流速度
6. 火车过桥问题:
公式:车长 + 桥长 = 火车速度× 火车过桥时间
7. 流水问题:
公式:船速的(1 - 水速/船速)× 时间 = (顺水路程 / 顺水时间)× 时间
8. 行程问题中的比例关系:
公式:路程一定时,时间和速度成反比
9. 行程问题中的线性关系:
公式:速度一定时,路程和时间成正比
在解决具体问题时,需要根据问题的具体情况选择合适的公式进行计算。
同时,理解和掌握这些公式的含义和应用方法,对于提高解决实际问题的能力非常重要。
行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题是数学中常见的问题之一,它涉及到速度、时间、距离等基本概念。
在解题时,我们需要根据题目中所给出的信息,运用合适的方法进行求解。
以下是一些常用的解题技巧和方法:
1. 基本公式法:行程问题的基本公式为:路程=速度×时间。
利用这个公式,我们可以很方便地求解各类行程问题。
2. 比例法:比例法是行程问题中常用的方法之一。
如果题目中给出的比例关系正确,我们可以通过比例关系来求解问题。
3. 假设法:假设法适用于一些无法确定具体数值的行程问题。
通过假设一些数值,然后根据题目中给出的信息,进行分析推理,进而求解问题。
4. 方程法:方程法是行程问题中最常见的方法之一。
通过建立方程,我们可以将行程问题转化为代数问题,然后通过解方程来求解答案。
5. 正反比法:正反比法适用于一些行程问题中的速度变化情况。
如果题目中给出的速度变化规律正确,我们可以通过正反比关系来求解问题。
6. 比例分配法:比例分配法适用于一些行程问题中的比例关系不正确,但可以分解成两个比例关系的情况。
通过比例分配,我们可以将问题转化为两个比例关系的问题,然后求解答案。
总之,行程问题的解题技巧和方法有很多种,我们需要根据具体情况进行选择。
在学习过程中,我们应该注重基础知识的掌握和技巧的应用,这样才能在解题时更加从容自信。
小学奥数行程问题分类讨论完整版

小学奥数行程问题分类讨论HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小学奥数行程问题分类讨论行程问题是小升初考试和小学四大杯赛四大题型之一(计算、数论、几何、行程)。
具体题型变化多样,形成10多种题型,都有各自相对独特的解题方法。
现根据四大杯赛的真题研究和主流教材将小题型总结如下,希望各位看过之后给予更加明确的分类。
一、一般相遇追及问题。
包括一人或者二人时(同时、异时)、地(同地、异地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。
在杯赛中大量出现,约占80%左右。
建议熟练应用标准解法,即s=v×t结合标准画图(基本功)解答。
由于只用到相遇追及的基本公式即可解决,并且要就题论题,所以无法展开,但这是考试中最常碰到的,希望高手做更为细致的分类。
二、复杂相遇追及问题。
(1)多人相遇追及问题。
比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。
解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。
(2)多次相遇追及问题。
即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称反复折腾型问题。
分为标准型(如已知两地距离和两者速度,求n 次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数)和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数)。
标准型解法固定,不能从路程入手,将会很繁,最好一开始就用求单位相遇、追及时间的方法,再求距离和次数就容易得多。
如果用折线示意图只能大概有个感性认识,无法具体得出答案,除非是非考试时间仔细画标准尺寸图。
一般用到的时间公式是(只列举甲、乙从两端同时出发的情况,从同一端出发的情况少见,所以不赘述):单程相遇时间:t单程相遇=s/(v甲+v乙)单程追及时间:t单程追及=s/(v甲-v乙)第n次相遇时间:Tn= t单程相遇×(2n-1)第m次追及时间:Tm= t单程追及×(2m-1)限定时间内的相遇次数:N相遇次数=[ (Tn+ t单程相遇)/2 t单程相遇]限定时间内的追及次数:M追及次数=[ (Tm+ t单程追及)/2 t单程追及]注:[]是取整符号之后再选取甲或者乙来研究有关路程的关系,其中涉及到周期问题需要注意,不要把运动方向搞错了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题“九大题型”与“五大方法”。
很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。
1、九大题型:
⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;
⑻接送问题;⑼时钟问题。
2
、五大方法:
⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。
⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。
示意图包括线段图、折线图,还包括列表。
图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。
另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。
ps:画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%!
⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。
更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)
往往是不确定的,在没有具体数值的情况下,只能用比例解题。
ps:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。
⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。
这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。
⑸方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。
ps:方程法尤其适用于在重要的考试中,可以节省很多时间。
四、怎样才能学好行程问题?
因为行程的复杂,所以很多学生已开始就会有畏难心理。
所以学习行程一定要循序渐进,不要贪多,力争学一个知识点就要能吃透它。
学习奥数有四种境界:
第一种:课堂理解。
就是说能够听懂老师讲解的题目。
第二种:能够解题。
就是说学生听懂了还能做出作业。
第三种:能够讲题。
就是不仅自己会做,还要能够讲给家长听。
第四种:能够编题。
就是自己领悟这个知识了,自己能够根据例题出题目,并且解出来。
其实大部分学生学习奥数都只停留在第一种境界(有的甚至还达不到),能够达到第三种境界的学生考取重点中学实验班基本上没有什么问题了。
而要想在行程上一点问题没有,则要求学生达到第四种境界。
即系统学习,还要能深刻理解,刻苦钻研。
而这四种境界则是学习行程的四个阶段,或者说是好的方法。
建议一:不论是什么问题,在学习之前有必要对于要学的东西有个纵向的了解,要系统地梳理一遍,这样有系统,有方向,学习的时候也不会迷茫。
一般这个步骤需要家长和老师一起帮助孩子完成。
这样把大的目标分为不同的小的目标,各个击破,孩子也会有信心。
同时发现问题时,也可以有针对性的进行解决。
建议二:需要强调一点,就是在学习过程中不能捡芝麻丢西瓜,简言之就是要在每学一个知识的时候,都要对学过的知识进行练习。
一定要要重视总结,把行程问题进行分类比较,这样孩子对于行程问题的理解会上升一个新的高度。
建议三:在学习过程中,可以积累孩子的错题,以便日后观察孩子在此部分知识点学习过程中的薄弱环节,这样我们以后的计划会更有针对性。
在制定计划时慢慢的达到量身定做的效果。